
Mawl: Integrated Web and Telephone Service Creation

David Atkins, Thomas Ball* Thomas Baran, Michael Benedikt,

Kenneth Cox, David Laddy, Peter Mataga, Carlos Puchol,

J. Christopher Rammingz, Kenneth Rehor, Curtis Tuckey

Bell Laboratories

mawlers@research.bell-labs.com

http://www-spr.research.bell-labs.com/�mawl/

March 4, 1997

Abstract

Mawl is a language and compiler for programming form-based services in a device-
independent manner. PML is a markup language and middleware for controlling and pro-
gramming various interactive voice response (IVR) platforms using standard web infrastruc-
ture. The combination of Mawl and PML allows the creation of interactive services that
users can access via a web browser or telephone. The ability to create such services in a
single environment appears to be unique.

The Mawl language separates the speci�cation of service logic from the speci�cation of
the user interface to be presented on a device. As a result, one can easily code a service
that is accessible via a web browser and with minor modi�cations to only the user interface
speci�cation, make the service accessible via an IVR platform. Mawl draws on the princi-
ples of application language engineering to facilitate not just service creation but the entire
software development life cycle, improving a service provider's ability to develop, monitor,
analyze, administer, and modify form-based services.

The Phone Markup Language (PML) is a language and an architecture that enables tele-
phone access to web services and the easy creation of IVR services using the web paradigm.
The PML language is a dialect of HTML specialized to describe content for interpretation
over a telephone. HTML or PML documents are served over a telephone by standard IVR
platforms (or audio processing nodes); as in the hypertext model, the documents themselves
may reside on any web server in the network, or may be dynamically generated. The PML
middleware takes care of the tasks of fetching documents from the Internet and instructing
audio processing nodes to \play" them. As a result, to program an IVR service, a program-
mer need only deal with a simple markup language and is insulated from the details of the
network and particular audio processing nodes.

1 Introduction

The World Wide Web, originally a simple mechanism for document distribution, is rapidly be-
coming the standard infrastructure for diverse interactive applications. The ubiquity of the

*Correspondence contact: tball@research.bell-labs.com, Room 1G-359, 1000 E. Warrenville Rd., Naperville,
IL 60566. Telephone (630) 979-4291. yLadd's current address: Spyglass, 1240 E. Diehl Rd, Naperville, IL 60563.
zRamming's current address: AT&T Research, 600{700 Mountain Avenue, Murray Hill, NJ 07974-0636.

LUCENT PROPRIETARY|Use pursuant to company instructions 1

hypertext metaphor and browser technology make a web interface attractive for a variety of
business uses: intranet applications for internal processes, such as project management; internet
applications that provide services to external customers, such as personal communications man-
agement or customer care; and software bundled with products, such as equipment management
interfaces. (For an example of a web service, see Sidebar A.)

Mawl is an application-oriented language for producing complex interactive web services [LR95].
Mawl is supported by a number of tools, including a compiler. The design of mawl draws on
the principles of application language engineering to facilitate not just service creation but the
entire software development life cycle. Mawl improves a service provider's ability to develop,
monitor, analyze, administer, and modify web services.

The core of a mawl service is a centralized service logic, written in a language designed to
express ow of control, state management, and the content of information ow between service
and user. The presentation details of the user interactions are encapsulated in templates written
in an extension of the HyperText Markup Language (HTML) [BLC95] that allows dynamic
customization of their content.

Mawl also provides new functionality to web services by allowing the integration of alternative
user interfaces, such as the telephone. The Phone Markup Language (PML) is a dialect of HTML
specialized to describe content for interpretation over a telephone. We have developed a platform
that allows HTML and PML documents to be served over a telephone by special purpose audio
browsers; as in the hypertext model, the documents themselves may reside on any web server
in the network, and may be dynamically generated.

The combination of mawl with PML permits the creation of interactive services that users can
access via web browser or telephone. The ability to create such services in a single environment
appears to be unique.

1.1 Web Services and Mawl

The stateless protocol underlying the web (the HyperText Transmission Protocol or HTTP) was
designed to support a single interaction in which a web server responds to a request sent across
the network by a client application [BL95]. When requests are processed independently of one
other, this model works well, as the proliferation of hypertext archives and simple information-
collection applications shows. On the other hand, complex services require the maintenance
of state and control-ow information across multiple user interactions, and this violates the
assumption of independence. Since HTTP is stateless, service developers who use Common
Gateway Interface (CGI) programs, invoked by client requests, are typically forced to construct
their own mechanisms for remembering the history of the interaction with the client.

As shown in Figure 1, mawl eliminates this problem by providing service developers the
illusion of a centralized, sequential service logic. From a programmer's point of view, a mawl
service is composed of sessions, running on a web server, that interleave server-side processing
with user interactions. User interactions go through agents called arbiters which dynamically
parameterize document templates, send them to the user, and receive a responses which are then
sent back to the session. The mechanism by which separate HTTP requests from the client
are related is never explicitly addressed by the service creator; the mawl compiler provides this
infrastructure. The document templates are written in a dialect of HTML that allows dynamic
customization of their content, according to the current state of the service.

The separation of service logic from presentation to the user has a number of software
engineering advantages. The control and information ow of all interactions with a service are
speci�ed in a central location (the session), rather than being implicit in the relationships of a

LUCENT PROPRIETARY|Use pursuant to company instructions 2

Session Templates

output

input

Arbiter

request (HTML)

response

 Web
Browser

Service
 Logic

Interface Between
Service and User User

.mhtml
.mpml.mawl

Figure 1: The three major abstractions in the mawl service architecture: sessions, arbiters, and
templates.

scattered set of scripts, as is common in much web service programming. Presentation details
irrelevant to service logic are speci�ed separately in document templates, allowing developers
with di�erent skills to work on disjoint aspects of the service. The abstractions introduced by
mawl allow a exible strategy for platform independence, since the compiler and runtime system
may be con�gured to produce di�erent implementations of the same service logic.

Among other bene�ts, mawl provides:

� compile-time checking of new or modi�ed services;

� separate update of service logic and presentation;

� instrumentation that allows dynamic tracing and visualization of service behavior and
usage patterns.

It is also possible to generate administrative interfaces that allow debugging, monitoring, and
modi�cation of dynamic data.

1.2 Multiple Browsers and PML

One e�ect of the separation of service logic and presentation detail is the ability to accommodate
existing \browsers," such as email readers and telephones, as well as future browsers, such as
smart telephones or personal data assistants. The motivations for looking at the telephone as an
interface to the web are fairly obvious: it is the most ubiquitous access device on the planet, is
available to the most mobile of users, and has a huge user base. In addition, the issues arising in
telephone access include many of those that will arise in the course of making services available

LUCENT PROPRIETARY|Use pursuant to company instructions 3

to an increasingly heterogenous collection of devices; indeed, it is hard to imagine two user
interfaces more dissimilar than the telephone and the graphical web browser.

The Phone Markup Language (PML) is a language and an architecture that enables telephone
access to web content and the easy creation of interactive voice response (IVR) services using
the web paradigm. The PML language is a dialect of HTML specialized to describe content for
interpretation over a telephone. PML documents are served over a telephone by special-purpose
audio browsers; as in the hypertext model, the documents themselves may reside on any web
server in the network, or may be dynamically generated. Thus, in order to program an IVR
service, a programmer need only deal with a simple markup language. The IVR programmer is
insulated from the details of the network and particular audio nodes, just as the web programmer
is insulated from details of networks and browsers.

1.3 Application Focus

Mawl is useful for the development of simple web services as well as more complicated ones,
but the machinery is particularly advantageous for applications that have one or more of the
following characteristics: multiple user interfaces; service analysis and administration; extended
transactions.

� Multiple user interfaces

Many services, especially those designed for use by external customers, require integration
of di�erent interfaces. This is particularly so for web services that replace legacy systems
based on telephone access to automated services or human agents: any new system must
still o�er a large subset of the existing access functionality. The trend toward mobility also
motivates multiple user interface support. Furthermore, enhancements of telephone-based
services may require the richness of a graphical user interface. For example, for a personal
communication service, the best interface for con�guring user preferences is probably a
web browser.

Since PML is designed to be used within the standard web infrastructure, it is possible
to integrate HTML and PML services. If mawl is used as the service logic programming
environment, it is particularly easy to o�er web and phone access to the same service.
Thanks to mawl's separation of service logic and presentation, di�erent user interfaces
may share some or all of their service logic, and access the same state information and
host language code. Together, mawl and PML make it possible to build services that
integrate multiple user interfaces in a systematic, reusable and maintainable way.

� Administration and maintenance

Commercial services require monitoring, modi�cation, and other operational management.
Services of business importance must reliably provide operations administration and main-
tenance features such as logging, performance data collection, error reporting, online ad-
ministration and data update, and software upgrade of running services. Because mawl is
built upon an infrastructure that maintains the complete service state, and because mawl
applications are systematically generated from high-level service speci�cations, we have
been able use mawl to automate these capabilities signi�cantly.

� Extended transactions

Complex web services require multiple, sequential, and related interactions to occur over
extended periods of time. As part of such transactions, the user may wish to suspend a

LUCENT PROPRIETARY|Use pursuant to company instructions 4

session and resume it later, or the service may transfer control of the session to someone
else. Since mawl maintains all state on the server, including the program counter for each
session, it is possible to design language features and recovery mechanisms to support
extended transactions.

Section 2 describes the mawl language and its context in the Application Language Engi-
neering research e�ort at Indian Hill. Section 3 discusses the goals and architecture of PML and
how the combination of mawl and PML enables the creation of services accessible by both web
and telephone. Section 4 describes some of the applications that have been created with mawl
and PML. Section 5 reviews related work and Section 6 describes current and future research
directions.

2 Mawl and Application Language Engineering

We �rst illustrate the main points of the mawl service architecture with a small example, and
then describe the bene�ts of application language engineering in the context of mawl.

2.1 Mawl Architecture and Implementation

Figure 2 shows a simple mawl service illustrating the three main abstractions of mawl:
sessions, arbiters, and templates.

� Sessions

This service has one session, which de�nes a sequence of interactions with a user. The ses-
sion interacts twice with the user, �rst prompting for the user's name and then greeting the
user and displaying the date. The service logic, written in mawl, is shown in Figure 2(a);
this code is contained in a �le named Date.mawl.

Mawl provides a persistence model that allows programmers to specify the type of storage
required for the variables involved in a mawl program. In the example, access cnt is a
persistent variable. Variables may exist on a per-session basis (as declared by the keyword
auto) or persist over all session executions (as declared by the keyword static). Mawl has
several concurrency control mechanisms for static variables shared across instances of a
session. Although not shown in this example, the mawl has standard imperative constructs
for looping, conditional control-ow, procedure calls, and so on.

The only way for the service logic to interact with the user is through simple input/output
devices, called arbiters, which are accessed through a well-de�ned interface. Each arbiter
has certain input variables, which are supplied by the service logic, and output variables,

which are extracted from a user's response.

� Arbiters

An arbiter is declared in the mawl service logic as a function from a record containing the
input variables to a record containing the output variables. In the example of Figure 2(a),
the arbiter GetName is declared as having type fg -> fidg.

At run time the service provides the arbiter with a record containing the input variables,
and in return receives a record containing the output variables. This is shown in Fig-
ure 2(a), where the service �rst provides GetName with its required (empty) input record
and receives back a record containing the id variable. This record is stored in the variable

LUCENT PROPRIETARY|Use pursuant to company instructions 5

(a) Date.mawl:

static int access_cnt = 0; // how many hits?

session todaysDate {

auto arbiter {} -> { id } GetName; // arbiter to get a user's name

auto arbiter { id, date } -> {} ShowInfo; // arbiter to show name and date

auto { id } name = GetName.put({}); // get the user's name into id

ShowInfo.put({name.id, date()}); // show user their name and date

access_cnt = access_cnt + 1; // they completed the service!

}

(b) GetName.mhtml:

<HTML>

<HEAD><TITLE>Get-Name Page</TITLE></HEAD>

<BODY>Enter your name: <INPUT NAME=id></BODY>

</HTML>

(c) ShowInfo.mhtml:

<HTML>

<HEAD><TITLE>Time-Of-Day Page</TITLE></HEAD>

<BODY>Hello, <MVAR NAME=id>.

Today's date is <MVAR NAME=date></BODY>

</HTML>

Figure 2: A mawl service (a) that asks the user for a name through the arbiter GetName and
then invokes the arbiter ShowInfo to display the name and the date. The HTML templates
corresponding to the arbiters are (b) GetName.mhtml and (c) ShowInfo.mhtml. The service also
tracks the number of users who have used the service.

name. The service then supplies ShowInfo with an input record containing two compo-
nents, id from the name variable and date from a call to the function date(); the empty
record returned by this arbiter is ignored.

� Document Templates

Each instance of an arbiter may have zero, one, or many document templates associated
with it. The value input to an arbiter is used to generate a document by parameterizing
a document template with the value. The document templates are speci�ed separately,
in the user-interface languages appropriate to the various interfaces. Figure 2(b) and (c)
shows document templates written in the language MHTML. MHTML is an extension of
HTML that is used for creating document templates. When a running service detects that
a screen-based browser is being used, it uses the MHTML templates to generate HTML,
which is sent to the browser. In MHTML, the values of an arbiter's input variables may
be accessed using the MVAR mark, among others. This mark indicates substitution of the
value of the input variable into the generated HTML. Output variables are represented by
HTML user-input marks such as INPUT and SELECT; the NAME attribute of these marks is
the name of the arbiter output variable.

Figure 2(b) shows the content of the �le GetName.mhtml, which is the MHTML template

LUCENT PROPRIETARY|Use pursuant to company instructions 6

*.mhtml
*.mpml

foo.mawl
run-time
library

CGI
executable

MAWL compilation
Input Output

Server

 MAWL
compiler

C++ or
SML
compiler

C++ or SML
 host code

Figure 3: The mawl compilation process.

associated with GetName arbiter (a template may be associated with an arbiter in various
ways|the linkage here is by the common name). This template contains no uses of the
MVAR mark, so its input type is fg, while it contains one INPUT mark named id, so its
output type is fidg. This is consistent with the type signature of the associated GetName

arbiter. Similarly we can deduce that the template in Figure 2(c) agrees with the ShowInfo
arbiter, since the template has input type fid, nameg (as there are MVARmarks using those
variables), and has output type fg (as there are no input marks).

The ability to determine the type of a template both from the declaration of the type of an
arbiter in the service logic and from inspection of the template is very useful. At compile
time, the two types can be compared to ensure that they are consistent, thus identifying
a large class of run-time errors.

Figure 3 shows the mawl compilation process. Mawl relegates general-purpose computation
to a host language. There are three inputs to the mawl compilation process: the logic of the
service, written in mawl; document templates, written in MHTML or MPML; and support code
written in the host language. The mawl compiler takes the �rst two inputs, which pass through
the traditional compiler steps of lexing, parsing, semantic checking, and code generation. The
mawl compiler back end generates code in the host language. Then, this code is compiled
by the host language compiler along with the input support code. Currently supported host
languages are C++ and Standard ML of New Jersey [MA91]. A compiled mawl service is linked
with a run-time library to form a complete executable. The service can be compiled either
as a CGI-executable or as a stand-alone server. By choosing various run-time options, service
administrators can change the storage management model and user interface, as well as a host of
other features that con�gure a mawl service, all without recompilation of the underlying service
code.

Sessions are the entry points by which users enter a mawl service. Figure 2 gave an example
of a service with a single session named todaysDate. Once the user enters a session, a new
instance of the session, with fresh copies of local variables, is created. A session interacts with
the user through a sequence of arbiters which present dynamically instantiated documents to
the user, which are then �lled in by the user and submitted back to the session.

In services compiled as CGI-executables, when a session sends out a document (via an arbiter)
execution of the session is suspended and the local state is stored on disk or in a database. When
a response is received, execution picks up from the point of suspension, with the local state
restored. Execution of the session continues until another arbiter is invoked, sending another
document to the user. Once a session ends, the storage for local state is released.

LUCENT PROPRIETARY|Use pursuant to company instructions 7

2.2 The Bene�ts of Application Language Engineering

As the example in the previous section illustrates, the core of a mawl service is a statically typed
service logic, expressed in a language that frees service designers from the details of state and
concurrency management. This core logic is combined with a speci�c user-interface technology
to generate a service, as depicted in Figure 1.

The partitioning of software production into disjoint application-oriented languages is the
central component of an approach to software production, called application language engineer-

ing, that addresses all phases of the software life cycle: requirements, design, coding, and main-
tenance. By addressing a problem narrower than general-purpose programming, an application-
oriented language can o�er a more complete solution to a software engineering problem, or a
solution which addresses more precisely the goals of a software project.

The bene�ts of application-oriented languages come, broadly speaking, from two basic prin-
ciples of language design: abstraction and restriction. Appropriate abstraction is the basis for
improved support for requirements, design, coding, and maintenance. Appropriate restriction is
the basis for analysis, and hence for veri�cation, modi�cation, and maintenance.

Mawl arranges for the programmer to deal with the abstraction of sequential programming
rather than CGI-script management. State management and concurrency are abstracted as
program variables shared by sessions. Separation of control ow and presentation is provided
by mawl's arbiter abstraction, the input/output interface between the service logic, and the
document templates. Software engineering practice has shown this kind of separation to be
useful in maintaining and scaling large software projects.

Analyses enabled by mawl's separation of service logic from user interface contribute directly
to service administration, are useful to service developers, and enhance the mawl infrastructure
itself. Some examples:

� Alternative implementations. An appropriate level of abstraction allows for various al-
ternative implementations. As illustrated in Figure 3, with mawl one can generate a
CGI-based implementation, or alternatively a threaded-server implementation.

� Type checking. Application languages o�er the opportunity for application-speci�c static
checking. For instance, mawl's type checking ensures that the input/output characteristics
of the HTML and PML templates are consistent with the service logic.

� Logging. Sessions, with their associated server-side state, and arbiters, which are central-
ized points at which services interact with users, make it possible for programmers and
administrators to track users as they access mawl services. Session state may be inspected
or changed on the y, and control of a session may be transferred administratively or
programmatically.

� Visualization. With mawl, a compiler option allows the display of the relationships between
pages and the dynamic behavior of a service, whereas it might not be possible to analyze
a collection of CGI scripts that implement the same service. (Sidebar B describes this
capability in the context of an example.)

In addition to these analyses, the mawl abstractions also support various software engineering
phases:

� Design. Application languages should enforce a software architecture by placing appro-
priate restrictions on the design space. The logic of complex services often is designed
pictorially using graphs to show possible ows of events (as in Figure 6). These graphs

LUCENT PROPRIETARY|Use pursuant to company instructions 8

have rather direct translations into mawl programs. Furthermore, mawl helps engineers
trace from requirements to design, since one can usually identify the service logic that
satis�es a given requirement for a service.

� Coding. The skills needed to program interactive web services are di�erent from the skills
needed to design HTML pages. Separating service programming from user-interface design
allows specialists in each area to use their abilities and toolsets to full advantage. As shown
in Figures 2 and 8, mawl cleanly separates these components.

� Testing. Because the service logic of mawl is centralized and separate from the user inter-
face, it can be executed and tested independently of any document templates. Thus the
logic of the services can be tested just once for many di�erent user-interface technologies.
Since the executable code for a service is generated by the mawl compiler, it is possible to
instrument a service to generate execution traces for the running service.

3 PML: The Phone Markup Language

While mawl is a language and its implementation a compiler, we use the term PML to denote
both an architecture for making web content accessible via the telephone, and the Phone Markup
Language itself. There are three main issues that PML addresses:

� Access architecture. How does one connect the public telephone network to the web? We
introduce here the PML architecture, which features two distinct intermediaries between
the telephone user and the content host: an audio processing node (APN) and a set of
software entities called PML interpreters.

� User interface for telephone access to the web. How does one present existing web content
to a telephone user? Although helping users navigate through rich content on an interface
as poor as a telephone is inherently di�cult, we describe some ideas on how to leverage
the structure of web content in the telephone setting.

� Language support for telephone presentation. In addition to developing techniques for
navigating through rich web content, we wish to allow content-providers a means through
which to structure new content or restructure old content for presentation over a telephone.
We present a brief glimpse into the PML language.

A PML interpreter requests documents over the internet and interprets them for the tele-
phone; it is not in any way dependent upon mawl. On the other hand, the combination of
mawl and PML yields services that are accessible by both the web and the telephone. From the
viewpoint of mawl, a request for a document comes from a user agent. If the user agent is a
web browser, the service responds with HTML. On the other hand, if the user agent is a PML
interpreter, the service can send back PML (presumably tuned to the telephone interface) or
ordinary HTML (if no PML is available). This is illustrated in Figure 1.

3.1 Access Architecture

The PML architecture shields service programmers from the machines and processes that per-
form complex tasks such as text-to-speech conversion, voice recognition, document interpreta-
tion, and various interactions with the telephone network. As shown in Figure 4, the PML
architecture consists of two main components|audio processing nodes, and PML interpreters|
in the PML layer. These components connect the telephone network to the internet, as described
below.

LUCENT PROPRIETARY|Use pursuant to company instructions 9

Internet

Telephone Network

Document
 Server

Document
 Server

IXCLEC

Audio
Processing
Node

PML
Interpreter

PML
Layer

C2

C3

C4C4

C1

PML
Layer

Figure 4: High-level view of the PML architecture.

� Audio processing nodes contain hardware for low-level interactions with telephone users,
including text-to-speech conversion, touchtone signal interpretation, speech recognition,
voice recording, and playing audio �les. An APN might reside in a telephone company's
network or on a service provider's premises. On the user side, an APN terminates dedicated
lines into the telephone hardware that it controls. In our current platform, an APN is either
an Lucent Conversant Voice Information System, or a Lucent AYC50-based PC running
Unix. The APN communicates with a PML interpreter.

� PML interpreters are software processes that mediate between text documents and tele-
phone users. They request and receive HTML or PML documents from document servers
(C4). The PML interpreter can be either be co-located with the APN or located elsewhere
in the telephone or computer network. Document servers store textual descriptions of
information that can be interpreted for the telephone. The document servers are ordi-
nary HTTP daemons that reside on any web server within the internet. Documents are
associated with URLs using the usual conventions. The PML interpreter \reads" these
documents to a caller by directing an APN (C3) to play audio documents or a string of
words and to receive voice and touchtone signals (C2-C1). The communication protocol
between a PML interpreter and an APN (C3) is de�ned by an API so that the same PML
interpreter can communicate with di�erent audio processing nodes.

To provide a telephone service using the PML platform, a service provider must obtain a tele-
phone number, terminated at the APN, that will be associated with the URL of the service. An
APN operating in conjunction with a PML interpreter forms the telephonic equivalent of a web
browser: the PML interpreter requests and interprets documents, which are then \displayed"
by the APN.

We use Figure 4 to illustrate a simple scenario. A telephone call (C1) to a line terminated
by an APN (C2) results in the invocation of a PML interpreter with the associated URL (C3).
Interaction then proceeds according to the nature of the document at that URL. A request over
the internet (C4) retrieves a document that the PML interpreter parses and interprets, sending

LUCENT PROPRIETARY|Use pursuant to company instructions 10

commands (C3) back to the APN to convert text to speech, collect touchtone signals, and so
on. As a result of this interaction, the PML interpreter may fetch and play another document.

3.2 A User Interface for Telephone Access to Web Content

The PML interpreter supports two distinct modes of user interaction: a browsing mode in which
the user has a set of commands similar to those found in graphical web browsers, and a service
mode in which the user is always presented with a menu of choices.

Browser mode is the default when browsing HTML content that does not have enough
structure to be presented in a hierarchical manner. In this case, the PML interpreter breaks
the HTML page into paragraphs and reads the document in a linear fashion. The user has the
capability to search and move around within the document, list the links on a page and visit a
link, go back to a previous page, and so on.

Service mode is used when the document is a PML document or the HTML has certain
structure. In this case, the user has the illusion of an IVR service; the fact that the user
is actually browsing a page from the web is hidden. Figure 5 shows an example of a well-
structured HTML page that the PML interpreter can read in a hierarchical manner. It �rst
reads the top-level h1 mark (\What do you want to hear today?") and then presents a choice of
the three h2 marks (\Press 1 for Mawl Services, 2 for Web Pages") to the user. Suppose the user
selects \Mawl Services." At the level of links, the user would again be presented with a menu of
choices (\Press 1 for the Lunchbot, 2 for the BookBot, 3 for the BulletinBot"). Choosing one of
these links would cause the PML interpreter to access the web service, thus retrieving another
page to read.

<html><head><title>Top level</title></head>

<body>

<h1>What do you want to hear today?</h1>

<h2>Mawl Services</h2>

 The LunchBot

 The BookBot

 The BulletinBot

<h2>Web Pages</h2>

 Lucent Technologies Home Page

 Yahoo's Home Page

New York Times Front Page

</body></html>

Figure 5: An example of an HTML page that can be read in a menu-oriented fashion by the
PML interpreter.

LUCENT PROPRIETARY|Use pursuant to company instructions 11

3.3 Language Support for Telephone Presentation

The previous example might lead one to believe that HTML itself is su�cient for constructing
IVR services. However, our experience has shown that to produce acceptable interactive voice
response services with a minimal amount of telephone-speci�c code, it helps to have additional
marks for describing how structured documents should be presented over the telephone. This
is primarily because graphical user interfaces and textual (tty) user interfaces have \screen
memory" to guide users through complicated logic and remind them of their choices. An audio
user interface like the telephone is memoryless in this sense, and so more has to be built directly
into the document in terms of markup.

The Phone Markup Language is an extension of HTML that has special marks for the
telephone interface. Just as with HTML, a PML document can be retrieved by any browser
that requests its URL. For example, here is a fragment of PML that speci�es how many times
to replay a menu selection (3) if the user does not respond in time (30 seconds). The example
also includes a prompt to be read if the user makes an illegal selection (\Please choose again").

<h2 timeout=30s retries=3 error="Please choose again.">Mawl Services</h2>

 The LunchBot

 The BookBot

 The BulletinBot

PML also includes markups to control call processing capabilities on the APN, if available.
For example, a mark can be used to direct the APN to place a call.

4 Applications

A crucial part of our technical plan is to build applications that test our technology, inspire
new research, and provide value to Lucent. The feedback from prototyping realistic applications
continues to be a critical component of our research e�ort.

� Intranet Tools. The BookBot, LunchBot, BulletinBot, and PostBot are examples of de-
partmental services in daily use at the Software Production Research Department. We
use the BookBot to order books from a variety of sources and to track the orders. The
LunchBot allows members of the department to order meals for our weekly department
luncheons (see Sidebar A). The BulletinBot allows individuals to administer their sched-
ules through the web, and lets others inspect them by web or telephone. The PostBot is a
telephone interface to the Post database. The service allows users to enter an employee's
name using touchtone or voice signals, then reads the number and connects the call, if
desired.

� The Internet Slide Show is a service based on the web and telephone-conference hardware.
This service allows presenters to build a presentation using Microsoft Powerpoint, then
present it to a geographically disparate group using the web and the telephone. Part of
the voice-response component of the service allows participants who do not have computers
to call and con�rm their attendance, and request that the slides be faxed ahead of time.
This work was originally done in collaboration with the AT&T Commercial Markets and
Mobility Concepts District in Bridgewater, New Jersey.

LUCENT PROPRIETARY|Use pursuant to company instructions 12

� 5ESS-2000 Switch Customer Documentation and Training Process. We have written an
in-process decision support service in mawl that directs users through a sequence of inter-
actions, and coordinates their actions with others in the context of an extended work-order
transaction metaphor. The service is being used initially by systems engineers, feature de-
signers, and testers in the course of software and documentation development processes.
The same mawl platform can potentially be used to direct 5ESS-2000 switch customer
technicians through procedural steps in the customer documentation for operation, ad-
ministration and maintenance tasks on the switch. Basic features of the interface are
implemented in mawl and are already part of the o�cial product development process.
This work was done in collaboration with the CD&T Requirements, Process, and Tools
Group at Indian Hill.

� Browse-by-phone. In addition to making mawl services accessible by telephone (IVR
mode), our PML interpreter provides a state-of-the-art phone browser for HTML pages
anywhere in the web (browse mode). The browser consists of PML-interpreting software
together with an application programming interface (API) for PML that has been im-
plemented on both Dialogic and Conversant hardware. This browser presents content to
users either by playing audio �les or converting text to speech, and collects input from
users by recognizing touchtone signals and voice. Touchtone signals are also used for the
typical browser operations. The marks associated with HTML are parsed and interpreted
appropriately.

5 Related Work

The explosive growth of the web and the emergence of its commercial potential have spurred
many e�orts to make up for the shortcomings of the web infrastructure for complex services.
Mawl by itself may be compared to a variety of web service creation technologies. Most of

these technologies were conceived of as tools for web service construction only, rather than
as environments for supporting all phases of the software life cycle. While general-purpose
programming-language support, such as provided by C++ or JAVA, helps enable the creation
of service architectures, these languages do not address the problem of what such an architec-
ture should be. In addition, once a particular architecture is de�ned, there are many bene�ts
to having application-level support for enforcing and supporting this architecture, as we have
discussed.

� CGI libraries. Libraries for the languages commonly used to write CGI \scripts" (e.g., C,
ksh, tcl, perl) [Mal94] provide basic facilities for form parsing and dynamic generation of
HTML. Solutions to the problems of state maintenance and concurrency usually must be
constructed by hand.

� Extending HTML with general-purpose programming constructs. A common approach to
the generation of HTML documents with dynamic content is the embedding of fragments
of code executable on the server. Recent examples are WebThreads [Thr] and Netscape's
JavaScript [Net]. Mawl's use of MHTML is super�cially similar to these examples, but
dynamic content is provided by separate service logic rather than embedded code.

� Elaborations of CGI. Netscape's LiveWire programming environment combines scripting
and HTML code embedding, and adds support for persistent state with prede�ned dynamic
session data objects. However, it still adheres to the CGI request/response paradigm,
encouraging intermingling of HTML with scripting code.

LUCENT PROPRIETARY|Use pursuant to company instructions 13

In these examples, service logic and presentation are intermingled. As a result, the logic
of services written in this manner must be inferred from the link topology of the dynamically
generated HTML. We have shown that separating these two aspects of a service makes static
analysis of the service possible, as well as multiple-interface access to service. Such capabilities
is di�cult, if not impossible, to achieve in the services constructed with these other tools.

� Client-side enhancements. The advent of sophisticated client-side interfaces (in particular
Java-capable web browsers [GM95]) allows web services to run on the client. However,
for many interesting services, the client must still interact with a server. For complex
services, the programmer is left with the task of managing this client/server interaction.
This suggests that client-side capabilities are in some sense complementary to mawl. The
recent introduction of Java libraries that permit applet/browser/plugin communication
within Netscape makes it straightforward to embed applets that support mawl's arbiter
paradigm.

� Distributed processing environments. A number of e�orts are afoot to mask or replace
the web infrastructure with one that supports truly distributed applications. Examples
are Java/CORBA, Java Remote Method Invocation, ActiveX, various server APIs, `Web
File System' proposals, and Inferno/Limbo. These technologies will provide some of the
advantages that mawl o�ers, and more. However, many of the issues of service design
addressed by mawl remain to be dealt with. Moreover, mawl can easily be retargeted to
produce implementations based on these environments.

PML provides capabilities that can be used for traditional IVR applications, but there is a range
of existing technology that combines phone and web in some fashion:

� Web browsing by phone. Commercial products (e.g., Netphonic's Web-on-Call) exist that
support a telephone interface to web pages. The idea of extending HTML to include phone-
speci�c markup in the style of PML has been proposed by Stylus, and used to support
their version of a phone browser. PML supports these uses as well and also provides a
convenient way to develop enhancements on top of these basic capabilities. Furthermore,
the combination of mawl and PML provides enhanced service programming possibilities
not found in existing products.

� Web control of telephony. There are several applications within the Company and outside
that provide `click-to-dial' call control from within a web service. Mawl has been used in
an application involving audio conference control, as noted above, and can take advantage
of back end and browser technology in the same way as any other web application.

The incorporation of packet telephony with the web is the focus of research and devel-
opment within the Company and outside. Mawl does not provide direct support for web
browser telephony, though the PML platform will soon support playing and recording
audio streams.

� Service creation environments. There are a number of graphical IVR service creation
environments available. While some provide limited web facilities, none supports full
web/phone service creation. The abstractions introduced by mawl are precisely those that
one would want to capture in such a tool.

These examples show that there are existing pieces of technology that functionally over-
lap with mawl and PML. However, the mawl infrastructure provides a unique integration of
these capabilities, together with the development and maintenance advantages that application
language engineering provides.

LUCENT PROPRIETARY|Use pursuant to company instructions 14

6 Current Research Activity

Mawl's exible architecture allows service speci�cation and user interface issues to be inves-
tigated by quickly building prototypes and implementing language and platform features. In
this way mawl provides an environment for doing research on interactive services. Some of our
current research activities are as follows.

� Enhanced session state and data management. The Mawl Storage Server will manage all
persistence storage needs for mawl-generated services. This will simplify storage operations
for services by providing a protocol by which services communicate with the storage server.
The Mawl Storage Server will give mawl programmers transparent access to standard
database back ends, thus simplifying service logic code. The modularity of the architecture
allows future enhancements to address issues of scalability and reliability.

� Service analysis. The mawl compiler has a logging option that collects statistics about
how mawl services are used. We have developed Java applets (see Sidebar B), based on
visualization technology from within our department, with which service providers can
analyze usage statistics for their services and identify design or performance issues.

� Telephonic features and services. The PML language and interpreter permits the rapid
construction of simple IVR services such as information inquiry and voicemail. We have
added primitives to PML for incorporating telephonic features such as speech recognition,
transfer, bridge, and conference, and we are working to incorporate other features, such
as streaming audio, into mawl-based telephone services. The Conversant PML platform,
currently implemented, provides a stable environment for constructing large-scale web and
telephone services with call processing features, and will permit experimentation with new
service speci�cation languages and other sorts of interactive telephone services, such as
call centers.

� Interface-independent programming. A goal of mawl is to allow service programmers to
program in an interface-independent manner, insofar as that is possible. In some cases,
the service logic may be independent of the user interface. Mawl supports this case trans-
parently. In other cases, it is not realistic to expect identical service logic for di�erent
user interfaces; the sparseness of the telephone interface, for example, may preclude user
interactions that the web interface permits. The goal of completely shared service logic
raises many research issues related to the display of structured information using an au-
dio interface. We will continue to incorporate research results on smart interpretation of
HTML into the PML interpreter.

7 Summary

Mawl and PML provide a comprehensive solution for building complex services that are acces-
sible via the web and the telephone. The mawl compiler and infrastructure make it easy to
construct important classes of application that are di�cult to create using \traditional" web
programming approaches. Furthermore, mawl's architecture and session abstraction support
the goals of service monitoring and administration. The trend toward moving our internal and
external business processes to the web will continue to be a rich source of potential applications.

LUCENT PROPRIETARY|Use pursuant to company instructions 15

8 Acknowledgments

We would like to thank the following people for their support and assistance in the mawl e�ort:
Jim Coplien, Dan Feistamel, Alan Hastings, Tom Jacobs, Lalita Jagadeesan, Konstantin La�ufer,
Cecilia Mak, Eric E. Sumner, Jr., Ian Sutherland, Natasha Tartarchuk, and David Weiss.

References

[BL95] T. Berners-Lee. Hypertext transfer protocol (HTTP/1.0). Working Group of the

Internet Engineering Task Force, October 1995.

[BLC95] T. Berners-Lee and D. Connolly. Hypertext markup language (HTML 2.0). Working

Group of the Internet Engineering Task Force, August 1995.

[CBR96] Kenneth C. Cox, Thomas J. Ball, and J. Christopher Ramming. Lunchbot: A tale of
two ways to program web services. Technical Report BL0112650-960216-06TM, Lucent
Technologies Bell Laboratories, 28 February 1996.

[GM95] James Gosling and Henry McGilton. The java language environment: A white
paper. Technical report, Sun Microsystems Laboratories, 1995. available at
URL:http://java.sun.com/whitePaper/javawhitepaper 1.html.

[LR95] D. A. Ladd and J. C. Ramming. Programming the web: An application-oriented
language for hypermedia service programming. In 4th International World Wide Web

Conference, 1995.

[MA91] D. B. McQueen and A. Appel. Standard ML of New Jersey. In Proceedings of the

3rd International Symposium on Programming Language Implementation and Logic

Programming, pages 1{2. Springer-Verlag, 1991.

[Mal94] John C. Mallery. A common lisp hypermedia server. In First International WWW

Conference, 1994.

[Net] Netscape.
http://home.netscape.com/eng/mozilla/3.0/handbook/javascript/index.html.

[Thr] Web Threads. http://www.webthreads.com/.

A Sidebar: The LunchBot

We use the LunchBot to order meals for our weekly department luncheons. An administrator
selects a restaurant and noti�es department members of the choice. The members then inspect
the restaurant menu and place their orders. Orders are faxed to the restaurant a few hours
before noon. When the food is delivered, customers are noti�ed.

This service was originally performed manually. Customers inspected paper copies of the
menus and gave their orders to the department secretary, who compiled and faxed the order,
and accepted delivery. The secretary also kept accounts. This approach was practical when only
a few people were involved, but as the department grew it became unwieldy. Automating many
of the tasks involved was the next logical step.

LUCENT PROPRIETARY|Use pursuant to company instructions 16

mainlogin

goodbye menu

acknowledge

show balance get payment

acknowledge

order
lunch

view
balance

record
payment

...
exit
bot

verify order

Figure 6: High-level service logic of the LunchBot. Rectangles represent HTML pages.

This led to the creation of the �rst web version of the LunchBot [CBR96]. This service was
implemented in a \tools-based" manner for execution through the common gateway interface
using awk, shell, and other Unix utilities. While this service functioned well, it was di�cult
to maintain. This is a common characteristic of tools-based programs: although a collection
of originally unrelated tools can be orchestrated to work together, the resulting architecture is
often fragile and confusing.

The LunchBot was re-implemented in mawl shortly after mawl was developed. Figure 6
shows the high-level design of the LunchBot, as depicted by relationships between LunchBot
pages. The service �rst presents a \login" page in which the user selects either a customer
account or the administrative account. The user is then presented with a main page which
presents the available functions as links. Figure 7 shows a screen snapshot of the main page.
The contents of the main page depend on the user's account (customer versus administrator)
and the current state of the LunchBot (e.g., whether or not it is open for business). The user
selects an action and is directed through a series of pages. After the action is completed, the
main page is shown again.

The resulting \language-based" (mawl) version of the service has more features than the
tools-based version, and is easier to maintain and enhance. For example, once the web ver-
sion was up and running, a telephone-enabled version of the LunchBot took very little time
to construct. Another example of enhancement is dynamic logging, which has yielded useful
visualizations. See Sidebar B for an analysis of how people use the LunchBot.

Figure 8 shows the two implementations at the code level. The mawl version is on the

LUCENT PROPRIETARY|Use pursuant to company instructions 17

Figure 7: Screen snapshot of the main page of the LunchBot.

left, and the tools-based version on the right. Each �le is represented by a rectangle, with one
horizontal line for each line of the �le. The lines are color-coded to indicate whether they are
part of the service logic or the interface (e.g., HTML templates). The clean separation of service
logic from interface layout in the mawl version on the left contrasts sharply with the intermixing
of the tools-based version.

B Sidebar: Service Analysis

While there are many tools for the construction of web sites and dynamic web services, most
of these tools lack support for a crucial part of web service maintenance: the analysis of how
people access a site or use a service. For example, one might want to restructure a service in
which users are forced to take many steps to perform a common task into a service in which this
task is done in a single step. By identifying patterns of user access, providers can �nd ways to
improve their services.

The mawl compiler has a logging option that compiles sessions that automatically track
their usage. For each page generated by the session, the log records the unique session identi�er,
the page name, the time requested, and other information. This log is available through the
web for analysis. In particular, mawl provides a Java applet called PathView, illustrated in

LUCENT PROPRIETARY|Use pursuant to company instructions 18

HTML Layout

Service Logic

MAWL Implementation Tools-Based Implementation

Figure 8: A global overview of the source code of the language-based (mawl) LunchBot (left)
and the tools-based LunchBot (right). Lines are colored to show whether they are part of service
logic (green) or interface (red).

Figures 9 and 10, for exploring logged data. A sequence of user interactions with a web service
is naturally expressed as a path through an information space of pages. As users explore a site
or interact with a service, each creates a path. PathView enables analysis of the set of user
paths in conjunction with other page-oriented statistics, such as time spent on each page, time
of day, and so on.

Figure 9 shows four statistical views of the PathView applet applied to the LunchBot. Our
department luncheons are typically on Fridays. The \WeekDay" bar chart in the upper left-hand
corner shows that the LunchBot is used most on Thursdays and Fridays (days 4 and 5) every
week. The \Hour" bar chart shows LunchBot usage by hour, with Friday's usage highlighted.
The highlighted hourly distribution for Friday clearly dominates the overall distribution. Not
surprisingly, the major use of the LunchBot occurs Friday morning, just before the LunchBot
closes and lunch is ordered. The views in the upper right, lower right, and lower left show
associated session-level, page-level, and temporal statistics, respectively. All of these views are
linked so that selection in one view is reected in the other views.

The statistical views shown in Figure 9 are linked with the visualization shown in Figure 10.
In this view, the x-axis represents the pages served up by the LunchBot and the y-axis shows
time steps. Each user creates a path through the graph. The large peak represents the sequence
of pages served up when users order a meal and con�rm the order. The smaller peak represents
users visiting the \listOrders" page, which shows all the accumulated orders for open events.
As the picture shows, some people �rst order lunch and then list orders, while others list orders
(presumably to see what the popular menu items are) and then order lunch. The latter pattern
suggests a useful new service option: when users order lunch, present the top �ve items ordered
in the last month.

LUCENT PROPRIETARY|Use pursuant to company instructions 19

Figure 9: PathView, an applet for service analysis. PathView uses interactive visualization to
enable service providers to explore user interactions with a service.

LUCENT PROPRIETARY|Use pursuant to company instructions 20

Figure 10: User interactions with the LunchBot.

LUCENT PROPRIETARY|Use pursuant to company instructions 21

