
Service Entity Placement for Social Virtual Reality

Applications in Edge Computing

Lin Wang

TU Darmstadt

Darmstadt, Germany

wang@tk.tu-darmstadt.de

Lei Jiao

University of Oregon

Eugene, OR, USA

jiao@cs.uoregon.edu

Ting He

Pennsylvania State University

State College, PA, USA

t.he@cse.psu.edu

Jun Li

University of Oregon

Eugene, OR, USA

lijun@cs.uoregon.edu

Max Mühlhäuser

TU Darmstadt

Darmstadt, Germany

max@tk.tu-darmstadt.de

Abstract—While social Virtual Reality (VR) applications such
as Facebook Spaces are becoming popular, they are not compat-
ible with classic mobile- or cloud-based solutions due to their
processing of tremendous data and exchange of delay-sensitive
metadata. Edge computing may fulfill these demands better, but
it is still an open problem to deploy social VR applications in an
edge infrastructure while supporting economic operations of the
edge clouds and satisfactory quality-of-service for the users.

This paper presents the first formal study of this problem. We
model and formulate a combinatorial optimization problem that
captures all intertwined goals. We propose ITEM, an iterative
algorithm with fast and big “moves” where in each iteration, we
construct a graph to encode all the costs and convert the cost op-
timization into a graph cut problem. By obtaining the minimum
s-t cut via existing max-flow algorithms, we can simultaneously
determine the placement of multiple service entities, and thus, the
original problem can be addressed by solving a series of graph
cuts. Our evaluations with large-scale, real-world data traces
demonstrate that ITEM converges fast and outperforms baseline
approaches by more than 2× in one-shot placement and around
1.3× in dynamic, online scenarios where users move arbitrarily
in the system.

I. INTRODUCTION

Virtual Reality (VR) and Augmented Reality (AR) are com-

monly believed to be the killer applications for the emerging

edge computing paradigm [1], where resources are available

for service provisioning in much closer proximity to end users

with low-delay and low-jitter network connections. VR fits

well in this paradigm due to its resource-hungry and delay-

sensitive nature. As an inevitable technology trend, VR has

gained popularity. Recently at WWDC 2017, Apple released

a new tool ARKit for developing VR applications on its

platforms. In the meanwhile, Facebook is augmenting its

social network with Virtual/Augmented Reality and recently,

it released its new social network platform named Spaces.

In fact, edge computing has already been adopted for

VR in industry for handling the situation posed by resource

limitation of local processing and large, unpredictable latency

of remote cloud-based processing. For example, Apple uses

iMac to support VR rendering and Facebook Oculus employs

a Windows PC for computing. According to the Open Edge

Computing initiative [2], an edge cloud will be able to offer

compute and storage resources to any user in close proximity

through an open and globally standardized mechanism, which

allows a set of edge clouds in the same geographical region

Edge Cloud

CE (User)
AP

SE

Access

CE-SE association User interaction

MAN

Fig. 1. An example scenario to illustrate the service entity placement problem
for social VR applications in the edge environment. (AP: Access Point, CE:
Client Entity, SE: Service Entity)

to form a shared edge resource pool. With the help of light-

weight virtualization techniques, resources will be allocated at

a fine granularity (e.g., per user) subject to quality-of-service

(QoS) requirements and system-wide optimization goals.

In this paper, we focus on VR applications with online social

network support (referred to as social VR applications) and

we study the problem of placing service entities for social

VR applications in the edge environment. As illustrated in

Figure 1, a social VR application consists of two parts: service

entity (SE) and client entity (CE, on user device). The SE,

defined as the bundle of the user’s personal data and the

processing logics on the data, takes care of the user state and

computation-intensive tasks such as scene rendering, object

recognition and tracking, and the interaction between users,

while the CE is only in charge of displaying the video frames

rendered by the SE and monitoring user behaviors. The service

entity placement problem is to decide where to place the

SE of each user among the edge clouds in order to achieve

economic operations of the edge clouds as well as satisfactory

QoS for the users. We call this problem edge service entity

placement (ESEP). While motivated by social VR applications,

the ESEP problem is fundamental for any applications that

require interactions both between each user and its service

and between (the services of) different users.

The ESEP problem is non-trivial mainly due to the follow-

ing intertwined challenges: (1) Edge clouds are heterogeneous

in terms of activation and running costs and thus, achieving

the best economic outcome would push the SEs to edge

clouds with lower costs; (2) SEs need to exchange metadata

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

978-1-5386-4128-6/18/$31.00 ©2018 IEEE 468

frequently with the associated CEs and other SEs, as users

are updating their scenes and interacting with each other in

social VR applications, e.g., accessing the state of other users

or collaboratively completing a task, and thus, placing SEs

closer to each other would result in better QoS perceived

by the users; (3) Due to the fact that edge clouds are not

intentionally designed to simultaneously accommodate a large

number of SEs, especially for VR applications where specific

hardware such as GPU may be involved, resource contention

needs to be controlled, which suggests that each edge cloud

should not be too crowded with SEs. The second challenge is

unique to ESEP and all these intrinsically intertwined goals

together complicate the problem.

Priori research efforts fall short of fully addressing the

above challenges all together. On the one hand, most studies

on edge computing are focused on computation offloading

techniques and hardware/software architectures [3], [4]; edge

resource management proposals generally lack the specific

consideration of the interactions between users as in the case of

social VR applications [5]–[11]. On the other hand, solutions

for data placement across servers or distributed clouds for

social networks address the optimization of network traffic or

data storage etc. but neglect the impact of multiple important

factors in the edge context such as activation cost and resource

contention [12]–[16], which fundamentally change the set-

tings and require different solution approaches. While general

service placement problem has been extensively explored in

various settings [17], [18], no existing algorithms are known

to solve the ESEP problem.

Summary of contributions. We present the first formal

study of ESEP and make the following contributions:

• We model the identified challenges with four types of cost

including the activation cost, the placement cost, the proximity

cost, and the colocation cost. The considered cost models are

comprehensive yet practical, and are general enough to capture

a wide range of concrete performance measures in reality.

Based on these models, we formulate the ESEP problem as a

combinatorial optimization, which we show is NP-hard.

• We propose the ITerative Expansion Moves (ITEM) al-

gorithm to solve the formulated combinatorial optimization

problem based on iteratively solving a series of minimum

s-t cut instances. In each iteration, ITEM selects an edge

cloud and performs an “expansion move”, which is a local

optimization of the current SE placement by determining

whether each SE should stay as is or move to the selected

edge cloud. We show that an expansion move is actually

equivalent to solving a minimum s-t cut problem on a carefully

constructed graph and we present the technique to build the

graph with all of our costs encoded. ITEM has multiple

advantages: (1) The graph construction is deterministic and

easy to implement; (2) Placement decisions are made with big

“moves”, i.e., not only one but many SEs can be determined

simultaneously in each iteration; (3) The decision-making is

based on existing polynomial-time max-flow algorithms; (4)

It converges fast, thanks to the “big move” in each iteration.

• We carry out extensive experiments with large-scale real-

TABLE I
LIST OF MAIN NOTATIONS

P set of edge clouds
U set of users
Up set of users with SEs placed on edge cloud p
pu edge cloud where the SE of user u is placed
p∗
u

edge cloud attached to the AP that user u is connected to
p set of SE placement for all the users, i.e., {p1, ..., pm}
p
q set of SE placement after expansion move on edge cloud q

fu comm. frequency between the CE and the SE of user u
fu,v frequency of access from user u to user v
d(p, q) network delay between edge cloud p and q
mp number of SEs on edge cloud p
ap activation cost of edge cloud p

lu(pu) cost of placing the SE for user u on edge cloud pu
αp, βp parameters in colocation cost of edge cloud p

L set of all interacting user pairs
x binary decisions in an expansion move, i.e., {x1, ..., xm}

world data traces to validate the performance of ITEM. For

the offline case, we employ a Twitter dataset with realistic user

interactions and derive edge cloud locations from Starbucks

locations. We select two major cities in the US, namely Los

Angeles (LA) and New York City (NYC), to conduct our

evaluations. For the LA scenario, we collect the locations

of 105 Starbucks shops and generate a subset of the Twitter

dataset with 7553 users by pruning the Twitter dataset ac-

cording to user location. For the NYC scenario, the number

of considered Starbucks shops is 117 and the pruned dataset

contains 6068 users. The user interactions between users are

synthesized following realistic distributions disclosed in [19].

For the online case, we use a Rome taxi dataset with around

300 taxi trajectories and we synthesize social interactions

between the taxis. We select 15 major metro stations in Rome

as edge cloud locations. Using these real-world datasets, we

compare ITEM with baseline placement solutions and the key

findings are: ITEM can well balance the four types of cost and

outperforms the baselines up to 2× and 1.3× in offline and

online cases, respectively, while exhibiting fast convergence.

II. PROBLEM FORMULATION

We provide model for the system and introduce four types of

cost, based on which we formulate the ESEP problem. Table I

lists the main notations we will use throughout the paper.

A. The System

We consider a metropolitan-area edge computing system

which consists of a set of n edge clouds, denoted by P =
{p1, . . . , pn}, that are dispersed in a city, e.g., inside bars

or restaurants. Each edge cloud is accompanied by an access

point (AP) that allows the user to connect to the platform.

We assume that resources in the edge clouds are virtualized

using container-based lightweight virtualization technologies

and can thus be allocated and shared flexibly. All the edge

clouds are connected to a metropolitan area network (MAN)

inside a city and the delay between each pair of edge clouds

p and q is given by function d(p, q) for p, q ∈ P .

We consider the problem of provisioning a social VR

application on the given set of edge clouds to serve m users

distributed in the MAN. An exemplary scenario is illustrated

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

469

User u pu pv

d(u, pu)

d(p∗u, pu)

d(pu, pv)

AP(p∗u)
Association Access

Fig. 2. Proximity cost includes the communication delay between the user
and her SE and the interaction delay between users.

in Figure 1. The set of users is given by U = {u1, . . . , um}.
Each user u has access to the edge cloud system via its nearest

AP, denoted by p∗u, in her vicinity.1 For each user u ∈ U , an

SE is brought up on one of the edge clouds pu to handle

the computation within the application related to user u (e.g.,

rendering scenes, recognizing and tracking objects for user u).

The SE encapsulates all the necessary runtime environment

as well as the service state for the user. The frequency of

communication between a user u and her SE pu for updating

scenes and monitoring user behaviors is denoted by fu. In

addition to employing the SE to process data, each user also

interacts with other users within the application, e.g., accessing

the profile or updates of other users or even completing a

task collaboratively with other users. The frequency of access

from user u to user v is given by fu,v (fu,v , 0 if u = v).

We denote by L the set of all interacting user pairs where

L = {(u, v) |u,v∈U∧u 6=v}.

B. Cost Models

We jointly consider multiple performance measures of the

system by modeling four types of costs as detailed below.

Activation cost. For each of the edge clouds, if there is at

least one SE being placed on it, then a static activation cost

has to be paid. Such activation cost is incurred by the cooling

or other maintenance efforts in the edge cloud irrespective of

SEs. Assume that the set of SEs that are placed on edge cloud

p is denoted by Up = {u |p∈P∧pu=p} and its cardinality is

denoted by mp ∈ Z
+. Then, for each edge cloud p ∈ P we

define its activation cost by ap > 0 if mp > 0 and by 0 if

mp = 0, meaning that an edge cloud can be switched off if

it hosts no SEs. The combined activation cost of all the edge

clouds can be represented by

EA =
∑

p∈P∧mp>0ap. (1)

Placement cost. The placement cost is associated to

the creation of SEs, which is incurred by the running and

communication of the servers for the SEs. For each user

u ∈ U , the cost of placing her SE onto edge cloud p is

characterized by lu(p) > 0, which can vary due to the location

difference or the heterogeneity of the edge clouds. Denoting

by pu ∈ P the placement decision for the SE of user u, the

combined cost of placing all the SEs onto the set of edge

clouds can then be represented by

EL =
∑

u∈U lu(pu). (2)

1With a slight abuse of notation, we also use p∗
u

, i.e., the edge cloud that
is directly attached to the access point, to denote the access point.

Proximity cost. Proximity is a key performance metric in

edge computing. The proximity measure of a user contains two

parts: how timely a user (or her CE) interacts with her SE and

how timely a user interacts with other users, as depicted in

Figure 2. In order to give priority to frequent communication

or interaction, we incorporate the communication frequency

fu ≥ 0 between the CE and the SE of user u and the

access frequency fu,v ≥ 0 from user u to user v. As a

result, the combined proximity cost for the former is given

by
∑

u∈U fud(u, pu), while for the latter it is given by
∑

(u,v)∈L fu,vd(pu, pv). We notice that the delay between a

user and its AP is actually irrelevant to the placement decision.

For simplicity, we will omit it and will use the following form

for the total proximity cost in the rest of the paper.

ED =
∑

u∈Ufud(p
∗
u, pu) +

∑

(u,v)∈Lfu,vd(pu, pv). (3)

Colocation cost. The colocation cost is incurred by the

resource contention among the SEs that are placed on the

same edge cloud. This is considered unavoidable as edge

clouds are not intentionally designed for large-scale resource

multiplexing and performance isolation is typically difficult

with light-weight virtualization. The performance degradation

due to SE colocation can be characterized by αpm
2
p + βpmp,

where αp and βp are parameters. The reasoning behind this

model is as follows. In the worse case, all the mp SEs

colocated on the same edge cloud rely on a single CPU core

for processing and thus, the stretch on execution time, known

as performance degradation ratio here, can be as large as mp

following the simple round-robin scheduling policy. Therefore,

it is reasonable to use a general function αpmp + βp to

characterize the cost for the performance degradation of one of

the colocated SEs given that performance degradation can also

be induced by contention of resources other than CPU (e.g.,

memory, cache, or network) [20]. Summing up the costs for all

the SEs on the same edge cloud, the total colocation cost for an

edge cloud p can be represented by mp(αpmp + βp) as given

above. The model is general in that the parameters αp and βp

can be tuned to suit any practical needs depending on the edge

cloud specification and the application type. Consequently, the

total colocation cost in the system is characterized by

EC =
∑

p∈P (αpm
2
p + βpmp). (4)

The colocation cost also serves as a soft constraint for the

maximum number of SEs that can be hosted by an edge cloud.

The above costs capture the system performance from

different perspectives: activation and placement costs are from

the operating expenses of the edge cloud provider, while

proximity and colocation costs are from the perceived QoS of

the users. Collectively, they provide a comprehensive model

of the overall system performance.

C. Problem Formulation and Complexity

The overall performance of the application with SEs being

placed is measured by the total cost, i.e.,

E = EA + EL + ED + EC . (5)

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

470

Algorithm 1 ITEM

1: flag← true;

2: while flag = true do ⊲ Search until convergence

3: flag← false;

4: for q ∈ P do ⊲ Iterate over edge clouds

5: p← {pu |u∈U}; ⊲ Current placement

6: pq ← EXPASION(p, q); ⊲ Expansion move

7: if E(pq) < E(p) then ⊲ Improvement found

8: p← pq;

9: flag← true;

10: return p = {pu |u∈U};

Algorithm 2 Expansion

1: construct an auxiliary graph G w.r.t. edge cloud q;

2: obtain the minimum s-t cut on graph G using Edmonds-

Karp max-flow algorithm;

3: extract expansion decision x from the graph cut;

4: for u ∈ U do ⊲ Expanding edge cloud q

5: pu ← q if xu = 1;

6: return p = {pu |u∈U};

Note that different weights for different types of cost can be

incorporated into the cost function directly, e.g., ap for EA,

lu(pu) for EL, and αp and βp for EC , respectively. Therefore,

various tradeoff forms of the objective can be conveniently

achieved. The goal of ESEP is to make decisions on the

placement of SEs, i.e., determining pu for all u ∈ U , for

a social VR application, such that the total cost E of the edge

computing system is minimized. Note that for simplicity the

model does not impose hard constraints. This is reasonable for

storage as it is generally considered cheap nowadays. Other

hard constraints due to hardware (e.g., GPU) or security re-

quirements can be easily modeled by restricting the placement

to predetermined candidate set of edge clouds. In general, the

problem is hard to solve and we show that

Theorem 1 (Complexity). ESEP is NP-hard.

Proof. We conduct the proof via a polynomial-time reduction

from the uncapacitated facility location (UFL) problem, which

is known to be NP-hard [21]. The reduction can be built by

treating the distance and cost functions in a UFL instance

as the placement and activation costs in an ESEP instance,

respectively, and setting the other costs in ESEP to zero.

III. ALGORITHM DESIGN

Essentially, ESEP requires minimizing a nonlinear function

in a space with a large number of dimensions. A general

approach to exploring the optimum of such an optimization

problem is starting from an arbitrary SE placement and it-

eratively improving the solution by local adjustments. While

general purpose optimization techniques such as simulated

annealing can be employed, they require exponential time in

theory and are extremely slow in practice. Our approach is

also based on local adjustments but we observe that a set of

u1u1 u2u2

u3u3 u4u4 u5u5 u6u6 u7u7 u8u8 u9u9

Uq

Up1
Up2

Up3

Fig. 3. An example to illustrate the expansion move, where edge cloud q is
selected for expansion.

optimal local adjustments can be simultaneously obtained by

solving a graph cut problem, rather than be carried out one

by one or pairwise. As the graph cut problem can be solved

very efficiently, the searching complexity is thus significantly

reduced.

A. Iteractive Expansion Moves

We propose ITEM – an algorithm for the ESEP problem

based on ITeractive Expansion Moves. The pseudocode of

the algorithm is listed in Algorithm 1. An expansion move

is an optimization process where an edge cloud q ∈ P is

selected for expansion and variables pu are simultaneously

given a binary choice to either stay as pqu = pu or switch to

edge cloud q, i.e., pqu = q. Let pq = {pq1, . . . , p
q
m} denote

the placement after one feasible expansion on edge cloud q

with respect to current placement p. Each accepted expansion

move will strictly reduce the total cost E(p) and the algorithm

keeps searching by applying expansion moves iteratively over

all the edge clouds until convergence. As the solution space is

finite, ITEM must terminate after a finite number of iterations.

Empirically, we have observed that in general it converges very

fast (within 10 iterations); see Figure 7(b).

The resultant placement pq can be alternatively expressed

by an indicator vector with binary decision variables x =
{x1, . . . , xm} where for all u ∈ U we define xu = 1 if pqu = q

and xu = 0 otherwise. Note that if pu = q already, we always

set xu = 1. We denote by Eq(x) the total cost corresponding

to the new placement pq . The expansion move will compute

an optimal x∗ with the minimum Eq(x∗), from which the

new placement pq will be produced. A simple example is

illustrated in Figure 3, where users u4, u8 and u9 switch to

the selected edge cloud q from edge cloud p1, p2, and p3,

respectively, in the expansion move, while the other users stay

at their current edge cloud. Users u1 and u2 will stay in edge

cloud q according to the definition of expansion move. We

have the following mappings. (Terms in circle represent that

the decisions for the users that are already on q are always 1.)

u u1 u2 u3 u4 u5 u6 u7 u8 u9

p q q p1 p1 p1 p2 p2 p2 p3
p
q q q p1 q p1 p2 p2 q q
x 1© 1© 0 1 0 0 0 1 1

Obviously, the size of the solution space for x∗ is 2m

and any brute-force search will result in exponential time

complexity. We will show in the following sections that

actually, x∗ can be efficiently computed by encoding the total

cost Eq(x) in a graph and solving a corresponding graph cut

problem leveraging existing max-flow algorithms.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

471

B. Transforming the Objective Function

Given a current placement p and a selected edge cloud q, the

objective of ESEP after an expansion move can be expressed

in terms of x. We define the negation of x as x̄, i.e., x̄ = 1−x.

The activation cost can be rewritten as follows.

E
q
A(x) =

∑

p∈P
mq

p
>0

ap =
∑

p∈P\q

(ap − ap
∏

u∈Up

xu) + σq, (6)

meaning that the activation cost of p (p 6= q) is taken into

account if and only if there exists at least one SE staying at

p, i.e., xu = 0. Unfortunately, the product operation brings

high-order terms in x, which increases the complexity to the

problem solving. However, we can actually transform this term

into a sum of quadratic and linear terms by introducing an

auxiliary variable zp for each edge cloud p. For a particular

edge cloud p ∈ P \ q, the transformation is

−ap
∏

u∈Up

xu = min
zp∈{0,1}

ap((mp − 1)zp −
∑

u∈Up

xuzp). (7)

The final term σq in (6) is used to correct the case where edge

cloud q does not host any SEs in the current placement p. So

this term incorporates the cost of q after the expansion move

if q is being used in pq , i.e., σq = aq(1−
∏

u∈U x̄u).
The placement cost and the proximity cost are easy to be

rewritten. Observe that

lu(p
q
u) = lu(q)xu + lu(pu)x̄u,

d(p∗u, p
q
u) = d(p∗u, q)xu + d(p∗u, pu)x̄u,

d(pqu, p
q
v) = d(pu, q)x̄uxv + d(q, pv)xux̄v + d(pu, pv)x̄ux̄v.

Applying the above substitutions to expression (2) and (3) we

can obtain

E
q
L(x) =

∑

u∈U

(lu(q)xu + lu(pu)x̄u),

E
q
D(x) =

∑

u∈U

fu(d(p
∗
u, q)xu + d(p∗u, pu)x̄u)

+
∑

(u,v)∈L

fu,v(d(pu, q)x̄uxv + d(q, pv)xux̄v + d(pu, pv)x̄ux̄v).

The colocation cost E
q
C after the expansion move is composed

of two terms: the quadratic term and the linear term. Denoting

by mq
p the number of SEs being placed onto edge cloud p after

the expansion move and Lp the current set of interacting user

pairs that have their SEs on the edge cloud p, the quadratic

term can be simplified as follows.
∑

p∈P

αp(m
q
p)

2 = αq(
∑

u∈U

xu)
2 +

∑

p∈P\q

αp(
∑

u∈Up

x̄u)
2

= αq(
∑

u∈U

xu)
2 +

∑

p∈P\q

αp(m
2
p − 2mp

∑

u∈Up

xu + (
∑

u∈Up

xu)
2)

=
∑

(u,v)∈L

αqxuxv +
∑

p∈P\q

(
∑

(u,v)∈Lp

αpxuxv)

+
∑

u∈U

αqxu +
∑

p∈P\q

αp((1− 2mp)
∑

u∈Up

xu +m2
p). (8)

The above transformation is conducted by some algebra and

by applying equation x2
u = xu, which follows due to the fact

that xu ∈ {0, 1}. We introduce an auxiliary m×m matrix R

where

Ru,v ,

{

1 if pu = pv 6= q, for u 6= v;

0 otherwise.

and an m-dimension indicator vector y = {y1, ..., ym} where

yu = 1 if u ∈ U \ Uq and yu = 0 otherwise. Note that

the matrix R and vector y can be easily computed given

the current placement p and the selected edge cloud q. The

expression (8) can further be rewritten as
∑

(u,v)∈L

−(αq + αpu
Ru,v)x̄uxv (9)

+
∑

u∈U

((m+ 1)αq − yuαpu
mpu

)xu +
∑

p∈P\q

αpm
2
p.

The linear term in the colocation cost can be rewritten as
∑

p∈P

βpm
q
p =

∑

u∈U

βqxu +
∑

p∈P\q

βp

∑

u∈Up

x̄u

=
∑

u∈U

(βq − yuβpu
)xu +

∑

p∈P\q

βpmp, (10)

which is obviously linear in the xu. In a nutshell, the colo-

cation cost after the expansion move can be expressed as the

sum of the two terms, i.e., E
q
C = (9) + (10). Consequently,

the total cost in the objective after the expansion move can be

expressed in terms of x, i.e., Eq = E
q
A + E

q
L + E

q
D + E

q
C .

C. Optimizing Expansion Move via Minimizing Graph Cuts

We show that an optimal expansion move can be obtained

by simply solving a graph cut problem. More specifically, we

construct a graph and encode all the costs into weights on the

graph edges. We then demonstrate that the min-cut of the graph

corresponds to the optimal decisions for the expansion move.

We first define ∆(pu, pv, q) = d(pu, q)+ d(q, pv)− d(pu, pv).
Graph construction. We now construct a graph G which

encodes all the costs in our model. We first introduce m nodes,

each of which corresponds to each user u. We then introduce

n nodes to represent the set of edge clouds. Finally, we add

a source node s and a sink node t, where s corresponds to

decision 0 and t corresponds to decision 1. As a result, the

set of nodes in G is given by {u |u∈U} ∪ {p |p∈P } ∪ {s, t}.
To encode the activation cost, we first reparameterize the right

hand of (6) such that each quadratic monomial has exactly one

complemented variable (e.g., x̄z) with nonnegative coefficient,

i.e.,
∑

p∈P

ap +
∑

p∈P\q

(−apzp +
∑

u∈Up

apx̄uzp)

=
∑

u∈U

yu(apu
x̄uzpu

− apu
zpu

) +
∑

p∈P

ap.

For each u ∈ Up, we add an edge from u to pu with weight

ap. We also introduce an edge from each p to the sink t with

weight ap. This graph structure ensures that only weight of

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

472

p1p1

u1u1 u2u2 u3u3 …

t

decision 1

u4u4

p2p2

s

pnpn

um

τu

|τu|

πu,v

decision 0

ap1

ap1
ap2

ap2

apn

apn

U+ U−

Fig. 4. Constructed graph G for encoding cost Eq .

ap will be included in the graph cut. The encoding of the

correction term σq in (6) is analogous to the above but we use

a simpler test-and-reject technique to handle this term [22].

We ignore this term during the expansion move and explicitly

add it to Eq
A if there exists u ∈ U such that xu = 1. If the

cost would increase, we reject the expansion move.

For the other types of cost, we combine them all together

and simplify them to the following form after some simple

algebra.
∑

(u,v)∈L

πu,vx̄uxv +
∑

u∈U+

τuxu +
∑

u∈U−

|τu|x̄u + κ. (11)

Note that we split u ∈ U into two subsets U+ and U− where

τu ≥ 0 if u ∈ U+ and τu < 0 otherwise. The symbol πu,v is

the coefficient of pairwise terms, where

πu,v = fu,v∆(pu, pv, q)− (αq + αpu
Ru,v),

and τu is the coefficient for unary terms, where

τu = lu(q)− lu(pu) + fu(d(p
∗
u, q)− d(p∗u, pu))

+
∑

v∈U

(fu,vd(q, pv) + fv,ud(q, pu)− fu,vd(pu, pv))

+ (m+ 1)αq − yuαpu
mpu

+ βq − yuβpu
,

and κ is simply a constant, which can actually be omitted from

the graph construction as it has no impact on the expansion

decisions. For each u ∈ U+, we add an edge from source s to

node u with weight τu. Similarly, for each u ∈ U−, we add

an edge from node u to the sink t with weight |τu|. For each

interacting user pair u, v, we add an edge from u to v with

weight πu,v . The resultant graph G is illustrated in Figure 4.

The placement of SEs now can be obtained by computing

the minimum s-t cut on G by employing the Edmons-Karp

max-flow algorithm. Specifically, we place the SEs after the

expansion move according to the following rule.

pqu ,

{

q if link s-u is in the cut,

pu otherwise.

Theorem 2 (Correctness). Solving the minimization problem

with objective Eq is equivalent to obtaining the minimum s-t
cut of graph G as long as for any pair of interacting users

u, v ∈ U it satisfies ∆(pu, pv, q) ≥ αq + αpu
Ru,v/fu,v .

Proof. We first show the feasibility of obtaining the minimum

s-t cut on the graph G. Through the graph construction we

know that given an arbitrary Eq there always exists a graph G.

However, the minimum s-t cut can be computed in polynomial

time only if all the edge weights are nonnegative. For τu and

ap, this constraint follows in nature, while πu,v ≥ 0 is satisfied

if we have ∆(pu, pv, q) ≥ (αq + αpu
Ru,v)/fu,v .

Now we show the equivalence. For each edge cloud p 6= q,

cost ap is counted as long as there exists one edge in set

{(u, p) |u∈U,p∈P\q} ∪ {(p, t)} being contained in the cut,

meaning that there exists u ∈ Up such that xu = 0. Thanks

to the auxiliary variable zp, only edge p-t will be included in

the cut if there are more than one user that satisfies xu = 0,

contributing only a cost of ap to Eq . For any pair of nodes u
and v in graph G, the pairwise cost πu,v contributes to Eq if

and only if xu = 0 and xv = 1. This corresponds to the case

that edge (u, v) is contained in the minimum s-t cut, where

u is assigned to the s-component and v is assigned to the t-
component. For any u ∈ U+, the unary cost is counted if and

only if the cut contains edge s-u, meaning xu = 1. Similarly,

for any u ∈ U−, the unary cost is counted if and only if the

cut contains edge u-t, meaning that xu = 0.

We can still construct a graph and solve the corresponding

minimum s-t cut problem on the graph when Theorem 2 does

not hold [23]. The graph construction process is explained in

the following. Recall that in expression (11), for those edge

cloud pairs u, v that satisfy Theorem 2, we have πu,v ≥ 0;

for the others, we have πu,v < 0. The problem is with those

terms with πu,v < 0 since edge weights on the graph should

be nonnegative in order for the graph cut to be efficiently

computed. To handle this situation, for the terms πu,vx̄uxv

with πu,v < 0 we carry out the following transformation

πu,vx̄uxv = −πu,vxu(1− x̄v)− πu,vx̄v + πu,v.

Note that after this transformation, we are able to incorporate

the term πu,vx̄uxv into the graph by introducing new nodes

ū which represent x̄u and edges with weights −πu,v > 0
between them, and edges from these nodes to node u with

weight −πu,v > 0. The constant term πu,v is merged into

κ in expression (11). In every expansion move we solve the

minimum s-t cut problem on this new graph and determine

the placement of the SE for each user u ∈ U according to the

following rule:

pqu ,

q if xu = 1 and x̄u = 0,

pu if xu = 0 and x̄v = 1,

undetermined otherwise.

For those undetermined SEs, the graph cut solution produces

contradicting decisions on xu and x̄u and thus, it is not able

to dictate their placement out from the two choices. Therefore,

we carry out an extra procedure to place those undetermined

SEs such that the total cost can further be reduced: for each

undetermined SE, we set pqu = q if placing it to q would bring

cost reduction compared to keeping it at pu.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

473

(a) Los Angeles (b) New York City

Fig. 5. Location of Starbucks shops (i.e., location for envisioned edge clouds)
and distribution of Twitter users in the selected two cities.

D. Discussion for Online Cases

So far, the ITEM algorithm works only for the static (offline)

scenario. To handle online cases where placement decisions

need to be updated following user movements, we assume a

time-slotted system and we consider that a user has moved

if the user switches from one AP to another. Note that the

granularity of a time slot can be at the level of minutes due to

the fact that users in social VR applications usually move at a

walking speed and small movements will have no impact on

the selection of APs, as a result of which no reoptimization is

required. Keeping in mind that unexpected service interruption

for unmoved users should be minimized, the design of the

online algorithm is as follows: Denote the set of users that

have moved as Ũ in each time slot. At the beginning of each

time slot we first incorporate the migration overhead into the

placement cost for users in Ũ according to the current locations

of their SEs. Then, we carry out ITEM where we modify the

expansion move by trimming the objective function Eq where

we plug in the decisions xu = 0 for all u ∈ U \ Ũ . Finally, we

place the SEs of users u ∈ Ũ according to the minimum graph

cut solution; the placement for other users remain unchanged.

IV. EVALUATION

With real-world data we validate the performance of ITEM

for both offline and online cases.

A. Offline Performance

Dataset. We obtain a social network dataset by crawling

Twitter website. The dataset contains a Twitter social graph as

well as user locations in GPS coordinates. We select two major

cities in the U.S., namely Los Angeles and New York City, and

we prune the dataset keeping the users from the two cities. The

two cities have quite different user distribution which is more

uniform in Los Angeles and is more concentrated in New York

City (cf. Figure 5). For the locations of envisioned edge clouds,

we decide to use the locations of the Starbucks due to the fact

that Starbucks shops in a city usually can achieve a decent

coverage for users. In addition, the distribution of Starbucks

shops actually follows the population density, making them

perfect locations for edge cloud deployment in the future.

The dataset pruned for Los Angeles (denoted by Twitter-

LA) contains 7553 users in total. We keep the relationship

0 0.2 0.4 0.6 0.8 1

Proportion of Top Interactive Users

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
In

te
ra

c
ti
o
n
s

Read-LA

Write-LA

Read-NYC

Write-NYC

(a) CDF of user interaction

0 0.2 0.4 0.6 0.8 1

Proportion of Involved Neighbors

0

0.2

0.4

0.6

0.8

1

P
ro

p
o
rt

io
n
 o

f
U

s
e
rs

Read-LA

Write-LA

Read-NYC

Write-NYC

(b) CDF of involved neighbors

Fig. 6. Distribution of user interaction (i.e., read and write) in the synthesized
data. (a) shows that the y × 100% of interactions are from x× 100% most
interactive users. (b) shows that y×100% of users involve at most x×100%
of her neighbors in her interactions.

of the users as is in the Twitter social graph. Although the

frequency of user interaction is not available with the used

dataset, we can actually synthesize it following the real-world

distributions revealed by [19]. The CDFs of the syntheti-

cally generated frequencies of user interaction (including both

“read” and “write”) are depicted in Figure 6(a). We obtain

the locations of all the Starbucks shops in the city of Los

Angeles and there are in total 105 shops considered, as shown

in Figure 5(a). We assume that each Starbucks shop will be

equipped with an edge cloud that is attached to its AP. The

network delay between any two Starbucks APs is measured

by their geographical distance. We assume that each user is in

the vicinity of the Starbucks shop that is closest to her.

The dataset pruned for New York City (denoted by Twitter-

NYC) contains 6068 users and we synthesize the frequency of

user interaction following the same procedure as above (see

Figure 6(b)). The number of considered Starbucks shops in

New York is 117 in total, as illustrated in Figure 5(b).

Settings. Our implementation of ITEM is based on a max-

flow implementation detailed in [24]. The activation cost for

each of the edge clouds is generated randomly following a

uniform distribution. For the placement cost, we assume that

there are three different price levels and the ratio between the

base prices of adjacent levels is set to 2. This is to represent

the heterogeneity in the cost of using an edge cloud in different

areas in the city. The actual placement price for each user

placing her SE on an edge cloud is generated following

a normal distribution with the average base and standard

deviation 0.5×base. The communication frequency fu of each

user is set to be the sum of frequency of access originated

from user u. For the colocation cost, we randomly generate the

coefficients following a uniform distribution. We normalize the

four types of cost to the range (0, 1] and we set the parameters

such that all the costs share equal importance. We first compare

with two baseline solutions of interest: Random (randomly

generated placement) and Greedy (the greedy placement where

SEs are placed with closest proximity). To further understand

the impact of ITEM on different types of cost, we also compare

three different ITEM-based solutions: ITEM-PLAC (with only

the placement cost optimized), ITEM-PLAC-PROX (with both

the placement and the proximity cost optimized), and ITEM-

OVERALL (with all the costs optimized).

Results. The performance of ITEM, compared with Ran-

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

474

Los Angeles New York City
0

0.5

1

1.5

2

2.5

3

3.5

4
R

a
ti
o

Random

Greedy

ITEM

(a) Relative cost ratio

1 2 3 4 5 6 7 8 9 10 11 12

Number of Iterations

1

1.5

2

2.5

3

3.5

4

R
a
ti
o

LA-1

LA-2

LA-3

LA-4

LA-5

NYC-1

NYC-2

NYC-3

NYC-4

NYC-5

(b) Convergency

Fig. 7. Performance evaluation on relative cost ratio and converging speed.

EA EL ED EC E
0

0.5

1

1.5

2

2.5

3

R
a
ti
o

ITEM-PLAC

ITEM-PLAC-PROX

ITEM-OVERALL

(a) Los Angeles

EA EL ED EC E
0

0.5

1

1.5

2

2.5

3

R
a
ti
o

ITEM-PLAC

ITEM-PLAC-PROX

ITEM-OVERALL

(b) New York City

Fig. 8. Total cost breakdown and impact of ITEM on each cost type.

dom and Greedy, is validated in Figure 7(a). All the results

are obtained by averaging five independent runs and are

normalized to the results of ITEM. As we can see that, ITEM

outperforms both Random and Greedy as expected and the cost

reduction achieved by ITEM can be 150% when compared

with Random and 100% when compared with Greedy. This

is due to the fact that Random does not consider any of the

costs, while Greedy only minimizes part of the proximity cost

(from the user to her SE). Figure 7(b) shows the converging

speed of ITEM in both the Twitter-LA and the Twitter-NYC

scenarios with five independent runs each. In general, ITEM

converges very fast; it reduces the cost significantly in the first

few iterations and converges within 10 iterations in most cases.

Figure 8 illustrates the breakdown of the total cost and

studies the impact of ITEM on each cost type. We observe

that ITEM-PLAC minimizes the placement cost EL, while

incurring large activation cost EA and proximity cost ED

as expected. Surprisingly, the colocation cost EC is not

significant. This is mainly because when minimizing the

placement cost, SEs are spread out among the edge clouds,

which is also favorable to the colocation cost EC since EC

is characterized with a super-linear function. ITEM-PLAC-

PROX tries to minimize both the placement cost and the

proximity cost. As we can see that ignoring the colocation

cost EC can be very problematic as EC is extremely high

(12× more) in the solution by ITEM-PLAC-PROX. Overall,

balancing the four types of cost gives the best performance

to ITEM. The results confirm our motivation that all the four

types of cost are critically important and should be optimized

simultaneously in an edge computing system, which is the

major contribution of this paper.

B. Online Performance

Dataset and settings. For the online case, mobility is of

concern. We use the Rome Taxi dataset and synthesize social

10 20 30 40 50 60

Time (min)

1

1.4

1.8

R
a
ti
o

Performance Comparison

Random

Greedy

ITEM

0 10 20 30 40 50 60

Time (min)

1.1

1.15

1.2

C
o
s
t

0

0.1

0.2

M
o
b
ili

ty

Impact of Mobility on ITEM

ITEM

Mobility

Fig. 9. Performance comparison and impact of mobility in online cases. (The
upper plot is normalized by the cost of ITEM, and hence the ratio is always
one for ITEM. The actual cost of ITEM fluctuates over time as shown in the
lower plot.)

networks with fitted user interactions. We choose a 6-hour

period (15h to 20h on date Feb 12, 2014) from the dataset.

The number of users varies from hour to hour but is generally

around 300 during the considered time period. The users are

moving around the city over time and the time granularity

is set to one minute. We simulate a social graph on these

users following a power-law distribution with exponent 2.5 and

we generate the frequency of user interaction using the same

approach as for Twitter-LA. We envision an edge computing

system with 15 edge clouds that are deployed in the city of

Rome and the locations of the edge clouds are chosen from

the major metro stations in Rome [11].

We implement a discrete-time simulator where at the begin-

ning of each time slot (e.g., each minute here) we obtain the

set of users that have moved and then, we invoke the ITEM

algorithm on those users to obtain new placement decisions.

We use the above mentioned Rome Taxi dataset and other

parameters that are generated following the same settings as

in the offline case to feed the simulator. We then compare the

results with that of Random as well as of Greedy.

Results. Figure 9 depicts the results for online performance

evaluation. The experiments are done independently for 6

hours as described in the settings. We only show the hour of

18 as all tests in different hours show similar behaviors. All

the values in the plots are averaged among five independent

runs. The values in the upper plot are normalized to the values

obtained by ITEM. As we can see that ITEM outperforms both

Random and Greedy as expected and can achieve an overall

cost reduction of around 30% under any circumstances in the

simulated scenario. In the lower plot, we explore the impact

of user mobility to the performance of ITEM, where we show

the costs obtained by ITEM normalized to the smallest value

we have seen from the solutions of ITEM and the curve of

user mobility ratio measured by the ratio between the number

of moved users and of all users. As we can see that, the

performance of ITEM is quite stable (1.1−1.2× the minimum)

in general and most of the time a positive correlation between

the cost of ITEM and the mobility ratio can be observed, i.e.,

ITEM performs slightly better with lower mobility. This is due

to the fact that the online version of ITEM only reoptimizes

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

475

the placement for users that have moved. With a small mobility

ratio, the system remains mostly unchanged and ITEM tries

to control the QoS interruption on the unmoved users.

V. RELATED WORK

Data placement for online social networks. A lot of

work has been carried out on optimizing cost or performance

via data placement or replication for online social networks

[13]–[16]. Jiao et al. propose cosplay, a cost effective data

placement policy that can guarantee QoS in online social

networks [13]. Later, they further investigate the problem

by considering multiple objectives [15]. Yu and Pan propose

an associated data placement (ADP) scheme which aims to

improve the colocation of associated data and localized data

serving [14]. Recently, Zhou et al. explore the problem of joint

placement and replication of social network data with the goal

of minimizing network traffic [16].

Resource management in edge computing. In the pres-

ence of multiple edge clouds, resource management is of high

importance as it directly dictates service quality and system

efficiency. Research efforts have been made mostly on resource

allocation and job scheduling [5]–[11]. Jia et al. study the

load balancing among multiple edge clouds in [6]. Tong et

al. discuss workload placement for delay minimization in a

hierarchical edge computing architecture [7]. Wang et al. [8]

and Urgaonkar et al. [9] focus on stochastic frameworks for

optimizing dynamic workload migration based on Markov

Decision Processes (MDPs) and Lyapunov optimization. Re-

cently, Tan et al. study online job dispatching and scheduling

in edge clouds [10]. Wang et al. investigate online mobility-

oblivious resource allocation for edge computing [11].

In short, none of the existing models are able to characterize

the joint impact of user interactions in social VR applications

and resource contention in edge clouds for service placement,

which is captured in our model. Moreover, we incorporate the

economic effects on activating and using edge clouds.

VI. CONCLUSION

In this paper we conduct the first formal study of the

service entity placement problem for social VR applications

in edge computing. We characterize the major challenges with

a comprehensive cost model and propose a novel algorithm

based on iteratively solving a series of minimum graph cuts.

The algorithm is flexible and is applicable in both offline and

online cases. The performance of the proposed algorithm is

confirmed by extensive experiments. As the intersection of

VR and edge computing is gaining more and more attention,

the solution provided in this paper will serve as a baseline

and will foster future exploration in this direction. Several

research questions are still open including developing online

algorithms for SE placement with edge cloud reconfiguration

cost included. We leave them to future work.

ACKNOWLEDGEMENT

This work was partially funded by the German Research

Foundation (DFG) and the National Nature Science Founda-

tion of China (NSFC) joint project under Grant No. 392046569

(DFG) and No. 61761136014 (NSFC), and the DFG Collab-

orative Research Center (CRC) 1053 – MAKI. Ting He was

sponsored by the U.S. Army Research Laboratory and the U.K.

Ministry of Defense under Agreement Number W911NF-16-3-

0001. Jun Li was funded by the National Science Foundation

under Grant No. 1564348. The views and conclusions con-

tained in this document are those of the authors and should

not be interpreted as representing the official policies, either

expressed or implied, of the U.S. Army Research Laboratory,

the U.S. Government, the U.K. Ministry of Defense or the

U.K. Government. The U.S. and U.K. Governments are au-

thorized to reproduce and distribute reprints for Government

purposes notwithstanding any copyright notation hereon.

REFERENCES

[1] ETSI MEC-IEG, “Mobile edge computing (mec); service scenarios.”
[2] Open Edge Computing. http://openedgecomputing.org.
[3] M. Jang, H. Lee, K. Schwan, and K. Bhardwaj, “SOUL: an edge-cloud

system for mobile applications in a sensor-rich world,” in SEC, 2016.
[4] J. Cho, K. Sundaresan, R. Mahindra, J. E. van der Merwe, and

S. Rangarajan, “ACACIA: context-aware edge computing for continuous
interactive applications over mobile networks,” in CoNEXT, 2016.

[5] L. Wang, L. Jiao, D. Kliazovich, and P. Bouvry, “Reconciling task
assignment and scheduling in mobile edge clouds,” in ICNP, 2016.

[6] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing in
wireless metropolitan area networks,” in INFOCOM, 2016.

[7] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in INFOCOM, 2016.

[8] S. Wang, R. Urgaonkar, M. Zafer, T. He, K. S. Chan, and K. K. Leung,
“Dynamic service migration in mobile edge-clouds,” in Networking,
2015.

[9] R. Urgaonkar, S. Wang, T. He, M. Zafer, K. S. Chan, and K. K. Leung,
“Dynamic service migration and workload scheduling in edge-clouds,”
PEVA, vol. 91, pp. 205–228, 2015.

[10] H. Tan, Z. Han, X.-. Li, and F. C. Lau, “Online job dispatching and
scheduling in edge clouds,” in INFOCOM, 2017.

[11] L. Wang, L. Jiao, J. Li, and M. Mühlhäuser, “Online resource allocation
for arbitrary user mobility in distributed edge clouds,” in ICDCS, 2017.

[12] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. C. M. Lau, “Scaling social
media applications into geo-distributed clouds,” ToN, vol. 23, no. 3, pp.
689–702, 2015.

[13] L. Jiao, J. Li, T. Xu, and X. Fu, “Cost optimization for online social
networks on geo-distributed clouds,” in ICNP, 2012.

[14] B. Yu and J. Pan, “Location-aware associated data placement for geo-
distributed data-intensive applications,” in INFOCOM, 2015.

[15] L. Jiao, J. Li, W. Du, and X. Fu, “Multi-objective data placement for
multi-cloud socially aware services,” in INFOCOM, 2014.

[16] J. Zhou and J. Fan, “JPR: exploring joint partitioning and replication
for traffic minimization in online social networks,” in ICDCS, 2017.

[17] N. Bansal, K. Lee, V. Nagarajan, and M. Zafer, “Minimum congestion
mapping in a cloud,” in PODC, 2011.

[18] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual net-
work embedding algorithms with coordinated node and link mapping,”
ToN, vol. 20, no. 1, pp. 206–219, 2012.

[19] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and B. Y. Zhao, “User
interactions in social networks and their implications,” in EuroSys, 2009.

[20] O. Tickoo, R. Iyer, R. Illikkal, and D. Newell, “Modeling virtual machine
performance: challenges and approaches,” SIGMETRICS PER, vol. 37,
no. 3, pp. 55–60, 2009.

[21] J. Krarup and P. M. Pruzen, “The simple plant location problem: Survey
and synthesis,” Eur. J. Oper. Res., vol. 12, pp. 36–81, 1983.

[22] A. Delong, A. Osokin, H. N. Isack, and Y. Boykov, “Fast approximate
energy minimization with label costs,” in CVPR, 2010, pp. 2173–2180.

[23] V. Kolmogorov and C. Rother, “Minimizing nonsubmodular functions
with graph cuts: a review,” IEEE TPAMI, vol. 29, no. 7, pp. 1274–1279,
2007.

[24] Y. Boykov and V. Kolmogorov, “An experimental comparison of min-
cut/max-flow algorithms for energy minimization in vision,” IEEE

TPAMI, vol. 26, no. 9, pp. 1124–1137, 2004.

IEEE INFOCOM 2018 - IEEE Conference on Computer Communications

476

