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Abstract

It was shown by Furst, Hopcroft, and Luks that a variant of Sims’s elegant
algorithm for membership-testing in permutation groups could be implemented
in polynomial time. Because this well-known method employs a “sifting” pro-
cess which seems inherently sequential, McKenzie and Cook conjectured that
the membership problem was P-complete. Later, Babai, Luks, and Seress, re-
lying, in part, on the classification of finite simple groups, developed methods
that bypassed the sifting obstruction. However, the parallelizability of Sims’s
method remained open. We now justify the earlier intuition by showing that
sifting is P-complete. .

We also demonstrate the P-completeness of some other permutation group
problems. Among these is the problem of computing the proposed canonical
forms for the class of vertex-colored graphs with bounded color multiplicities.
This opens a gap, in parallel computation, between isomorphism-testing and
finding canonical forms, for the former problem is in NC for this graph class.

1 Introduction

In the late 60°s Sim’s introduced an efficient algorithm for membership-testing in
permutation groups [4]. It was later shown by Furst, Hopcroft, and Luks that Sims’s
algorithm could be implemented in polynomial time [2]. This well-known method
employed a sifting procedure that appeared inherently sequential. Babai, Luks, and
Seress, relying, in part, on the classification of finite simple groups, developed meth-
ods that bypassed the sifting obstruction. However, the parallelizability of Sims’s
algorithm remained open [1]. We prove that sifting is P-complete.

We also prove that the problem of computing the proposed canonical forms for
vertex-colored graphs with bounded color classes is P-complete. The interest in this
problem is stimulated, in part, by its relationship to graph isomorphism. If one can
find canonical forms, then one can test graph isomorphism. This result opens a gap
in parallel computation between isomorphism-testing and finding canonical forms for
vertex-colored graphs with bounded color classes.

2 Definitions and Preliminaries

We assume familiarity with the complexity classes P, NP, and NC. We refer the reader
to any standard text, e.g.[3], for basic facts about groups. For permutation group

CONGRESSUS NUMERANTIUM 100(1994), pp.119-124




concepts we refer to [5]. The group of all permutations of an n-element set 2 is
denoted Sym(N), and we write H < G if H is a subgroup of G. A standard tool
for permutation group computation is a sirong generating set (SGS). The following
definitions are due to Sims and may be found in [4].

A base for G < Sym(f1) is a sequence of points B = by, bs,..., 0, b € 0, such
that the only element in G fixing all of the b; is the identity. The tower of subgroups
stabilizers of G relative to B. An SGS for G relative to B is a subset Z of G such that
G is generated by Z N G, 0 <i < k—1. Unless otherwise stated we shall assume
throughout the paper that the SGS is the union of sets U; of coset representatives
for G;.1 mod G;. Thus, one can sift any g € G through the SGS to find the unique
factorization g = uquq -+ - ux with u; € U,

2.1 The Problems

1t was shown in [1] that given generators for G < Sym(f}) one could find, in NC, a
base and SGS for G. However, the question remained open as to whether or not one
can sift, in NC, an element g € G using the SGS. To be precise we state the sifting

problem as given in [1].

SIFT Instance:  An SGS, S = U5, U;, for G < Sym(Q) relative to a base
' B=5,b,...,b. Anelement g € G, and u € Uj.
Question: Does g = ujug -+ - ux where u; € U; and u = u?

The other algebraic problem we consider is canonical forms of vertex-colored
graphs with bounded color classes (CFBCC). Let £ = {C,,(,,--,Cp} be the set
of colors for graph T'(V, E), and let V(C;) be the set of all vertices with color C;.
We will assume that I'(V, £) is color regular (i.e., all nodes in V{C;) have the same
Cj-valance).

For any pair of colors C;, C; € C we order the pairs by,

CIC% CIC37 02031 Cicéa 0204, C3Céa Cicﬁa ST Cm-—icm’

Let T¢; ¢; denote the induced bipartite graph on V(C;) and V(Cj;), and let A;; be the
set of all bipartite graphs on V(C;) and V(C;). Since the color classes are bounded,
Aj; is bounded. If A = Uj¢icj<m 847, then the vertex-colored graph I'(V, £) can be
viewed as a sequence of points from A.

Let G = Sym(V(Cy)) x -+ - x Sym(V(Cr)), then G acts naturally on A and two
vertex-colored graphs I'; and T’y are isomorphic if and only if there exists g € G such
that T'Y = T,. Using the V(C;), V(C;) blocks in the adjacency matrix of T we will
associate each graph with a binary string. The string will be comprised of the blocks

V(CV(CL), V(CV(Cs), V(C2)V(Cs), VIC)V(Ca), - -+, V(Conet)V(Cra)

and within each block the elements are ordered using the columns of the block (i.e.,
all elements in column one come first then column two and so on). The canonical
labeling for T' will be the lexicographical largest graph under the action of G. We
now state formally the CFBCC problem.
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CFBCC Instance: A vertex-colored graph I'(V, E) with bounded color classes,
and a position (v, w) specified in the adjacency matrix M.
Question: Does the canonical form I (V, E) have a one
in position (v, w)?

To prove that SIFT and CFBCC are P-complete we reduce a restricted version of
. the P-complete problem, greedy independent set {GIS), to these algebraic problems.
For completeness we sketch Cook’s logspace reduction of the Monotone Circuit Value
Problem (MCVP) to GIS, and point out why a restricted version of GIS remains
P-complete. The MCVP is defined as follows:

MCVP Instance: A set of boolean functions g1,92,...,9m Where g1 =0, g2, =1
and for 3 <7 < m, g; is equal to either g; A g or g; V gs,
~ where j, k < 1.
Question: Does g, = 17

Let T(V, E) be a graph with vertex set V and edge set £. A subset W C V is
called an independent set of vertices in ['(V, E), if for all vy, wy € W, (wy,wq) ¢ E.

There is a natural greedy algorithm for constructing a maximal independent set of
vertices in I['(V, E). Given a linear ordering of the vertex set V, the greedy algorithm
repeatedly picks the smallest vertex from V that is not adjacent to a previously se-
lected vertex. The corresponding decision problem, greedy independent set, is defined
as follows:

GIS Instance: Graph I'(V, E) where V is linearly ordered.
Question: Is the last vertex in the ordering part of the greedy maximal
independent set?

Lemma 2.1 [Cook] The GIS problem is P-complete.

Proof: The GIS problem is clearly in P. To prove the problem is complete we
sketch Cook’s logspace reduction of MCVP to GIS.

Let g1,92,...,9m be an instance of the MCVP. We construct a graph I'(V, E)
with vertex set V = {u;,u2,...,um} U {wi,wa,...,wy}. We order the vertices so
that u; and w; precede u; and w;, whenever ¢ < j. The ordering of u; relative to w;
is determined by the gate g;. For any 7, 3 < i < m, w; precedes u; if g; = g; V gx, and
u; precedes w; if g; = g; A gr. Let w; precede u; and let u; precede w,. This gives us
a linear ordering of the set V.

The edge set, E, is equal to F; U E, U E3, where

By = {(usw)]l £i<m},
Ey = {{wi,u),(wi,u)]3<i<mandg =g;Vgr} and
Es = {{ui,w;),(us,wy)]3 < i< mand g = g; Age}

Note that the construction of T(V, E) from the instance of the MCVP can be
performed by a logspace algorithm. A simple induction argument shows that u; is in
the greedy independent set for I'(V, E) if and only if g; = 1, and w; is in the greedy
independent set for I'(V, E) if and only if g; = 0. O
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Remark 2.2 Let(V, E) be an instance of the GIS problem where the linear ordering
of Visvy < vy <-+ <vy,. The GIS problem remains P-complete even if we restrict
ourselves to instances in which the following conditions are true. We assume that
(vi,v2) € E and each vy, 3 <1< m, is connected to exactly two distinct vertices that

are smaller than itself.

Proof: It suffices to note that the following changes can be made to the reduction
of MCVP to GIS. First, we may assume without loss of generality, that if g; = g; V gi
(or gi = g; Agx) and 3 < i £ m, then j # k. Second, we may eliminate node u,
from the construction of I'(V, E), and we may add edge (w;,w;) to E. All the nodes
in the set X = {v;,ws|3 <7 < m} are connected to either 1 or 2 nodes smaller than
themselves. For any node z € X connected to only 1 node smaller than itself, add

the edge (z,w,) to E. O

3 The Complexity of the Problems
Lemma 3.1 SIFT is P-complete.

Proof: Since sifting takes O(nk) time [4] it follows that SIFT is in P. To show
that SIFT is P-complete we describe a logspace reduction of GIS to SIFT.

Let T'(V, E) be an instance of GIS, with linear ordering v; < v; < --- < v,,. By
Remark 2.2 we may assume, without loss of generality, that each v;, is connected to
at most two vertices less than itself.

Let R; be the right regular representation of 73 with generator q;, 1 < i < m.
Define G =< a;ji = 1,2,---,m >, then G < Sym(Q) where & = U2, R;. Let ¢;; = 1,
ciz = a;, and ¢ = a;%a;4,%%, -+, a,,°™, where '

{ 1 if (v,v;) € E
€ =

0 otherwise.

I Ci = {ea,ciz,¢i3} for ¢t = 1,2,-+-,m then the C; are an S5GS for G relative to
the base B = ay,43,*+,a,. To complete the instance of SIFT we let g = a?a?---d?,
and u = ¢,3. This instance of SIFT can be constructed from an instance of GIS by
an algorithm that uses no more than O(logm) space.

Let V' be the greedy maximal independent set for I'(V, E), and let g = w1y - - - 4y,
be the unique factorization of g. By Remark 2.2 we know that node v;, 3 < i < m, is

connected to exactly two nodes, v; and vy, smaller than itself. Observe that

¢;y if either u; = ¢j3 or u; = ¢3, but not both
U; = Ciz if U; = C;3 and Up = Ci3
cis if u; # ¢j3 and g # .

A simple proof by induction shows that v; € V' if and only if u; = ¢3. The
hypothesis is clearly true fori =1 and i =2. For3<¢, v; € V' if and only if v; ¢ V'
and v ¢ V'. By the induction hypothesis we have v; € V' if and only if u; # ¢;3 and
U # €g3. Thus, v, is in the greedy maximal independent set if and only if u,, = c,3.
O
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Lemma 3.2 The CFBCC problem is P-complete.

Proof: First we sketch an algorithm that finds in polynomial time the canonical
labeling for a vertex-colored graph I'(V, E) that has bounded color classes. Let € =
{Cy,Ca,-+,Cr} be the set of colors and let V(C;) be the set of all vertices with
color C;. Recall that A;; is the set of all bipartite graphs on V(C;) and V(C;) and
A = Usgicjgm Dij- The vertex-colored graph I'(V, E) can be viewed as a sequence of
points from A.

Let G = Sym(V(Cy)) x -+ x Sym(V(Cp)), then G acts naturally on A and two
vertex-colored graphs I'; and I'; are isomorphic if and only if there exists g € G such
that I'Y = T,. Since each A;; is bounded the following algorithm runs in polynomial
time.

z:=1
G = Sym(V(Cy)) x -+ x Sym(V(Cn))
Fori:=2tom do
Forj:=1toi—14do
Find zg in =G that maps T'¢, ¢, to the lexicographical largest in A;
G= Stabilizer of (I'q; ¢, )™
z:i=1zg

To show that CLBCC is P-complete it will suffice to describe a logspace reduc-
tion of GIS to CLBCC. Given an instance I'(V, E) of GIS, with the linear ordering
v1,...,0, on V, we will construct an instance of CLBCC.

Let G = (a, b, ¢) be elementary abelian group of order 8. We construct an instance
[(V,FE) of CLBCC with |V| = 32n and all color classes of size 8. For1 < i < n,
we construct four replicas G,l, Gz, Gis, Gig of G, with G;; assigned color 4(7 — 1) + ;.

_...v_._

E(G;;,Gy ) as subsets of G x G. Unless 1nd1ca.ted otherw1se below, it is assume

that E(Giy, Giry) = 0.

For1<:<n:
E(G;i1,Gia) = {(z,y) € Gx G |zy € {1,ab,ac,abc}},
E(Gi1,Gi3) = {(z,y) €GxGlay€ (o)},
E(Giy,Gis) = {(z,y) €GxG|zy€ (b},
E(G:,% G:,3) = {(.’L‘, y) €Gx G ’ 2y € (b’ C)L
E(G;3,Giq4) = {(z,y) € Gx G|y € {a,bc}}.

For1<i:<n-1:
E(Gi1,Givrg) = {(z,7) |z € G}.
For each (v;,v;) € £ with i < j:

e e, y)EGXG]myE( ¢)} if  is minimal
E(G"MGJ'Z) - { {(z,y) € Gx G |zy € (a,b)} otherwise.
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Finally,

E(Gl,h Gn,?) = {(z’z) | z€ G}

To finish the construction of CFBCC problem let & be the first vertex in G, ; and
let @ be the first vertex in G,3. The graph I'(V, ) is a vertex-colored graph with
bounded color classes and (D, ®) is the specified position in the adjacency matrix.

The action of z € G on the T'(V, E) is by right multiplication by zineach G, ; = G.
To check that E? = E, we need only observe that zy = zzyz since G is elementary
abelian.

A tedious but straightforward proof by induction proves that there is an edge
between the first vertex in G;, and the first vertex in G;3 in the canonical form for
T(V,E) if and only if v; is in the GIS. O
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