J. Symbolic Computation (1996) 11, 1-20

Some Algorithms for
Nilpotent Permutation Groups*

EUGENE M. LUKST, FERENC RAKOCZI! AND CHARLES R. B. WRIGHT !

t Department of Computer and Information Science, University of Oregon
! Department of Mathematics, University of Oregon

(Received)

Let G, H and E be subgroups of a finite nilpotent permutation group of degree n.
We describe the theory and implementation of an algorithm to compute the normalizer
Ng(H) in time polynomial in n, and we give a modified algorithm to determine whether
H and E are conjugate under G and, if so, to find a conjugating element of G. Other
algorithms produce the intersection G N H and the centralizer C'(H). The underlying
method uses the imprimitivity structure of (G, H) and an associated canonical chief
series to reduce computation to linear operations. Implementations in GAP and Magma
are practical for degrees large enough to present difficulties for general-purpose methods.

1. Introduction and Related Work

The normalizer problem—given finite groups G and H, to compute the normalizer Ng(H)
of H in G—is of both practical and theoretical interest. In the context of permutation
groups it is not known to be solvable in time polynomial in the permutation degree.
Indeed, 1ts complexity is of special interest because of its relation to the problem of
testing graph isomorphism (see, e.g., Luks, 1993). Currently implemented algorithms for
its solution have exponential worst case running time. The implementations appear to
remain exponential even for nilpotent groups, for which the normalizer problem is known
to be solvable in polynomial time (Kantor and Luks, 1990). More generally, normalizers
are computable in polynomial time even for solvable groups (Luks, 1992). With this
background in mind, we describe a normalizer algorithm for nilpotent subgroups of .S,
that has worst case timing of O(n*). Implementations in GAP (Schonert et al., 1993)
and Magma (Cannon and Playoust, 1993) show substantial performance improvements
over the built-in library functions on permutation domains of moderate size.

Our point of view in this work is that if the groups under consideration are known
to possess special properties, such as nilpotency, then one should hope to exploit that
knowledge to devise algorithms that are faster than the generic ones that apply to less

* A portion of the work described here was presented at the 1994 ISSAC conference at Oxford and
appears in the conference proceedings.

t Research supported in part by NSF grant CCR-9013410.

} The third author wishes to thank the Australian National University, the Deutscher Akademischer
Austauschdienst and the RWTH-Aachen for support during the preparation of this article.

0747-7171/90/000000 + 00 $03.00/0 © 1996 Academic Press Limited

2 E. M. Luks, F. Rakéczi and C. R. B. Wright

restricted classes of groups. We consider here the normalizer problem and the related
conjugator problem—given groups G, H and E, determine whether there is a ¢ in G with
¢ 'Eg = H, and if so find such a g—in the setting of nilpotent permutation groups.

Our aim is to take advantage of the polycyclic and hypercentral structure of nilpo-
tent groups in the overall design of our algorithms, and to use the permutation group
environment not only to multiply elements quickly but also to create a combinatoric
structure forest that leads to a canonical chief series and to efficient linear calculations.
See, e.g., Butler and Cannon (1993) for examples of exploitation of imprimitivity sys-
tems of p-groups to get at the group structure. Not surprisingly, our algorithms have some
characteristics in common with the normalizer algorithm of Glasby and Slattery (1990)
and related algorithms (cf. Celler, Neubtiser and Wright, 1990) for polycyclic groups. The
latter algorithms use collection methods to multiply elements. Our experimental results
indicate that algorithms that can take advantage of the combination of nilpotency and
permutation action can be faster than those based on either collection or permutation
operations alone.

The following account starts by presenting the framework for a general normalizer
algorithm and a reduction of the nilpotent problem to the computation of a subgroup
of index 1 or a prime. We then discuss modifications needed to solve the conjugator
problem. The next two sections develop and apply linear algebraic methods derived from
a structure forest which we build from the permutation action. We briefly describe related
polynomial-time algorithms for computing intersections and centralizers, and conclude
with discussions of theoretical complexity and experimental results.

2. The Normalizer Algorithm

Our goal in this section will be an algorithm to compute Ng(H) for subgroups G and
H of a finite nilpotent group K. We can reduce immediately to the case in which K has
order a power of some prime p, since K is the direct product of its Sylow subgroups, and
the direct decomposition is inherited by the subgroups G, H, and Ng(H). Generators
for the p-Sylow groups of G, H, and K are easy to compute as powers of the generators
of G, H, and K, using the Euclidean algorithm in Z.

Thus we suppose for the rest of this section that K is a p-group. Then K has a central
chief series K = Ko D> K D> --- D K = 1, with K; < K for each j and with each factor
K;_1/K; of order p. In Section 5 we will explicitly construct such a series suited to our
needs. For now, we suppose a series like this to be given.

Define H; := K; N H for i =0, ..., L. The overall plan of the algorithm is to compute
the normalizers of certain subgroups H;K; of K, in a sequence starting with a subgroup
that is obviously G-normal and ending with the subgroup HoKy; = (Ko N H)Kp = H.
Figure 1 gives a preliminary version, with M an ambient normalizer which is initially G
and eventually Ng(H). Equations in braces { } are assertions about the values of variables
at those stages of the execution where the assertions appear. Here and in subsequent
algorithms, endfor and endif statements are implied by the indentation. The assertions
enclosed in braces in Figure 1 are immediate, since Hp = 1, Ng(H;K;) = Ng(K;) = G,
H;K; = H;, Ng(H;) < Ng(Hiy1), and Hy = H. Hence the algorithm does produce
Ng(H).

Note that the overall structure of our normalizer algorithm differs from that of Glasby
and Slattery (1990) only in having the inner and outer loops interchanged. At this level of

Nilpotent Group Algorithms 3

{input: Subgroups G and H of a group K.
A normal series K = Ko D - DKy, =1 of K.
H,=K,nH fori=0,...,L.}
{output: Ng(H).}
begin
{Inttialize the ambient normalizer M.}
M:=G
{M = Ng(Hg).}
for : := L — 1 downto 0 do
{M = Ng(His1)}
for j:=7to L —1do
{M Na(HiK;) N Na(Hiy1)}
=Ny (H:iKj41)
{M Ng(HiKj11) N Na(Hiy1)}
(M = No(H)}
(M = No(H)}
return M
end.

Figure 1. The Normalizer Algorithm.

{input: Subgroups G and H of a finite p-group K.
A chief series K=Ko > .- D K;, =1 of K.
H,=K,nH fori=0,...,L.}

{output: Ng(H).}

begin

M =G

for ¢ := L — 2 downto 0 and H; # H;;1do

for j:=7+4+1to L —1do
M = NM(HZ'I(]-I-l)
return M
end.

Figure 2. The Normalizer Algorithm for p-Groups.

discussion that difference is inconsequential; it becomes more meaningful as we specialize
to the p-group case, and it is significant in the implementation of the resulting algorithm.

If K =KoD Ky D --- D> K = 1is a chief series of K, then each factor K;/K; 1 is K-
central of prime order, so either H; = H;y1, i.e., H avoids K;/K;41,or HK; = HK; 41,

e., H covers K;/K;y1. If H; = H;y1, then we can skip the inner loop for i. Similarly,
it HK; = HKj11 then since K; > K; the modular law gives H;K; = (K; N H)K; =
K;N(HK;)=...= H;K;41. We could skip the inside step for j in this case, but in the
more detailed algorithm that we describe below we will still carry out the step for 7 in
the covering case in order to update additional data for j + 1. The indices of the factors
K, /K41 that H covers and avoids can be determined initially, as a byproduct of other
computations.

Since Ky _1 is K-central, H;_; must be G-normal, so we can begin the outer loop with
i = L — 2. Moreover, [H;,G] < [K;,G] < K41 so Ng(H;K;11) = G and we can begin
the inside loop with j =i + 1. Figure 2 shows the resulting streamlined algorithm.

4 E. M. Luks, F. Rakéczi and C. R. B. Wright

To carry out the algorithm, we must compute Nas(H;K;41) assuming the following
conditions:

(a) M normalizes H;y1;

(b) M normalizes H; K;;

(¢) 0<i<j<L;

(d) H covers K;/K;y1,s0 HK; = HK; 41 and [H; : Hiy1] = p.

If H covers K;/Kjt1,1e.,if HK; = HK;41 then H;K; = H;K;11 and no computation
is needed; hence suppose also that H; = H;i. It then follows from (a)—(d) that the
group V := H;K;/H;4+1Kj41 is elementary abelian of order p?, and M acts on it as a p-
subgroup of GL(2, p). Since M centralizes the 1-space H;11K;/H;y1Kj 41, the stabilizer
of the 1-space H;Kjy1/H;41Kj41 is the subgroup of M that acts diagonally on V. The
stabilizer is thus the kernel of the action, and hence has index 1 or p in M. We have
proved the following.

ProPOSITION 2.1. Suppose that (a)—(d) hold. If H avoids K; /Kj41, then Nar(H; Kj41)
s the kernel of the action of M on V, and hence s either M or a mazimal subgroup of

M.

Indeed, we can describe the M-action explicitly. Suppose h;y1 € H;\ H;11. Relative to the
basis {hiy1Hiy1K;j41, zj41Hi41 K41} for V, the action has the matrix representation

o= (5).

where [h;11,9] € z;_(}_gl)HiHKjH and 6 is a homomorphism of G into Z,,.

To apply this proposition, we need elements h;11 € H;\H;4+1, which we obtain from
generating sets for the groups H and K.

The group K contains elements z1, ..., zp with K;_1 = (z;,...,zr)fori=1,..., L+1.
Section 5 describes the construction of such a sequence for K in an important special
case. For now, suppose that a canonical generating sequence (CGS) z1, ..., zr, of this sort
has been chosen for K.

If X is a subgroup of K, then X = X NKg D> --- D XNKgp = 11is a central
series for X with each factor of order 1 or p. We call a sequence z1, ...,z of generators
for X an induced generating system (IGS) for X (relative to Ko B> --- B> Kp) in case
the subgroups (z;,...,z¢) for i = 1,...,t 4+ 1 are the distinct subgroups in the chain
XNKgl - D XNKp. Ifxy,..., 2 1s an IGS for X, then |X| = p?, and for each chief
factor K;_1/K; covered by X there is a unique i with K;_1 = (2;) K;.

An alternative type of generating sequence for X, which we call a strong generating
system (SGS) for X relative to the CGS z1, ..., zf, consists of elements z1, ..., z, with
z; = 1in case X;_1 = Xj, l.e., in case X aV01ds K;_1/K;, and with z; € X;_ 1\X and
z; = z; mod K; in case X covers K;_1/K;. Thus if z1,..., 2y, is an SGS for X relative
to z1,...,zr, then X; = (2;41,..., 1) for each 1.

We will describe H by an SGS hq, ..., kg, which we can compute initially by sifting a
set of generators for H against z1, ..., zr. In our implementations we compute hq, ..., hg,
as well as other initial SGS’s and IGS’s, by a modification of the organization of the Sims-
Schreier methods in Knuth (1991).

Nilpotent Group Algorithms 5

We could use either an SGS or an IGS to describe the subgroup M in the normalizer
algorithm. We illustrate both methods below, by using an SGS in the normalizer update
algorithm of the next section and an IGS in the conjugator algorithm in Section 4.

3. Recomputing the Normalizer

The inner loop in the normalizer algorithm of Figure 2 indicates a way of updating
our current normalizer, i.e., of computing Ng(H;) from Ng(H;41). In this section we
develop a more detailed algorithm for the purpose, based on some of the ideas and facts
from Section 2. In essence the plan is, as before, to go from H;K; to H;K;,, taking
different actions depending on whether or not these two groups are the same.

Forj=1,...,Llet M; = Ng(Hi+1) N Nq(H;K;). Given M;, we want to find Mj41,
which we know has index 1 or p in M;. If the index is p, then M;; covers all but one
composition factor of M;, and the idea is to locate the avoided factor and then modify
M; above it to produce M;yi. To carry out this plan, we maintain two sequences: an
SGS mq,...,mg for M;, and an auxiliary sequence z1,...,2zr of members of H;y. If
M; > Mj4q and if m; corresponds to a composition factor of M; that M;4, avoids, then
we will replace m; by 1 and modify my, ..., m,_ suitably. Because [K, K;] C Kj41, we
have (mjy1,...,mr) C M; N K; C Ny, (H; Kjy1) = Mj41, so in this case s < j.

The main loop in Figure 3 contains the expanded algorithm for computing M; 4
from M;. Since G centralizes H; mod K;41, we have M; = M;;, so we may start with
j=1+ 1. Let h = h;yy. Since h =€ Kj;, on first entry into the main j-loop [h, m;] =
1 = 2 mod K41 for each k. To show that the algorithm produces the correct result, we
assume the statements in braces at the beginning of the j-loop and verify the statements
at the end of the loop by considering cases.

Suppose first that H; = Hjyq, that 1 < s = max{k: ¢(k) # 0}, and that 1 < k& < s.

Then [h, mi] = a:szikl) mod K41 at the beginning of the loop. Proposition 1 applies,

since H; = Hj11. In the notation of Section 2, §(my,) = ¢(k), so H(mkm?(k)) =0(my)+
a(k)0(ms) = ¢(k) + a(k)¢(s) = 0, whence mkm?(k) € Mj41. Now 6(my) # 0, so
ms ¢ ker6 = M;11, and M1, must be a maximal subgroup of M;. Thus the sequence
mlm?(l), R ms_lm?(s_l), 1,ms41,...,mg is an SGS for M; 4, in this case.

We know that z; and zj are in H;41, which is normalized by M;. Hence

(zsmy) Pzme®) € Hipy(m7) *Paeme® = 1y

Now to show that [h, mkm?(k)] = (rsms_l)“(k)mkm?(k) mod Kjq we may assume that

Kjt1 = 1, so that zj4; € Z(K). Let z := zj11. Then [h,mg] = 2,2°F) so ml =
mkmlzlz_ﬂk). It follows that

(mpm@Ne = mpastz =00 (gt 900y k)

mk.r;l(msl‘;l)a(k)z_¢(k)_¢(8)a(k)
_ mkm?(k)ms—a(k)m;(ms%_1)(:(1«),

0 [mkm?(k), h) = ((msms_l)a(k)mkm?(k))_l, as desired.
Suppose next that H; = H;41 but that ¢(k) = 0 for every k. Then M; = M4+, and
already [h,my] = 2y mod K41 for each k.

In the final case, with H; # Hj41, M; = Mj41 again, and my, ..., my is still an SGS.

6 E. M. Luks, F. Rakéczi and C. R. B. Wright

{input: An SGS M1y...,M], fOT Ng(HH.l).}
{output: An SGS for Ng(H;).}

begin
{Initialize.}
for k:=1to L do
rp:i=1€ Hz‘+1
for j:=i4+1to L —1do
{(m1,...,myz) is an SGS for Mj,
T1,..., T € Hig1, op =1 for j <k,
and [hiy1,my] = o mod K fork=1,...,L}
for £ :=1 to 5 do
Compute ¢(k) € Z,, with

o hipr, my] = Zf_(l_kl) mod K41

if H] = HJ+1 then
if ¢(k) # O for some k then
s := max{k: #(k) # 0}
for k:=1tos—1do
Solve ¢(s)a(k) + ¢(k) = 0 for a(k) € Z),

a(k)
mE (= mEpmg -

PSS (zsms_l)a(k)zkm?(k)
1
T 1
else {Hj # Hj41}
for k:=1 to 5 do
Ty = xkhj)_(l_kl)

{(m1,...,myz) is an SGS for M;11,
T1,...,T], EHH.l,l‘k =1for;+1<k,
and [hip1,my] = v mod Kj4q fork=1,...,L}

return (mq,...,mg,
end.

8

Mg

Figure 3. Normalizer update from Ng(H;4+1) to Ng(H;).

Moreover, since H; # Hjyq, hjp1Kj41 = zjy1Kj41 and thus [h, my] = a:khf_(}_kl) mod

K41, with xkhf_(l_kl) € Hiyq since j > 1+ 1.

This algorithm can be speeded up somewhat by making a few small changes. If we
arrange to have z;, = 1 and ¢(k) = 0 whenever m; = 1, then we may ignore some cases.
Specifically, let us initialize ¢(k) to 0 for all k. If my, := mkmsa(k) produces my = 1, let
us set 2y := 1 and ¢(k) := 0, and when we set m; := 1 let us also set ¢(s) := 0. Then in
the first k-loop we may ignore cases with my = 1, and in the other two k-loops we may
ignore cases with ¢(k) = 0. We justify these claims as follows.

Initially, z; = 1 and ¢(k) = 0 for every k. If my, gets the value 1 at some stage, we
explicitly set 23 and ¢(k) to 1 and 0, respectively. From then on, we ignore cases in which
my = 1 or ¢(k) = 0, so these values of z; and ¢(k) are never reset. Thus z; = 1 and

é(k) = 0 whenever my = 1, and in these cases, too, [h, my] = a:szikl) mod Kj4q.

Nilpotent Group Algorithms 7

4. The Conjugator Algorithm

This section describes a modification of the normalizer algorithm to test whether two
subgroups, £ and H, of K are G-conjugate, and if so to produce an element g of G with
E9 =H.

For permutation groups, there is an elementary general reduction of the conjugator
problem to the normalizer problem. Given generators for the subgroups G, Hy and H;
of Sym(Q), let Q=0Qx {0,1}, G = G1Z», and H = Hy x Hy. Both G and H have

natural interpretations as subgroups of Sym(@):
G ={(90,91)t° | 90,91 € G,e=0o0r 1}, H={(ho, h1) | ho € Ho, h1 € H1},
and for each w € Q, i € {0,1}, go, 91 € G, and (hg, hy) € H,

(w’igigu,gl) - EwglJ') |
w,1 = (w,1—1
(w, i)k = (i),

If R is a set of generators for Né(ﬁ), then Hy and H; are G-conjugate if and only if
R contains an element of the form (gg, g1)t, in which case go_lHogo = H, for each such
element in R.

The general reduction just given is of little use in the present context, since the normal-
izer algorithm of Section 2 can only compute NG(I;’) in case G is nilpotent, so only if G
is a 2-group. Moreover, even in that case, doubling the degree of the permutation group
potentially increases the execution time by a factor of 2% (see Section 8). The modified
algorithm below solves the conjugator problem for p-groups in less than twice the time
required by the normalizer algorithm to compute Ng(H) (and typically in essentially the
same time).

For the rest of this section we suppose, as in Section 2, that G and H are subgroups of
the finite p-group K, with notation G;, H;, and K; as before. In addition, we consider a
subgroup E of K, define E; := ENK;fort=1,...,Landlete;,..., e be acorresponding
SGS for E. The problem is to determine, if possible, an element g of G with E9 = H.
Figure 4 shows the general outline of an algorithm, based on the p-group normalizer
algorithm of Figure 2. If E and H are G-conjugate, then they are K-conjugate as well,
and hence cover and avoid the same chief factors K;_1/K;, i.e., satisfy e¢; = 1 if and only
if h; = 1. Suppose that F and H pass this test. We saw in Section 2 that if the algorithm
does not return false then M = Ng(H) at the conclusion. Since Fr_; = Hr_1, we may
begin with ¢ = L — 2. If H; = H;41, then also F; = F;41 and no action is required. For
j=1+1and Eig_}_l = H;41 we have (E; K;11)? = ({eit1)Kit1)? = (e;41]€541, 9]V Kit1 =
(ei41)Kit1 = (hit1)Kiy1 = H;Kiy1. Thus if the algorithm does not return false then
the statements in braces in Figure 4 are true, and F9 = H at the conclusion. Note that
if H (and hence also E) covers K;/K;y1 in the inner loop, then H and EY both cover
K;/Kjt1,s0 HiKj41 = H;K; = Eigij = EigijH, and we may take # = 1 and leave
y unchanged.

To carry out the conjugator update step, we modify the normalizer update algorithm
of Figure 3 to obtain the algorithm of Figure 5. Here we have chosen to maintain an
IGS for M, rather than an SGS, to illustrate the difference in details. Instead of setting
ms := 1, with corresponding z; := 1 and ¢(s) := 0, we drop m; out entirely, and shift
Msy1, ..., Mg and 541, ..., 2 forward. For convenience, we have replaced F9 by F. Note
that if (e1,...,er) is an SGS for E, then (ef,...,ef) is also an SGS for E9. To verify

8 E. M. Luks, F. Rakéczi and C. R. B. Wright

{input: Subgroups G, H and E of a finite p-group K.
A chief series K =Ko ---DK; =1 of K.
H,=K;nNH fort:=0,...,L.
E,=K;nE for1=0,...,L.}
{output: Either Ng(H) and an element g of G with E9 = H or
false if no such g exists.}
begin
if H and F cover different factors in the chief series then
return false
M:=G;g9:=1
{Ez =Hp.}
for ¢ := . — 2 downto 0 and H; # H;;1 do
{Eig+1 =Hiy1 }
y:=1
for j:=7+1to L —1do
(B, = HiK,)}
if Eigyf(ﬁ_l is G-conjugate to H; K;41 then
Find z € M with (EigyK]_H)I =H;Kjq1.
Find NM(HiI\/'j+1)~
Y=y
M = NM(HE‘IX/VJ+1)
else return false
{E)’Kj41 = HiKj41}
g =9y
{B!=Hi}
(59 ="}
return M and g
end.

Figure 4. The Conjugator Algorithm for p-Groups.

the conjugator update algorithm, we must check that the assertions in braces in Figure 5
hold on entry to the loop for j = i+ 1, that if the algorithm returns false then E; and H;
are not conjugate under (G, and that if the loop does not return false then the assertions
hold at the end of the loop if they hold at the beginning. We have checked in Section 3
all of the assertions except those that relate to u or y or false. To verify these, we may
assume, for each j, that:

(a) (mi,...,my) normalizes H;41;

(b) (ma,...,m;) normalizes H; Kj;

(¢) 0<i<j<L;

(d) HK; = HK;41 and [H; : Hi 1] = p;

(f) E and H cover and avoid the same chief factors of K;
(g) EZ'I{J' = HZ'[{]';

(h) Eiy1 = Hiys.

Note that for k > ¢, if u € Hiy1 = Eiy1, y € Ng(H;41), and uei__ﬁ/lhiH € Ky, then
Ezj[{k = <6§-/+1>Ei+1[(k = <6§-/+1>Hi+1ffk = <hi+1>Hi+1[{k = HZKk

At the outset y = 1, and since {my,...,m;} C Ng(H;41), y remains in Ng(H;t1).
Suppose that j =i+ 1. Then u =1 € H;41. Since H covers K;/K;41, so does E. Since
hit1 = €;41 mod K41, uei__l_lthl € Kj on first entry into the loop.

Nilpotent Group Algorithms 9

{input: An IGS (m1,...,m¢) for Ng(Hi41), SGS’s for H and E.}
{output: Either an IGS for Ng(H;) and an element y € G with Ely = H;
or false if no such y exists.}
begin
y:=1; wu:=1
for £ :=1 to ¢t do
rp:=1€ Hz‘+1;
for j:=i4+1to L —1do
{(ml, .. .,mt) is an IGS for Ng(HH.l) n Ng(HiI{]), Yy E N(;(Hz‘+1),
U, T1,...,Tt € I‘I,;_|.17 ue;yl }Lz‘+1 € I(J, EZ-!IX"] = HI‘I{], and
[hit1,mE] =z mod K fork=1,...,t}
for £ :=1 to ¢t do
Compute ¢(k) € Z,, with a:;l[hi+1,mk] = Zjb_(l_ﬁ) mod K.
Compute A € Zp with uei_-|-y1 hiy1 = Z]A+1
if H] = HJ+1 then
if ¢(k) = 0 for all k£ then
if A # 0 then
return false
else {¢(k) # O for some k}
s := max{k: #(k) # 0}
for k:=1tos—1do
Solve ¢(s)ar(k) + ¢(k) = 0 for a(k) € Zp.

mod I(]+1 .

my = mkmg(k); TE 1= (msmgl)a(@ka?(“
Solve B(s) = A for B € Zp.
y = ym?
u = (xsms_l)ﬁufm,g6
ti=1t—-1

for £k := s to ¢t do
Mp = MEy1; Tk = T4
else {Hj # Hj41}
for k:=1 to ¢t do
(k)

Ty = zkh]_l_l

u = uh T

1
{(ml,. . .,mt) is an IGS for Ng(HH.l) ﬁNg(HiI(J_Fl), Yy E N(;(Hz‘+1),

U, T1,...,Tt € I‘I,;_|.17 uei__}‘yl hz‘+1 € I{J+1, E?I{J+1 = HiI{]{-ly and
[hz‘+1,mk] = zj mod I(]+1 fork=1,. ..,t}
return (mq,...,m¢), y

end.

Figure 5. Conjugator update from 7 + 1 to .

Thus we need only check for each j that u € H;41 and uei__ﬁ/lhiH € Kj41 at the end
of the loop.

Suppose that H; # Hj11, so that H; and EY cover K;/Kj41. Then y does not change,
and €;f1hi+1 = z;‘_l_lu_l = hj)»‘_}_lu_1 mod Kj 41, s0 u = uh]»__lf‘1 yields uei__lf/lhiH € Kj1
at the end of the loop. Since 7 < j, we have uhj__}f‘1 € Hiy1 as well.

Next consider the case H; = Hjy1. Then E and H avoid K; /K; 41 and cover K;/K;11.
As we saw for the normalizer algorithm, the group H; K; /H;y1Kj 41 is elementary abelian.

Let h := hi+1Hi+1[(j+}, Z = zj4y1H;41Kj41, and € := e;41 Hi41Kj41. Then we have
HZ'I(]'+1/HZ'+1I{J'+1 = (h), Ei[(j+1/Hi+1I{j+1 = <é>, and Hi+1f{j/HZ’+1[(]’+1 = <2>
If ¢(k) = 0 for every k, then Ng(H;y1) N Ne(H;K;) acts trivially on H; Kj/Hiy1Kj41,

and hence normalizes both (h) and (€). In this case, since uei__lf/thl = z;‘_l_l mod Kj41,

10 E. M. Luks, F. Rakéczi and C. R. B. Wright

if X = 0 then ue;\!,hip1 € K41 already, as desired. Otherwise, if A # 0, which is the
only case in which the loop returns false, h = z*&¥ implies that (h) # (¢¥), so H; K1
and EYK;;1 are not conjugate under Ng(H;y1) N Ng(H;K;). But if EY and H were
G-conjugate, say with E¥Y = H, then we would have H;Kj41 = EY?Kj 41 = (EY Kj41)?,
but also H;y1 = Eiy_ﬁl = Hf/_ﬁl = Hig+1 and H;K; = (E}K;)? = (H;K;)?, whence
g € Ng(H;41) N Ng(H;K;). Thus if the loop returns false then H and E are indeed not
G-conjugate.

Finally, suppose that ¢(k) # 0 for some k. Let m := m; and z := z;. We must verify
that

(mm_l)ﬁumﬁe;fflﬂhi“ € Kjy1.

As in the verification of the normalizer algorithm, we may assume that K;;, = 1. Letting
h = h;y1 and z := z;41, we have mh = mx_lz_¢(s), so that

(em=1)? = (m=P 2= 4P = p=Ph =09(s) — p=0h =2
Hence,
5
(acm_1)ﬁu7”n’aei__|f/1m h= m_’ahz_)‘uei_flmﬁh =m PP imPh =1,

as desired.

5. The Linear Structure

The algorithms of the preceding sections apply in the setting of an arbitrary p-group K
with chief series K = Kg > -+ D> Ky = 1. The update algorithms require the multipli-
cation of group elements to compute products such as (z;m;)’ um?. They also require
finding “leading coefficients” ¢(1),...,¢(¢) (in the sense of Schonert et al.; 1993) rela-
tive to the canonical generating sequence for K. In this section we develop a linear data
structure that permits rapid computation of these coefficients in case K is a permutation
group. Section 6 applies the linear results to compute leading coefficients.

We start by constructing a special normal series K = Fo > Iy D> .- D F, = 1
with elementary abelian factors, and then refine this series to a chief series for K. The
refinement turns out to be unique, and to be described by a sequence of K-invariant flags
in the factors F;_q/F;, viewed as Z,-vector spaces. The matrices that describe the bases
associated with the flags then provide easy computation of leading coefficients.

To explain the construction of the normal series Fo > Fy D> --- D F; = 1, we use
a rooted tree associated with the permutation action of K. This combinatorial struc-
ture provides a conceptual framework for the development and verification of our linear
methods, but is not itself explicitly created in the implementations described in Section 9.

In general, if K is a finite group of permutations then it is possible (Luks and McKenzie,
1988, and Luks, 1986) to construct a structure forest for K consisting of rooted trees,
one for each orbit of K, such that in each tree the children of the root correspond to
maximal blocks of imprimitivity, and the subtree rooted at the child corresponding to a
block is the structure tree for the restriction to that block of its setwise stabilizer. This
construction can be carried out essentially as efficiently as finding imprimitivity systems
(Atkinson, 1975). In case K is a p-Sylow subgroup of Sp:, the repeated wreath product
K =Cp1Cp ... 00, of t groups of order p, the structure forest consists of a single full
p-ary structure tree.

In this paper, GG, E, and H are subgroups of a nilpotent permutation group K, so it

Nilpotent Group Algorithms 11

is possible to compute a structure forest for (G, H); the general implementations of our
algorithms begin by constructing such a forest for each Sylow subgroup of (G, H), using
imprimitivity information about (G, H). For the following exposition we will assume that
K is a p-group and that the forest consists of a single tree. The extension of the resulting
linear structure to the general p-group case involves straightforward reformulation of the
normal series in K ; for example, one can view the disjoint trees as arranged in a vertical
list, redefining “layers” in the account below accordingly. Since both the normalizer and
conjugator problems for a nilpotent group reduce immediately to its Sylow subgroups,
the general nilpotent case presents no special difficulties either.

Thus we let n = p* and suppose that G, H, and E (if called for) are given as subgroups
of the p-Sylow subgroup K of S,, acting as automorphisms on a full p-ary rooted tree
I' with n leaves. We choose a labeling for I' to display the lines of our argument clearly.
Label the root 0, label its children 0,...p — 1, and in general give the children of the
node at depth k with label s the labels s, s + p*,... s+ (p — 1)p*.

The nodes of T' form layers, on each of which K acts transitively. For r = 0,1,... ¢ let
F, be the subgroup of K fixing each of the p” nodes at depth r. Then K = Fy > Fy >
-+ > F; = 1, and each group F} isnormalin K. For k =0,...,£—1 let 7, be the member
of K that maps zp**! + jp* to zp*+1 4 (j + 1 mod p)p* for 0 < j < p and all z. Since 7
fixes 1,...,p¥ —1, it fixes all of the nodes at levels 0, . . ., k, and hence is in F},. It permutes
the children of node 0 at level k in the p-cycle (0,p*, ..., (p—1)p*), permutes the subtrees
rooted at those children correspondingly but otherwise leaves them unchanged, and fixes
all descendents of the remaining nodes at level k. The conjugates of 7. under K permute
the children of the other nodes at depth r, so F,./F,y; is elementary abelian, generated
by 7. and its K-conjugates. Indeed, K = (7o, 71,..., -1}, Fr = (7o, Trg1, ..., t1)%
for each r, and K acts linearly on the Z,-vector space V; := F,/F,;1, which has a
basis consisting of p" conjugates of 7. under K (mod Fy41). To refine the series K =
Fo D --- D Fy =1 to a chief series for K we must find for each r a basis bg, ..., byr_1
for V, such that every subspace (bs,bs41,...,bpr_1) is (70, ..., 7r—_1)-invariant. The proof
of the next proposition gives an easy way to produce such bases, with an additional
property that we can exploit in our algorithms.

PropPOSITION 5.1. For each r=1,...,1 there is a p” x p” matriz B, with entries in Z,
and with the following properties.

(a) The rows bg,...,byr_1 of B, form a Z,-basis for V, = Zgr‘

(b) Fors=20,...,p"—1 the subspace v, of Vi spanned by {b,, ..., byr_1} is invariant
under g, ..., Tr_1.

(c) The inner products of the rows of B, satisfy

b b = 0 modp fori+j5>p"
VT (=1 modp forit+j=p" — 1.
Moreover, the subspaces v, in (b) form the unique Z,[K]-composition series for V;.
ProOF. Note first that 7o - - - 7, induces the p"-cycle ¢ = (0,1,...,p" — 1) on the nodes of
I at depth r. One way to see this is to write the labels 0,1,...,p" — 1 in p-ary notation

and to think of an odometer. Observe that 75 increases the 1’s digit of a label by 1 mod p,
then 7 does nothing unless the 1’s digit is now 0, in which case it increases the p’s digit

12 E. M. Luks, F. Rakéczi and C. R. B. Wright

by 1 mod p, etc. Let o denote the Z,-linear transformation of V, determined by the
permutation action of ¢ on the standard basis {eq,...,e,»_1} of V;.. The characteristic
polynomial of o is 2P — 1, which is also its minimal polynomial. Let 7 = ¢ — 1. Then 7
has minimal polynomial 7", and the set {eqr? : 0 < i < p”} is a basis for V. relative to
which 7 has as its matrix a single Jordan block.

Form=0,1,...,p" — 1 we have V,7™ = (eqt! : m < i < p"), and the subspaces V,7™
form a Z,[{c)]-composition series for V,. In fact, they form the only such composition
series, for if U is a (o)-invariant subspace of V, with U C V,7™ but U € V,7™%! then
U contains some member of eq7™ + V, 7™+ hence contains each e, 7" whenever k > m,
and hence contains V,7™. Since V, is Z,[(o)]-uniserial, it is Z,[K]-uniserial as well. In
particular, the subspaces V.7 must be rp-invariant for 0 < k < 7.

Let B, be the p” x p” matrix whose rows bg, by,...,b,r_; are eg, eqr7, . ., egrP 1
expressed relative to the standard basis. Since 7% = (¢ — 1)*, we have
é k
by = egr" = E (=1y (,)ej mod p,
: J
j=0

and B, is a lower-triangular “alternating Pascal’s triangle” matrix.
The inner products of the rows of B, satisfy

bi-b; = (E(—l)a<;)ea).(g(—l)ﬁ<é)eﬁ)
-z ()0)
_ (?'ﬂ).

Ifi4+ 5 > p", then (Zj']) = Omodp, and if i + j = p" — 1, then b; - b; = (prl._l)
(—1)) mod p. Thus B, satisfies the assertions of the proposition.

It seems to be part of the folklore that if K = Cp 1 ---1C}, with r factors, then V,
is a uniserial Z,[K]-module. Our construction selects an especially useful basis from
among the many bases that fit the unique chain of subspaces. For related results in
another setting, the reader may consult Leedham-Green and Newman (1980), especially
Theorem 2, and Leedham-Green, McKay and Plesken (1986), where the “alternating
Pascal triangle” matrix B appears in Section 5.

Since B, is essentially Pascal’s triangle, we can easily construct b; 1 from b;. It is just
as easy to build B, from the bottom up, starting with the last row, which is (1,1,...,1).
Moreover, as the next proposition shows, one can save a bit of arithmetic in computing
some of the entries of B, below the diagonal by simply copying already known entries.
Subtraction of two entries is required only in the third case of the proposition, which
occurs for (p — 1)/(p+ 1) of the pairs (¢,7) with 0 < j <i < p".

PRrROPOSITION 5.2. Let by, ..., bpr_1 be the rows of By, and denote the j-th component
of by, by by ;. Suppose that 0 < i < p" and that p™ is the highest power of p that divides
i. Then b;_19=1, and if j > 0 then b;_; ; s congruent mod p to

b; ; if pmt! divides j,

Nilpotent Group Algorithms 13

—bi_1 -1 if p™ does not divide j, and

—b;_1j-1+b;; otherwise.

Proor. We always have b;_10 = 1 and b;_; ;1 + b;_1; = b;;. Say ¢« = p™a and
j = p°B, with o and § prime to p. Suppose first that p™+' divides j. Then

p"a 1—1 i
—_— | . =(.)leZ,
pmtips—m=1g (J - 1) <J)

and since p does not divide « it follows that (;:i) € pZ, and b;_; j_; = 0 as claimed.
If p™ does not divide j, then

i P i—l)
L] = . € pZ,
(J) p*B (J —1)=F

SO biyj =0 and bi—l,j = _bi—l,j—1~ I

6. Computing Leading Coefficients and Testing Membership

Proposition 5.1(c) gives an easy method for computing the coefficients ¢(k) and A
required by the normalizer and conjugator update algorithms.

In the main loops of the algorithms we are given elements mlzl[hH_l,mk] in K; and
must find constants ¢(k) € {0,1,...,p— 1} such that

2y hiv1, mg] = zfj_kl) mod Kj41.

Given j, the first step is to compute r such that F, > K; > Kj;1 > Fry1, ie., such
that K; and K4, correspond to K-invariant subspaces (by,b,41,...) and (bst1,...) of
Vy = Fy/Fr41, with zj 41 corresponding to b,. For convenience, assume that F,r1q = 1,
and let v := x;l[hi+1,mk]. Then v = ¢(k)b, + u with u € (bsy1,...) = Kj41. By
Proposition 5.1(c),

byr_s—1-v=0(k)bpr_s_1-b, = (—1)°¢(k) mod p,

so to compute ¢(k) we need only take the dot product of v with an appropriate row of
B,. The computation of A in the conjugator update algorithm goes the same way; view
“€g+1h‘i+1 as an element of (by,...) and compute its dot product with b,r_,_1 to get
(=1)% A

In our implementations of these algorithms we actually carry along the auxiliary el-
ements m;l[hi+1,mk] and uef_l_lhi“, rather than zp and u. Unless the values of these
elements change in going from j to j + 1 or the increase in j causes a level descent in
the structure forest, the vectors associated with these elements do not need to be re-
computed in the inner loop, thus saving a significant amount of work. Even in the case
Hj; # Hj4+1, in which zj changes, the new vector value associated with x;l[hm, my] is
easy to compute from the current value and the (stored) vector for hj4.

Proposition 5.1(c) also gives a test for membership in K, since if u € V;, then

u€ (by,byt1,...) iff u-bg=0for g>p" —s.

On each pass through the main loop of the update algorithm the value of j increases
by 1. Thus the test vectors for V, run through b,r_1,byr_3,..., bg. By Proposition 5.2,

14 E. M. Luks, F. Rakéczi and C. R. B. Wright

{input: an implicit CGS z1,...,zL for a p-group K,
an SGS hi,...,hy, for its subgroup H, and
An IGS m1,...,my for its subgroup G.}

{output: An IGS for GNH.}

begin

{Initialize.}
for £ :=1 to ¢t do
rp:=1€H,
for 7:=0to L —1do
{(m1,...,m¢) is an IGS for G N (HK}),
zp € H and zpmy € Kj fork=1,...,t}
for £ :=1 to ¢t do
Compute ¢(k) € Z, with zymy = 225 mod K
P ETE = j41 J+1
if hj+1 =1 then
if #(k) # O for some k then
s := max{k: #(k) # 0}
for k:=1tos—1do
Solve ¢(s)a(k) + ¢(k) = 0 for a(k) € Z),
_ a(k] _ .o(k)
mE (= MEpMg ;T = Tg TL
ti=1t—-1
for k£ := s to t do
Mg 1= Mpy1; Tk 1= Tyl
else {HK; = HK 41}
for k:=1 to ¢t do

— &k
Ty = h]fl()zk
return (mq,...,m¢)

end.

Figure 6. Subgroup Intersection.

if space is at a premium the complete matrix B need not be stored in order to implement
the algorithm.

7. Intersection and Centralizer

The overall outline of the normalizer update algorithm can be modified to yield al-
gorithms for computing G N H and Cg(h) for h in H. Figures 6 and 7 illustrate such
algorithms. Again, the linear structure for (G, H) can be used to compute the necessary
leading coefficients quickly. The resulting algorithms have one less level of nested looping
than the full normalizer and conjugator algorithms, so they have correspondingly faster
running times, once an SGS for GG has been set up (and, if necessary, one for H as well).

The element centralizer algorithm yields a set centralizer algorithm: starting with
M := G, go through the elements of the set X one by one, for each z in X replacing
M by Cp(z) until finally M := Cg(X). Element Centralizer produces the SGS’s for the
replacement groups. If H is a subgroup of K and X is a set of generators for H (perhaps
an SGS), the resulting algorithm computes the subgroup centralizer C(H).

If a linear structure already set up for another purpose has produced output in the
form of an SGS, that output can be used as input to these algorithms without additional
setup costs. We note also that neither of these algorithms is tied to the permutation
group context. Both are valid in a more general nilpotent setting; they simply require
a structure that corresponds to a chief series for (G, H), together with some method

Nilpotent Group Algorithms 15

{input: An implicit CGS 21,...,2zL for the parent p-group K,
an SGS mq,...,my, for the subgroup G, and
an element h of K.}

{output: An SGS for Cx(h).}

begin
if h € K;_; then return (mq,...,mp)
for ::=1to L —1do
{(m1,...,m) is an SGS for Cq(hK;/K;)}
for k:=1 to¢and m; #1 do
Compute ¢(k) € Z, with [h,my] = 2:2:(_};) mod K41
if ¢(k) # O for some k then
s := max{k: $(k) # 0}
for k:=1tos—1do
Solve a(k)¢(s) + ¢(k) = 0 for a(k) € Z,,
mp = mkm?
me =1
return (mq,...,mpg)
end.

Figure 7. Element Centralizer.

for computing leading coefficients. In particular, the chief series could be taken to be
a refinement of the lower p-central series, as in a special AG-presentation of the type
considered in Eick (1993).

We omit the verifications of these algorithms, which are similar to those for the update
algorithms above.

The subgroup intersection algorithm is very like a noncommutative version of the well-
known Zassenhaus sum-intersection algorithm for vector spaces. In our implementation
we carry along auxiliary elements zymy rather than zp, perhaps saving some time over
straightforward implementations of the Zassenhaus algorithm, which must simultane-
ously compute (G, H) as well as GN H.

Presenting the centralizer algorithm in terms of an SGS for Cg(h) illustrates one way
in which group-theoretic knowledge can save time. The range for k£ can be restricted to
{1,...,1}, and could be further restricted if one had additional information about the
location of h in a central series for K, as one might in the special AG-presentation setting.

8. Complexity

We use n, the degree of the permutation group K, as a measure of input size for
our algorithms. If n = p*, then the composition length of a p-Sylow subgroup of S, is
(n—1)/(p—1), which for fixed p is roughly proportional to n. At the other extreme, a
cyclic group of order p! has minimum degree n = p' and composition length log, n. In
any case, a p-subgroup of S,, has composition length less than n.

In addition to bookkeeping operations and arithmetic mod p, our algorithms require
multiplying, taking inverses and taking small powers (¢° with 0 < e < p) of permutations.
The first two of these types of operations can clearly be carried out in O(n) time. The
powers can be computed cycle by cycle. The image under g® of one element w in a
nontrivial cycle T of g can be found in time O(e), which is at most linear in the length

16 E. M. Luks, F. Rakéczi and C. R. B. Wright

of T' (a power of p). By using (w9)?" = (w?")?, the images under g° of the other elements
of T' can be successively computed, each in constant time. Hence the restriction of ¢° to
T can be computed in time linear in the length of T, so ¢° itself is computable in O(n)
time.

Computation of Ng(H) with the normalizer algorithm breaks into two parts: setting up
the linear structure, and executing the algorithm. The setup phase consists of preparing
the linear structure for K = (G, H), and computing generating sequences to describe the
chief series for G and H. Preparing the linear structure includes determining the maximal
block decompositions that give the parameters for the structure forest, and computing
the necessary matrices B,. These steps entail just O(n®) group operations, and hence
O(n*) time. Implementation details may be found in GAP and Magma programs available
from the authors. Rakéczi (1995) has given a theoretical account of the construction of
the structure forest, as well as fast recognition algorithms for permutation p-groups and
nilpotent groups. In practice, much of the setup time goes into building the generating
sequences, which we can do by a variation of the Sims-Schreier procedure, as organized
by Knuth (1991). In the worst case, each sequence requires time O(n*)—less than in
Knuth’s analysis since we have fewer than 2n/p subgroups in the chain, each with p
cosets, whereas in Knuth’s situation each of these quantities is n in the worst case.

The normalizer and conjugator algorithms themselves consist essentially of two nested
loops, each of length at most n, within which are two loops of length at most n. The bodies
of the innermost loops are each made up of a small number of group operations, perhaps
combined with computation of the dot product mod p of two sequences of length at most
n/p. Thus the normalizer and conjugator algorithms each require just O(n*) time.

As we noted in Section 7, the intersection and element centralizer algorithms have one
less level of looping than the normalizer algorithm. They require just O(n®) time after
the setup phase. The subgroup centralizer algorithm can compute Cg(H) in O(n?) time,
since one can compute an SGS of length at most n for H during the setup and then use
it as a set of generators for H. In practice, of course, H might well be given by a much
smaller set of generators.

9. Implementation and Experiments

We have written implementations of the algorithms described above in GAP (Schonert,
et al., 1993) and in Magma (Cannon and Playoust, 1993). In addition, we have written
programs to construct the linear structure and the corresponding input composition series
required by the algorithms.

Running times for our implementations of the normalizer algorithm reflect the struc-
ture of the algorithm. When n is small and G and H have very small composition lengths,
time for the setup phase is a substantial fraction of the total. The time to compute Ng(H)
itself with our methods increases roughly in proportion to the composition length of H,
with successive passes through the j-loop generally taking longer and longer, influenced,
however, by reductions in the length of the ambient normalizer M. Running time is
loosely coupled to the composition length of Ng(H), as well as to the length of G.

Our algorithms are based on composition series, so composition lengths are reflected in
running times. Algorithms whose fundamental structures are different, such as the back-
track algorithms of Leon (1991), may be expected to show markedly different behavior
from ours; in particular, their running times may be influenced by factors such as the
number of generators for G or for H. The timings we give below, which compare our

Nilpotent Group Algorithms 17

normalizer implementations with the generic permutation group normalizer functions in
GAP and Magma, appear to exhibit such differences, and should be taken only as rough
indicators, not as refined comparisons. They do show, however, that our methods are
practical for groups of degree large enough to cause difficulty for the generic programs.

In tests of our algorithms using earlier versions of GAP our methods were often as much
as several hundred times faster than the generic functions, even for comparatively small
degrees, where we might expect setup times to put them at a disadvantage. Subsequent
improvements in the GAP library functions have raised the threshhold degrees at which
we can expect our programs to significantly outperform the built-in functions.

In addition to the generic Normalizer function for permutation groups, GAP offers
the possibility of converting a polycyclic permutation group to a group with an Ag
presentation, to which the Ag group Normalizer function (based upon the method of
Glasby and Slattery, 1990) can be applied. To compare our methods with conversion
to the Ag setting, we first applied the GAP function AgGroup to the group (G, H),
obtaining the embedding of G and H in the resulting Ag group by a specially adapted
variant of the Prelmage function. After determining Ng(H) as an Ag group, we used the
Image function to lift the answer back to a permutation group.

Table 1 shows the results of some typical experiments with GAP, and compares our
normalizer implementation with the two alternative methods. The timings were obtained
on a486/DX 50Mhz PC running FreeBSD with an initial allocation of 8 MB of memory to
GAP. In some instances, GAP increased the memory allocation during the course of the
experiment. The tests were run with GAP Version 3.5 (unreleased) which at the time of
the experiments incorporated some of Leon’s ideas in its generic permutation Normalizer
function and also had an implementation by Theissen of an improved AgGroup function
for permutation groups.

Each column in Table 1 describes an experiment for one choice of G and H. We
use the notation £(X) to denote the composition length of the p-group X; thus ¢(X) =
log, | X|. Running times are given in seconds of cpu-time as reported by the GAP function
Runtime, rounded to the nearest second. The row labeled SETUP shows the time to
construct the composition series for G and for H with our methods. The LINEAR row
gives the total time for our method, so the difference between these two rows gives the
time for our normalizer program alone. We have presented the Ag group data slightly
differently; AG gives the total time for the over-and-back process, while PURE indicates
the time for the Ag group Normalizer computation alone. Table 1 shows the Ag group
time to be dominated by the conversion process, but even the PURE figures are commonly
as high as the total LINEAR times. Finally, the PERM row gives times for GAP’s generic
permutation group Normalizer function.

The groups for these tests were generated in several ways as subgroups of a random
Sylow p-subgroup of S,,. In the first five cases, we forced H < G indeed G is the full
Sylow group in the fourth and fifth examples. Otherwise, the test groups were generated
by choosing small numbers of random generators in the Sylow group, or by intersecting
two subgroups generated in that way in order to get larger numbers of generators while
maintaining reasonable size. The results shown are typical, especially for our methods, of
those produced in a number of trials. The backtrack-based permutation group Normalizer
function can take times differing by factors of as much as a hundred for groups that appear
essentially similar, so timing results for that method show considerable variance.

Because the Magma function Normalizer required H to be a subgroup of GG, we limited
Magma tests to that setting, rather than computing G N N(g ry(H) more generally. Like

18 E. M. Luks, F. Rakéczi and C. R. B. Wright

Table 1. GAP
Example 1 2 3 4 5 6 7 8
P 2 2 2 2 2 2 3 5
n 100 100 100 100 100 150 150 200
2§(G) 71 79 79 97 97 136 62 41
E(H) 47 5 52 4 84 135 54 33
£(Ng(H)) 56 17 65 32 91 133 55 33
SETUP 40 68 79 9 84 858 67 19
LINEAR 127 79 228 19 410 3864 240 72
PURE 64 483 150 36 157 11946 155 168
AG 330 1702 661 603 780 69325 1979 956
PERM 11370 412 340 1763 332 2658 1944 >57300

Table 2. p=2 MAGMA Smaller Degrees

Example 1 2 3 4 5 6 7 8 9
n 24 24 24 32 32 50 50 50 50
f(G) 15 16 17 27 27 36 36 47 47
f(H) 13 14 6 17 18 24 27 34 39
HNg(H)) 14 15 11 19 19 26 29 40 45
SETUP 4 3 3 19 18 36 38 11 16
LINEAR 16 15 8 41 45 125 142 45 57
PERM 0.2 03 15 2723 1 >7000 4166 >1050 1

GAP, Magma affords the opportunity to convert solvable permutation groups to groups
with polycyclic presentations. In view of our experience with GAP and our other Magma
results, we have not carried out tests in that direction with Magma.

The results of our experiments using Magma V1.01 on a Sparc Station ELC with 24
MB of RAM are consistent with those we obtained with GAP. Because of differences in
the computer environments in which they were run, however, the timings should not be
viewed as providing a meaningful comparison between the GAP and Magma generic nor-
malizer functions. Moreover, as Tables 2 and 3 suggest, there was great variation among
the Magma times for groups that appeared outwardly similar. Changes incorporated in
the Magma algorithms since these tests were run would presumably now give still dif-
ferent numbers, and increase the speeds of both the generic normalizer function and our
own implementation.

Table 3. p=2 MAGMA Larger Degrees

Example 1 2 3 4 5 6 7 8
n 100 100 100 100 100 100 100 100
fite) 47 47 48 48 71 71 79 79
Z(H) 4 36 11 22 4 43 5 52
(N (H)) 44 40 41 30 19 56 17 65
SETUP 108 161 47 49 125 171 460 637
LINEAR 159 693 137 234 219 828 571 1527

PERM 7617 >52000 >5300 >3600 >7500 >4900 >19000 >4800

Nilpotent Group Algorithms 19

Row headings in the Magma tables have similar meanings to those in Table 1. Here the
row headed PERM gives times for the Magma Normalizer function. Where PERM times
are given as “> z”, program execution was halted after x seconds. The tables describe
experiments for p = 2. Tests with p = 3 produced similar results. Examples 6, 7 and 8
in Table 3 are the same as Examples 1, 2 and 3 in Table 1.

The Magma tests for n = 100 were designed to note the effect on running times of
the numbers of generators of G and of H. Groups with large numbers of generators were
produced by intersecting groups generated by small numbers of random elements. We
also ran tests for p = 2 and n = 100 with G cyclic. Though our program took less than 10
seconds in such cases, the Magma Normalizer function was typically substantially faster
yet.

The GAP and Magma implementations of our conjugator algorithm exhibit running
times consistent with those for the normalizer algorithm. Setup times for conjugator
reflect the need to compute the additional generating sequence for E, while execution
times for the algorithm itself are only slightly longer than those for normalizer.

We have also run tests of our intersection and centralizer implementations to compare
them with built-in GAP and Magma functions based on the methods of Leon (1991).
As expected, setup time dominates overall running time for our intersection and element
centralizer algorithms. Comparisons with backtrack-based programs are difficult. In one
instance, conjugating a 2-group G of degree 50 by a random permutation in Sz turned
an example for which our implementation found Cg(G) 100 times faster than the GAP
built-in function into an example for which our program was 10 times slower. In the range
of degrees we considered, the times for our intersection and centralizer algorithms were
typically greater than times for the corresponding built-in permutation group functions
in Magma.

Other polynomial time approaches to finding centralizers and intersections in nilpotent
groups are known (see, e.g., Luks, 1982 and 1993). Although the methods we describe here
give asymptotically fast algorithms, at least two of the authors conjecture that further
work will yield centralizer and intersection methods with even faster implementations.

References

Atkinson, M.D. (1975). An algorithm for finding the blocks of a permutation group. Math. Comp. 29,
911-913.

Butler, G., Cannon, J.J. (1993). On Holt's algorithm. J. Symb. Comp. 15, 229-233.

Butler, G. (1983). Computing normalizers in permutation groups. J. Algorithms 4, 163-175.

Cannon, J., Playoust, C. (1993). An Introduction to MAGMA. School of Mathematics and Statistics,
University of Sydney.

Celler, F., Neubuser, J., Wright, C.R.B. (1990). Some remarks on the computation of complements and
normalizers in soluble groups. Acta Applic. Math. 21, 57-76.

Eick, B. (1993). Spezielle PAG-Systeme im Computeralgebrasystem GAP. Diplomarbeit, Rheinisch-
Westfalische Technische Hochschule, Aachen, Germany.

Glasby, S.P., Slattery, M.C. (1990). Computing intersections and normalizers in soluble groups. J. Symb.
Comp. 9, 637-651.

Holt, D.F. (1991). The computation of normalizers in permutation groups, J. Symb. Comp, 12 (1991),
498-516.

Kantor, W.M., Luks, E.M. (1990). Computing in quotient groups. Proc. 2ond ACM Symposium on
Theory of Computing, 524—533.

Knuth, D.E. (1991). Efficient representation of perm groups. Combinatorica 11, 33-43.

Leedham-Green, C.R., McKay, S., Plesken, W. (1986). Space groups and groups of prime-power order,
V. A bound to the dimension of space groups with fixed coclass. Proc. London Math. Soc. (3) 52,
73-94.

Leedham-Green, C.R., Newman, M.F. (1980). Space groups and groups of prime-power order 1. Archiv
d. Math. 35, 193—-202.

20 E. M. Luks, F. Rakéczi and C. R. B. Wright

Leon, J.S. (1991). Permutation group algorithms based on partitions I: Theory and algorithms. J. Symb.
Comp. 12, 533-583.

Luks, E.M. (1982). Isomorphism of graphs of bounded valence can be tested in polynomial time. J. Comp.
Syst. Sci. 25, 42-65.

Luks, E.M. (1986). Parallel algorithms for permutation groups and graph isomorphism, Proc. 27t JEEFE
Symp. on the Foundations of Comp. Sci., 292-302.

Luks, E.M. (1992). Computing in solvable matrix groups. Proc. 334 IEEE Symp. on the Foundations
of Comp. Sci., 111-120.

Luks, E.M. (1993). Permutation groups and polynomial-time computation. Groups and Computation,
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 11, Amer. Math. Soc.,
ed. L. Finkelstein and W. Kantor, 139-175.

Luks, E.M., McKenzie, P. (1988). Parallel computation in solvable permutation groups. J. Comp. Syst.
Sei. 37, 39-62.

Rakéczi, F. (1995). Fast recognition of the nilpotency of permutation groups. Proc. 1995 International
Symp. on Symbolic and Algebraic Computation, 265—269.

Schoénert, M., et al., (1993). GAP, Groups, Algorithms and Programming. Lehrstuhl D fir Mathematik,
Rheinisch- Westfalische Technische Hochschule, Aachen, Germany, 3™ edition.

