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Abstract

We develop parallel techniques for dealing with permu-
tation group problems, These are most effective on
the class of groups with bounded non-abelian compo-
gition factors. For this class, we place in NC problems
such as membership testing, finding the center and com-
position factors, and, of pariticular significance, finding
pointwise-aet-stabilizers. The laat has applications to in-
stances of graph-isomorphism and we show that NC con-
tains isomorphism-testing for vertex-colored graphs with
bounded color multiplicity, a problem not long known to
be in polynomial time.

1 Introduction

The last few years have seen subatantial progress in
polynomial-time algorithms for instances of the graph
isomorphism question (e.g, [Bal], [FHL1|, {Lul], [Mi1],
[Mi2), {BGM], [GHLSW), [BL|, [F§8], [BKL]). A concep-
tual breakthrough was Babai’s demonstration [Bal] of a
random polynomial-time algorithm for testing isomor-
phism in the class of vertex-colored graphs with color
multiplicity less than a prescribed bound 4 (we refer
to this class as CGp). Note that, even with b = 2,
the number of vertex-color-preserving maps between n-
vertex graphs, could be aln/ QJ, and no procedure was
previously demonstrated to be better than the brute
force consideration of these, Babai’s work formed the
major inspiration for the development of polynomial-
time tools for permutation groups by Furst, Hopcroft
and Luks {FHL1], that, for instance, dispensed with the
randomness in the isomorphism test for CG,. Further
advances have been both characterised and facilitated
by extensions of these algebraic techniques,
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It seems that those algebraic methods have been inher-
ently sequential in nature, So the question arises as to
whether any of these problems, recently placed in poly-
nomial time, are susceptible to a parallel approach. We
now answer this affirmatively. In particular, we put in
NC the problem whose novel polynomial-time solution
stimulated the above activity, namely, testing isomor-
phism in CGp. Of course, one expects the machinery for
graph isomorphism to remain algebraic. Nevertheless,
the depth of requisite algebra is surprising, The isomor-
phism tests of [Bal|, {FHL1} rested on elementary group
properties (for example, Lagrange’s Theorem). To bring
the problem into NC, however, we make essential use of
the internal structure of primitive permutation groups.

For abelian permutation groups, McKenzie and Cook
[Mc}, [MC] seem to have resolved the main parallel com-
plexity issues, placing in NC such central problems as:
membership teating, finding set atabilizers, and deter-
mining the cyclic factors. However, their techniques are
not extendible to wider group classes, for they rely both
on cyclic decomposability, which is unique to abelian
groups, and on the regularity of traneitive abelian groups
(so that the size of the group is only that of the permu-
tation domain).

Fast parallel methods that began to treat non-abelian
groups were announced by Luks and McKenzie in [LM].
Therein several basic problems were solved for the class

.of solvable groups, including testing membership and

finding a compoasition series. The property of solvable
groups that was exploited in (LM] was the existence
of a polylog-length sequence of normal subgroups such
that the quotients are products of vector spaces. Using

- this, divide-and-conquer algorithms were devised that

had their base cases rooted in linear algebra problems, all
of which were in turn reducible to the standard problem
of matrix rank. Since the vector-space-quotient prop-
erty characteriees solvable groups, it appeared that, as
in the earlier abelian deadlock, the methods were not
extendible. For the more reatrictive class of nilpotent
groups, it was shown that NC contains the problems




of finding the center, and pointwise atabilizers of sub-
sets. The latier are a particularly useful tool in applica-
tions, including instances of graph isomorphism. Unfor-
tunately, the technique for capturing these, exploiting
their situation in a polylog-length normal series, does
nct apply to non-nilpotent groups.

(Note that [Mc],{MC},|[LM] claim, for the most part,
random NC results but the randomness stems only from
the need for matrix ranks over emall fields and these are
now available in NC [Mu]).

" Qur new isomorphism-testing results require a wide
extension of the class of groups that can be manipu-
lated and analyzed with fast parallel algorithms, This
includes the class, I'y, of groups whose non-abelian com-
position factors are subgroups of the symmetric group,
Sp. The class properly contains solvable groups (which
have no non-abelian composition factors) but is more

specifically motivated by ite natural occurrence in graph-

isomorphism settings ([Lul), [Mil], [Mi2]). We demon-
strate NC algorithms for determining the underlying
structure of these groups, including order, composi-
tion factors, center. We also answer fundamental ques-
tions relating to their actions as permutation groups,
including membership-testing and finding any posntunse-
set-stabilizer (the subgroup that fixes all points in a
target subset). The latter is directly applicable to
isomorphism-testing in CGp and broader graph classes.

Critical to our handling of non-solvable groups is a
machinery that plays the linear algebra role. In this
“non-abelian linear algebra” we consider the groups that
arise as a nabtural generalization of the vector spaces in
the solvable case. Thus, vector spaces over small finite
fields, which are, as groups, direct products of small abe-
lian simple groups, generalize to direct products of small
not-necessarily-abelian simple groups (“small® connotes
polynomial size), The analogues of the vector space al-
gorithms are less cbvious, While Gaussian elimination
generalizes easily, the tools for parallel computation (no-
tably, determinants) have no clear counterpart. Instead,
we uge properties unique to non-abelian simple groups to
develop a suitable non-abelign linear algebra in NC, Ba-
sic problems including membership-testing and finding
composition factors, for groups in Iy and wider classes,
are reducible to abelian and non-abelian linear algebra
questions. For the pointwise-set-stabiliser result, how-
ever, the divide-and-conquer of the generalized vector
spaces does not capture the structure of the problem.
We can reduce only to the case where the group acts
primitively on each orbit. At that point, we prove the ex-
istence and NC-conatructibility of a generalized-vector-
space subgroup that acts independently and transitively
in a large number of orbits. This subgroup can be used

to stabilize, in parallel, the targeted points in those or-
bits, 7

Recall that I'y is, essentially, the broadest class of
groups for which there is known fo be a polynomial-
time solution to the set siabilizer problem (finding the
subgroup stabilizing a subset as a whole) [Lul]. This
problem instance achieved notoriety when valence-(b+-1)
graph isomorphism was shown to be polynomial-time-
reducible to it. Those familiar with the reduction will
recall that it, too, appeared inherently sequential. Nev-
ertheless, we now show that it can be replaced by an
NC reduction. Though set-stabilizer is not yet available
in parallel, this reduction, together with pointwise-set-
stabilizers, yields an NC algorithm to test isomorphism
in a subclass of the class of bounded valence graphs; this
case requires methods of {Lul] to establish even sequen-
tial polynomial time,

2 Definitions and preliminaries

We assume familiarity with the complexity class NC
(IPi}, [Co]), informally, the class of problems solvable in
polylog (= log®™***™ n) time using a polynomial num-
ber of processors, We refer to any standard text, e.g.,
[Ha), for basic facts about groups.

We write H < G if H is & subgroup of G and H 4G
if H iz a normal subgroup of . For H < @ the nor-
mal closure of H in G is the smallest normal subgroup
containing H, the centralizer of H in G is the set of
elements in G that commute with all elements in H, A
group is called simple if it has no normal subgroups. If
T is a collection of isomorphism types of simple groups,
a T -semisimple group is a direct product of groups of
these types, we write T'-semisimple if there is just one
group T in T and semissmple if the clase does not re-
quire explication. The composition factors of a group G
are obtained by taking the quatient groups G.-/G.-.,.1 in
any series

1=Gp 4G 9G =G

where these gquotients are simple, The socle of a group
(7 is the subgroup generated by all minimal normal sub-
groups and is denoted Soc(G).

The group of all permutations of an n-element set A is
denoted Sym(A), or S,, if the specific set is not essential.
We say that a group G acts on A if there is a homomor-
phism G — Sym(A), then for a € 4, v € G, we let a7
denote the image of a under the permutation induced by
< and the orbit of a is {a7 : v € G}. The permutation
group induced on a single orbit is called a consiituent of
G. We say that G is transitive on A if there is only one
orbit. If G is a transitive subgroup of Sym(4), we say



G is regular if, for any a € A, only the identity of G fixes
a. If G is transitive and D C A, D is called a block (for
G) iffor all y € G, either DT = Dor D'ND =@, and G
is called primittve if there are no blocks that are proper
subsets of A. If D is a block then the set of images of
D is called a block system and an action of G is induced
- on the block system; the block system is minimal if that
action is primitive. In algorithms, permutation groups
will always be input and output via a set of generators.

A standard tool for permutation group computation is
a sirong generating set [Si, Section 4], As generalized in
[FHL1|, an SGS for G presumes any tower of subgroups

1=G, < <G <G =G.

An SGS is then the union of systems B; of left coset
representatives for Gy mod G;4;. Hence, any & € ( has
a unique representation a = fyfy - - B,-1 with §8; € B;.
Clearly, if we have an NC-construction of an SGS, we
would know |G|. Note, though, that we would not nec-
essarily have a membership test, for “sifting” (that is,
factoring; see [FHL1)) would appear to take r — 1 steps,
which could be linear in the size of the underlying set.
Thus, we shall insist that SGS’s are effective, in the sense
that they come along with an NC-procedure for deter-
mining the unique factorization of elements of G. It is
useful to observe that an SGS for G/N, pulled back to
G, appended to an SGS for N, gives an SGS for G.

3 Brief statement of results

We give NC-algorithms for testing isomorphism in a
significant class of graphs. This includes the class of
vertex-colored graphs with bounded color multiplicity.
Moreover, the color multiplicity bound can actually be
allowed to grow to Oflogn) (n is the total number of
vertices) provided the color-valences are kept bounded.
(for colors C;, Cj, the  — j color valence is the max-
imum number of Ci-neighbors of a C; vertex). It is
worth noting that the algorithm of |Ba], {FHL1] would
- require sequential time O(n'°¥1°8") for this extended
class (though it can be dispatched in polynomial time
by methods of [Lui]).

It is also shown that isornorphism-testing of valence-
(b + 1) graphs is NC-reducible to finding set stabiliz-
ers in groups in I'y. The instance of bounded-color-
valence graph isomorphism mentioned in the last para-
graph makes use of a modification of this reduction.

Machinery for the above includes new parallel algo-
rithms for dealing with permutation groups that are pre-
gented only by generators, focussing on but not restricted

to, groups in the class 'y, We show that the following
problems are in NC for @ in I'y. (Sections 5,8.)

(1) Find the order of G | _

(2) Test whether a given permutation belongs to G
(3) Find the normal closure of a given subgroup.
(4) Find all the composition factors of G.

(5) Find the centralizer in G of a given normal sub-
group. In particular, find the center of G.

(6) Find the pointwise-set-stabilizer of a given subset
of the permutation domain,

Note that (1)-(4) have been solved previously only for
solvable groups, (5) and (6) only for nilpotent groups
|LM]. To break out of these restricted classes, it is nec-
essary to develop analogues of the tools of linear algebra,
in which vector apaces are replaced by direct products
of not-necessarily-abelian simple groups (see Section 4).

We point out that the Iy restriction ensures that the
primitive groups left by divide-and-conquer are manage-
able. There are other situations in which we can couns
on this, For example, when the orbit sizes are poly-
log (whence we introduce, on each in parallel, methods
of |[Lu2]}, or when orders of the orbit constituents are
polynomial. Problems (1) through {5) are in NC in such
case. By way of contrast, we refer to the last remark in
[LM] where is pointed out that the techniques therein
would not always handle membership testing when the
orbits are of size 5 or when the conetituent groups have
order 60,

Along with the new algorithmic tricks, the solution
to problem (6) involves some investigation of the alge-
bra, making in-depth use of group structure (Section 6).
By comparison, we recall that the polynomial-time al-
gorithm for pointwise set stabilizer [FHL1] is quite di-
rect. In fact, it is the starting point in the polynomial-
time machinery, It should be noted that pointwise-set-
stabilizer is a key to the graph isomorphism applications
(Section 7).

4 “Non-abelian linear algebra”

We consider a class of problems that require an extension
of our ability to do linear algebra over amall fields.
Fori=1,...,m, let T; be a simple group acting non-
trivially (and so, faithfully) on a set 4;. Then L =
Ty x -+ x T, acts in a natural way on the disjoint union
A= A1U---UA,, (the sth coordinate acts in the ith set).
Given ® C L, we seek NC solutions to the following three
problems. Co



(1) Find the order of G, the group generated by &,
(11} Test membership in G.
(IIl) Construct an effective SGS of G.

For simplicity (in the non-technical sense), we shall as-
sume here that the |7} are small (polynomial in our
problem size), so that a listing of the elements of T} is
- available. However, we only need a presentation of T} in
which we can perform essential operations on T; (verify
simplicity, find an SGS, etc.) in polylog time, e.g., by
results of [Lu2] it would suffice if T} were represented on
an polylog-sise set. ‘

Suppose that each T; is cyclic of order p. In that
case, L is naturally identified with an m—dimensional
vector space over Z; and the solution to these problems
is standard linear algebra. It is not much more difficult
to deal with the case when the T; are abelian but not
all isomorphic for then L is a direct product of vector
spaces over various Z,. As shown by McKensie [Mc],
these vector space factora are obtainable in NC by tak-
ing suitable powers of the generators, and the solutions
to our problems involve parallel computation in these
factors. But what happens to the “standard” methods
when we pass to non-abelian T;7 If we were considering
only polynomial-time computation, then there is a direct
analogue of Gaussian elimination (in fact, the methods of
|[FHL1] are interpretable in this sense). However, one’s
ability to find fast parallel solutions to linear algebra
questions depends on aliernate, and elegant, methods for
computing determinants (e.g., |Cs|, [Be|, [BGH], [Mu]).
There does not appear to be an analogue of determi-
nants for n-sets of "vectors in T™ when T is simple
non-abelian,

~ Our new procedures rely, in part, on the following re-
markable characteristic of products of non-abelian sim-
ple groups (see [Sc, Appendix]).

Lemma 4.1 Let T;,1 = 1,...,m, be non-abelian simple
group and suppose G is a subgroup of [, T; that projects
onto each factor., Then G 18 a direct product of “diag-
onal subgroups.” To be precise, the T; may be arranged
in blocks of isomorphic groups so that, after a suttable
" renumbering of the faciors,
@ = Diag(Ty x - --x Tk, ) X+ - X Diag(Tk,_, 41X -+ X Tk,)
In other words, having identified the groups in each block,
G consists precisely of the elerments of the form
(all"'lal)i"'l

(arl-“sar)

Note that, in Problems (I),(II),(III}, we did not hy-
pothesize projection onto each factor. The general an-
swer o those questions awaits methods of Section 5. For
now then, let us assume that G does project onto each

To answer Problem (1), it suffices to know which co-
ordinates are linked in the diagonal blocks, for |G| =
[Ii=i|Tk;]. To determine whether any T; and 7Tj are
30 linked in G, we test whether a small modification of
the action on A4; affects the action on A4;. Thus, we de-
termine generators for the subgroup of & that fixes a
point in A; (“Schreier generators” are available see [Ha,
p.96]) and test whether that subgroup fails to project
onto Tj; if so the two simple groups are linked in a di-
agonal subgroup. In the linked case, we can observe the
identifying isomorphism directly by noting a “partner”
in T; for each element in T;.

It iz an easy matfer to use the above structure to solve
Problem (II). However, we also observe that a solution
to (I1I) will yield a membership test.

Problem (III) would be quite direct now were it not
for the demand to conséruct the answer, for an SGS for
each diagonal block is observable from an SGS of an in-
volved T; and a disjoint union of these will suffice. How-
ever, our requirement is to construct the SGS from &,
specifically, via a program that computes, at each stage,
products, inverses, and powers of previously computed
elements. The reason is that the problems under con-
sideration form but one component of the applications
in mind. While our group G is acting in this elementary
fashion on A, it also exists elsewhere on a larger domain.
How would we extend these blindly-listed SGS elements
on A to the larger domain? But, if they have been con-
structed, we already have the extensions, i.e., assuming
we have always computed products, inverses, and pow-
ers on the larger domain, (In Section 8 we indicate an
instance of a complexity gap between the problems).

Considering Problem (III) then, assume we have deter-
mined the r diagonal blocks, so that G 22 Ty, x---x T} .

‘Focuesing on this identification, we construct, for each

coordinate s, a set B; of r-tuples of G of the form
(1,...,1,&,1,...,1), where a; ranges over T, Then
U B; is an SGS and the factorisation of 4y € @ through
II B; is immediate. (Note, it would have sufficed to let
B; be an SGS for Tj,). It is easy to see that it suf-
fices to have one such «; # 1 in hand, for conjugates
of a; will generate Tp,. We converge on such elements
in logr stages, doubling, in each stage, the number of
coordinates that are trivial. Suppose (;hat 1 =1 and we
have

"'lllak+21"'lar)) ap#1

a = (allll



g = (ﬂl,-- sﬁr)u BL#1

so that o and § each have at least k 1's, but in non-
overlapping places (we assume that a and B were con-
structed, simultaneously, in the previous round). We
may assume, by substituting a conjugate of & if nec-
essary, that o«; and fy do not commute. Then v =

a7 lap has a 1 in coordinates 2 through 2k +1 and
is # 1 in the first coordinate.

We require a solution in NC to one other problem in-
volving the above G < L. This, too, is an analogue of
something obtained previously in a classical linear alge-
bra setting. We suppose now that another group, P, is
given that acts (as automorphmms) on L. We need an
algorithm for

(TV) Find the smallest subgroup H of L such that
G < H and H is closed under the action of P,

. ﬁk+.‘l: L...,1, ﬁ2k+2l e

In the abelian case this is reducible to the problem of
finding the smallest subspace containing a given set of
vectors and cloged under a given set of linear transforma-
tions, a problem shown to be in random NC in [LM], and
so now in NC by virtue of [Mu]. As with the above, the
algorithm for the non-abelian case must follow another
tack,

Consider first the case where P acts transitively on
{T:} (note, non-abelian simple factors are necessarily
permuted amongst themselves by any automorphism).
We can increase (@ (staying within target H) so that
linked collections of T;’s (diagonal blocks) have the same
size. For, suppose this does not hold. Let € be a smallest
linked collection, We may assume T} € € and we take
any a # 1 in B;. For each T; take n; € P for which
T{’ = T (naturally, all in parallel}, and add all a™/ to
G‘ Recomputing the linked collections, every T lies in a
block of size at most {C]. If, at this point, a new block is
strictly smaller than C, then a similar process will lead
to a aplit of . But the smallest section in that split has
at most half the sizse C. Repeating all of thizs at most
log r times, we obtain equal-size collections, If now the
image of any generator of (new) G is mapped into G by
each generator of P, we have the desired H, If not, we
have found an element that must be added to G. This
necessarily forces the split of some linked collection and,
once again, one part has at moat half the size. Repeating
all of this at most log r times, the new G is closed under
the action of P,

In the non-transitive case, we perform the above (in
parallel) on each P orbit in {T}}. The new G may not
yet be closed under P since the image of an element may
~ induce a legal element within each of these orbits but
not one which is consistent (with the diagonals) across

the two orbits. We can discover all such anomalies by fo-
cussing on pairs of orbits (all pairs in parallel, of course).
The images under P of the SGS will either be consiatent
across the pair, whence there is a rightful link, or else
they include an element that breaks the link for a pair
of T;'s, whence imagesa of that element are used to break
all links across the two orbits,

5 Basic group algorithms

We need a refinement of a tool that has been used for ef-
ficient permutation-group computation. The notion of a
structure forest was defined in [LM], though it has prede-
cessors in {FHL2), [GHLSW], [BL], among other places,
A structure forest for a permutation group G is a forest
on which G acts as automorphisms (fixing the roots),
whose leaves form the given permutation domain, and
such that no non-irivial levels can be inserted that are
consistent with the G-action. Denoting by G(v) the per-
mutation group induced by the stabilizer of node v on
the children of v, the latter condition asserts that G(v)
is always primitive.

As noted in [LM], NC contains the problem of com-
puting a structure forest,

Structure forests are used, typically, to guide divide-
and-conquer procedures that are natural te permuta-
tion groups - first dividing the szet into orbits, then
dividing an orbit into a minimal set of imprimitivity
blocks, then passing to problems on the subgroup that
fixes one or all blocks so that intransitivity is restored,
etc. Such algorithms work particularly well for sequen-
tial computation with groups in I'y ([Lul]) since we
are assured (J[BCP]) that the induced primitive actions,
i.e., of node-stabilisers on children, involve groups of
polynomially-bounded order (the exponent can be shown
to be blogb + constant). For the parallel algorithms,
however, we shall generally need even more divide-and-
conquer and have to dig into the structure of the primi-
tive groups to get it. :

Thus, we define an augmented structure forest (ASF)
for G acting on A to be a-structure forest F' together
with an assignment to each node v € F of a tower of
normal subgroups of &

1= G(v)m(.,) - (1)
with semisimple quotients G(v);/G(v);i41, and such that
the induced action of & on {G(v)}yer induces, in
turn, jsomorphisms between subgroups at correspond-
ing places in the towers. The following lemma provides
the tool for constructing ASH's in our applications.

4 G(v)y d G(v)o = G(v)



- Lemma 8.1 NC contains the problem of constructing

an augmented structure forest from a given structuré for-
est F for G if, for each node v € F, cither

(i) the order of G(v) is polynomial, or
(ii) the degree of v is polylog.

In particular, an ASF for a group in T 1s NC-
construciible.

Indication of proof: We restrict our attention to the case
* when nodes satisfy (i) (the other case uses results in
[Lw2]). It suffices to comstruct, at any given v, a nor-
mal series with semisimple quotients, for we need only
construct one such tower for a selected v in each G-
orbit, copying it (actually conjugating it), using any
available element of G to each other point in the orbit.
A tower can be constructed bottom-up by starting with
So¢(G) (NC-computable in case (i)) then considering,
recursively, the quotient group modulo Soc(G). O

Remark. For the remainder of this section, we state
results for groups in I'y since this class guarantees prop-
erty (i) in Lemma 5.1 in any permutation representa-
tion. However, the results apply to particular permuta-
tion groups as long a structure forest iz available satisfy-
ing (i) or (ii) at each node. Note, we do not yet know this
to be the case for the result of Section 6 (see comment
in Section 8).
Our basic tool is

Theorem 5.2 NC contasns the problem of computing
an SGS for a given permulation group in [y,

Indication of proof: With the help of an ASF F, the idea
is analogous to the constructions in [LM]. We define a
seriez of normal subgroups of G

1=CGpnd 464G =G, (2)

with m = O(log® n), and construct, inductively, an SGS
for each G/Gi41 using an SGS for G/G; (the SGS for
the quotient is retained as a set of inverse images in G).
The series in (2) is a refinement of the series

1=Ky <d---d Kjd Kp =G, (3)

in which K is the subgroup of G that fixes all the nodes
at level £ of F ([roots are at level 0). The quotient group
K;/K;;1 then captures the action of K; on the nodes at
level ¢ + 1. We refine series (3) to series (2) by inserting,
at each 1,

Kiy1=Hip, 9 --- <4 Hyy 4 Hyo = K,

where H;; is the set of elemeénts whose restriction to each

v with £{v) = i lies in G(v); (see (1} above) and m; =
max{m(v)}¢(v)=¢ (We are letting £(v) denate the level of
v in the F'). Note that we do not have the G; in hand to
start. We do know, however, that G; /G4, is a subgroup
of the semisimple group Ljk = [[yy)=k G(v)i/G{v);41,
for appropriate 7, k. We accumulate elements of this
group by “sifting” through the SGS By, ..., B for G/G;
(as in [LM], we define the sift of 4 to be the unique o € Gy
so that 7 = fp - - - f,o with f; € By). We aift the starting
generators of G and all products in B, B, for all s > &.
Viewing the images of the sifts in Lk, the subgroup
generated by these is8 then closed under the action of
G. This is done in the abelian factors in L by linear
algebra as in ([LM]) and then in the non-abelian part
by the algorithm indicated in Section 4 (warning: the
present G plays the role of P in Problem (IV)). There
results an 8GS for G;/G,4; which is then appended to
that of G/G;. O
It is immediate that

Corollary 5.8 NC contains the problems of finding the
order of, and tesiing membership in, a permutation group
in Iy '

Also,

Corollary 5.4 NC coniains the problem of finding e
composition series for a permutation group in Iy,

Indication of proof: The G;/Gi;1 in the proof of Theo-
rem 5.2 are seen to be semisimple and their simple fac-
tors emerge in the construction of the groups. @

The following is an important tool.

Theorem B.6 NC contains the problem of finding the
normal closure of a subgroup of a permutation group in

Te.

Indication of proof: We are given H < G, where (7 is
in I's. The construction of an SGS for N, the normal
closure of H, is similar to the construction in the proof
of Theorem 5.2, This time, sift (into G;)} the given gen-
erators for i, the products B, B, for all s > ¢, from a
current SGS (for N/(NNGy)), and the conjugates of the
SGS via the generators of @, (See [LM, Theorem 1.3]).
O

Corollary 5.8 NC contains the problem of finding the
kernel of an action (i.e., on a set other than the given
permutabion domain) of a permutation group in [.

Indication of proof: We are given G < Sym(A) and are
congidering a second action ¥ : G — Sym(D). Find




an SGS for ¥(G), always keeping track of the inverse

images in G. Sift the generators of G and the products.

B,B; for s > t. Take the normal closure of the group
generated by the sifts. O

For groups in [y, Corollary 5.6 is superceded by the
more general pointwise-set-stabilizer in Section 6, but it
13 used along the way to that result. It is also used in

Theorem 5.7 NC coniains the problem of finding the
centralizer of a normal subgroup of a group in I'y. In

particular, the problem of finding the center of a group
“tn ['p 18 tn NC.

Indication of proof: The problem is reducible to finding
kernels |Lu2}.

6  Pointwise set stabilizers

For a permutation group G in the class I'y, we need to
determine generators of the subgroup that fixes all the
points in a specified subset of the permutation domain.
This problem has previously been shown to be in NC
only for nilpotent groups [LM] {i.e., direct products of
p-groups).

It is ugeful to illustrate one of the key underlying ideas
with the following subcase; it ig, in a sense, the ¥small-
est” subcase not covered by the algorithms of [LM). Start
with the 6-element symmetric group Sym(A) acting on
the 3-element set, A. Then Sym(A)™ acts in a natu-
ral way on the disjoint union A;U-.-UA, of n copies of
A. We suppose now that we are given generators ® for a
subgroup @ of Sym(A4)™ and we have specified one point
in each A; to be fixed. The algorithm makes strong use of
a special normal subgroup of G. We want the elements of
G that induce, in every A;, an element of the (3-element)
alternating subgroup Alt{A), These comprise a normal
subgroup N that iz obtainable in NC (for it is the ker-
nel of an induced action on []; Sym(4;)/Alt(A;)). This
subgroup IV is a direct product of cyclic groups of order
3, i.e., a vector space over Z3. Suppose |[N| = 3%, It is
an easy matter, using linear algebra techniques, to find
a set of y coordinates so that N induces the complete
Alt(A)Y on the set Y of corresponding orbite. We then
use an appropriate canonical basis of N = {Zz)¥ to mod-
ify (in parallel) each of the elements of ® so that it fixes
the target points in Y (in parallel). The modified & gen-
erates a subgroup H. Now, since G = HN, and H fixes
some of the target points, the answer to the problem lies
in HNy, where N is the subgroup of N that fixes this
subset of target points. However, no non-trivial element
of N can fix these points. We conclude first that Ny =
1, and second that HN N = 1. It follows not only that

the answer to the problem lies entirely in H but that
H has no elements of order 3. So H is, essentially, a
vector space over Z,, and the pointwise-set-stabilizer is
a subspace obtainable by linear algebra.

The general case involves reduction to the situation
where & is primitive on each orbit and then involves
the location of an appropriate analogue of the N of the
previous paragraph.

Reducing to the primitive case is easy: We may as-
sume that there is at most one point to be fixed in each
orbit {else make copies of the orbit designating different
points in each one). Or each such orbit we build a mir-
imal block system. The subgroup fixing the designated
point must fix the block containing that point. So the
intermediate goal involves fixing the block, a ‘point’ in
a primitive action.

We show:

Theorem 6.1 Let G in Ty be a subgroup of Sym(A),
|Al = n, with G acting primstively on each orbit. Sup-
poae a set of poinis in A have been designated as “arget”
points (to be fized). Then there 1s ¢ normal subgroup N
of G and a collection Y of orbits such that

(a) The subgroup of G that fizes the target poinis in
the orbsts in Y snduces a proper subgroup in a sig-
nificant fraction, t.c., 1/(log’n), of the orbits that
contain target points. (¢ = ¢(b)).

(b) Y =Y,U--.UY, with ¢ = O(logn) and, letting
N; be the subgroup of N that fizes the targel poinis
in Y10 .~-UY;_y, then N; resiricted to Y; is o direct
product of ils constituents there, each of which is tran-
sittve and T-semisimple for some T,

(c) NC contains the problem of finding Y, N, {Y;},
{N:}.

Roughly, Theorem 6.1 is applied as follows: First con-
sider the case when the targeted-orbit constituents have
polynomial-size, Consider, in each orbit, the primitive
action on a minimal block aystem, marking the targets.
Treating Yy, Y3, ... in succession, NN; is used, as in the
illustration to cut down the present G to HN;;q, which
fixes the target points in Y;, Repeat, focussing only on
the constituents that have not been affected. By (a), all
constituents will have been cut in at most O(log®t! n)
passes, Now restore primitivity in each orbit by consider-
ing the action on minimal block systems and repeat all of
the above. Since the constituents have polynomial-size,
we reach a pointwise-set-stabilizer in at most O(logn)
repetitions. Finally, we proceed to the general case by
building a atructure forest (which has O(logn) levels)
and work down the tree fixing marked nodes that are



ancestors of target points. At each level, we are dealing
with constituents of polynomial-size.

The N in Theorem 6.1 is constructed out of the socles
of the primitive groups. But the location of N, Y satisfy-
ing both the largeness condition of (a) and the indepen-
dence condition of (b) requires additional ammunition.
It is easy to show

Lemma 6.2 Let T be a collection of 1somorphism types
of ssmple groups. For any finste group G, there 43 a
unigue minimal N 4G such that G/N is T -semisimple.

We call N the restdual of G with respect to T, denoting
it by Resy (G). A residual tower in G is a normal series

1=Rp<---MyalRy=G
in which R;4; = Resr;(R;) for some T;.

Lemma 6.3 If G 1s primitive then the smallest non-
trivial group in any residual tower 13 always Soc(G).

Now suppose G < Gy %+ -X&,. Denoting the sth coordi-
nate projection by pr;, assume that pr;(G} = G;. Assort
the composition factors of & into a sequence of classes
as follows: the abelian composition factors comprise the
first class; each of the other classes contain all the non-
abelian composition factors of a given order (most classes
contain just one group) and these classes are sorted by
increasing order of the groups therein. Now let T be the
first class such that Resy (G;) # G; for some %, and let
R(Q) denote the subgroup of elements that project into
Resv(G;) at all4. For G in I'y, R(G) is NC-constructible
when G'i’s have polynomial size. It follows easily from the
definition of residuals that pr;(R(G)) = Rest (G:) (in
fact, this relation does not require the minimality of T),
so that unless the projections are trivial, they still con-
tain the socles in primitive coordinates (Lemma 6.3). We
shall want, in fact, a series of groups with this property:

(4)

The next two lemmata isolate critical features of se-
ries (4),

14---aR(R(R(G))) < R(R(G)) «R(G) <« G

Lemma 6.4 Let N be a group in the series (§). Then,
for any subgroup H < G, pry(H) = G; implies
pri(HN N) = pri{N).

Lemma 6.5 Let G < Sym(A) with G in T, and suppose
.that the orbit constituents {G;} are primitive. Then the
length of series (4) 15 O(log® | A|) where ¢—1 is the num-
ber of orders taken on by non-abelian simple subgroups
of 5.

Assuming the conditions of Theorem 6.1, each S oc(G;)
will appear as the projection of a subgroup in series {4}.
We may (by Lemma 6.5) select N in that series that
projects onto the socles in at least 1/(log® n) of the tar-
geted orbits; let X be that collection of orbits (X is the
“significant fraction” of (a)). To understand Y, we must
look meore closely at the socles of primitive permutation

groups.

Lemma 6.6 (O’Nan,Scott [Ca]) Let G < Sym(A) be
a primitive permulation group, let a € A, ond let
K = Soc¢(G), K(s) = the subgroup of K that fizes a.
Then K 18 T'— aemisimple for some simple group T and
one of the following holds

(i) K ts abelian, regular on A, and is the unigue min-
imal normal subgroup of G; and K(g) = 1.

(i) K 1s non-abelien, transitive on A, and 1s the
unique minimal normal subgroup of G,

(iii) K = K1 x K3, where Ky, K3 are tsomorphic, non-
abelian, are each regular on A, and are the unigque
minimal normal subgroups of G; and K =
Diag(Iﬁ X Kz).

The cases (i),(ii),(iii) involve different sources of N,VY,
8o assume only one holds for above X (by cutting down
to > 1/3 of these orbits)..

Case (i): Of course, this case will moat resemble the
illustrated example. Aesuming any ordering, Oy, Oa,...,
of the orbits in X, determine (in parallel for every 1) the
subgroup N; < N that vanishes on |, , Oy (this is a
kernel). Then pr;(N;) is a normal subgroup of Gy, so
by (i), it is trivial or Soc{G;}. Take Y to be the set of
orbits where the latter holds, Thus, if any element of N
fixes the target points in Y it is, by (i), trivial on ¥ and
therefore {by choice of Y') trivial on X. Furthermore, N
restricted to the orbits in Y is precisely the direct prod-
uct of its constituents there. By linear algebra methods
(augmented by McKenzie’s methods |Mc| to separate the
characteristics) one can so factor N (each factor being
trivial on all but one orbit in ¥). As in the illustration,
we replace G by HN; = H. Again, HN N is trivial in
X and so, by Lemma 6.4, the group has been cut down
in every orbit of X,

Case (ii): On the orbits in X, N projects onto each
non-abelian socle and therefore acts as a product of di-
agonal subgroups (Section 4). Determine the diagonally-
linked factors. Since the socles are the unique minimal
normal subgroups, a link across two orbits implies a link
between the entire socles in those places. Form Y by ae-
lecting one orbit corresponding to each linked collection
of socles, By the linking, if for some H < G, HNN does



not induce N on any of the orbits in Y, then it does not
induce /N on any of the orbits in X and so, by Lemma 6.4,
H will be proper in G in all these places. By the selec-
tion of ¥ and Section 4, we can find SGS elements that
each act non-trivially on only one orbit. These may be
used to modify (in parallel) the generators of G so that
they fix the targeted points in Y. Again, G is replaced
by HN;. Bince the latter group fixes a point in each or-
bit of ¥, it has loat part of the socle there. By the above
remarks, the group has been cut down in every orbit of
X

Case (iii): This is the only case in which ¢ > 1 (see
(b) in Theorem 6.1). There are now two minimal normal
subgroups in each socle; we refer to these as socle-parts.
Again, determine the diagonally-linked factors in the ac-
tion of N on the orbits in X. The links crossing two
orbits may not extend to the entire socles but could link
just one socle-part to a socle-part. In fact, we may now
consider the diagonally-linked blocks on the socle-parts
occwrring in X, We call the number of such diagonal
collections the rank of N in X. Form the graph whose
vertices are the orbits in X and whose edges represent
the linkings of socle-parts. We select 2 maximal inde-
pendent set in this graph ([KW],[Lub]) and let Y; be
the corresponding set of orbits. In each orbit in ¥; se-
lect one of the two socle-parts; by their independence
we can use the collection Dy of these to fix the targeted
points in ¥;. Note that, by (iii}, we shall have introduced
new links in N. Consider next the set 0y of diagonally-
linked socle-parts that were not represented (in either
socle-part, selected or not) in ¥;. Form the collection Y
by selecting, for each member of Dz, an orbit in which
it is paired to a factor that was in ¥; (it exists since ¥3
was maximal). Use the members of 0, now to fix the
targeted points in Y2. Again, this establishes new links
to groups that are already in or linked to J;. But then
the rank of the remaining part of N is at most half of
that of the original (for it is half the sige of the maximal
independent set), We repeat the entire process on the
“untouched” orbits in X. In at mozt log2|X| rounds,
the rank is reduced to 1, so no full socles remain in X,
We conclude by Lemma 6.4. O

Remark, The precise parallel complexity of the
pointwise-set-stabilizer algorithm is dependent upon the
length of series (4), which puts some function of b in the
exponent {Lemma 6.5). If, however, the G; are abso-
lutely bounded the series length is constant. This case
is all that is needed to take care of isomorphism-testing

CGy, for fixed b.

7 Graph isomorphism

To apply pointwise-set-stabilizer to isomorphism-testing
in GGy, we reduce bhe latter, as usual, to computing au-
tomorphism groups ([Bal|,[Lul]). For these, we consider
the group G = [] Sym(C;); G acts, simultaneously, on

the sete of subsets of each C; x C;, in which we want

to fix the ‘point’ corresponding to the set of edges from
color class Cj to color class C;. For this, then, one needs
only pointwise-set-atabilizer for permutation groups with
bounded orbits.

We briefly outline the NC-reduction of trivalent
graph isomorphism to subset stabilizer for 2-groups (the
higher-valence reduction works similarly). We remark
first that, given a set-stabilizer algorithm, we can find
subgroups stabilizing a relation (i.e., by stabilizing a sub-
set of the square of the domain}), and subgroups stabiliz-
ing any number of color classes (i.e., by stabilizing the
relation “belong to same class® and following with our
“pointwise” stabilisation of the different color classes).

It is sufficient ([FHL2),[Lul]) to compute Aut,{X), the
group of automorphisms stabilizing edge ¢ in a connected
trivalent graph X. We insert a new vertex v in the mid-
dle of ¢ and refer then to Aut,(X). Also, we ignore,
in a first pass, all “cross edges”, that iz, edges between
verbices at the same distance from v, for these can be ac-
commodated via a set-stabilizer application in the group
otherwise obtained. For each £ in X and each r > 0,
we consider the subgraph X, (z) induced on “descen-
dents” of z working “away from” the direction of v. We
determine all Jso{X,(z), X.(y)), the sets of all rooted-
1somorphisms where z and y are at the same distance
from v; it is comvenient to view such sets as 2-groups
by expanding them to the group of all automorphisms
of the disjoint union of the graphs. The trick is to dou-
ble r in each round. The group [so(Xa.{z), Xar(y)) is
formed in two stages. In stage one, we look ab pairs of
points w, z at level r out from z,y and look up whether
X, {w) and X,(z) are isomorphic. Pointe so related in-
duce a coloring. We cut down I = Iso(X,(z), X;(y))
so that colors are stabilived. We then use a construc-
tion reminiscent of a technique of Miller ({Mil], see also
IBL]). If we imagine that descendents of the distance r
poinia are mutually disjoint, i.e., by temporarily making
duplicate copies, I is extendible to level 2r by piecing to-
gether level r groups (a wreath product), In stage two,
we must reconcile thie illegally extended I with the real
graph, i.e., we must cut it down so that classes of equiv-
alent points (duplicates of same real point} are mapped
to classes of equivalent pointe. Another application of
set-stabilirer guarantees that, The action of the residual
I on real points is then extracted. At last, Aut,(X) is



derived from Iso(Xpn(v), X (v))-

We comment, finally, on the essential ingredients in
the modification of the above reduction to produce an
NC-algorithm for the cited aspecial case of bounded-
valence isomorphism (bounded color valence, O(logn)
points in a color class).

We exploit the fact that the groups I are in Ty, as-
suming a bound of b + 1 on the color-valences (by an
easy extension of results of |[Lul]). Within each color
class then, the group has size O(n°) [BCP|. But when
orbit-constituents have polynomial sige, set-stabilizer re-
. duces to pointwise-set-stabilizer {look at action on col-
lections of cosets of “local” stabilizers, fix the “points”
corresponding to the stabilizers themselves). Since orbit-
constituents remain of polynomial-size when we square
the domain, we can also stabilize relations on the set.
One of the consequences of this observation is that we
can omit many of the edges in the graphs when we make
the Iso extensions from level r to level 2r, provided we
omit in a canonical fashion and the graph is still con-
nected, for we can then use a set-stabilizer algorithm
to cut back to the automorphisms stabilieing the set of
 omitted edges. We want to omit edges so that points
at levels > r are descended from at most one color class
at level r. This can be done, for example, so that the
ancestors with the least (in some ordering) color capture
the descendents. Thus, we may assume that the descen-
dents of different color classes at level r are disjoint. In
extending Iso, let us first focus on one color class C at
level r. Instead of attempting a wreath product (which
may result in large orbits at level 2r), we generate all
the polynomial number of elements in the group acting
on C. We reject any which map w to z when X, (w) and
X,(z) are not isomorphic. (Note: we have also had to
‘cut down Iso( X, (w), X;(z)) so that they fix the omitted
edge set). Each element y that remains induces a coset of
isomorphisms (on the ‘disjointed’ graph). It is a coset of
a group whose orbit constituents have polynomial-size.
Extending our results to such cosets, we are able to sta-
bilize the classes of equivalent points (again, duplicates
of the same real point), so the action on the real graph
is extracted. The answers are pieced together over all
<. Doing this in parallel across all C, we then know the
elements of I that work in each color class. We can cut
"I down so that it lies in the legal group in each C (again
by a point = coset stabiliration). For each generator
of the resulting group, we need list only one extended
isomorphism; the rest of the group comes from consid-
ering the isomorphisms that fix all points at level r, and
this ie a direct product of subgroups of groups that were
obtained with v = 1.

8 Comments

The parallel complexity of membership-testing in gen-
eral permutation groups remains open. In light of the
machinery laid out herein, it is interesting to speculate
about the methods that might be needed for this prob-
lem. Using the avgmented-structure-forest approach,
the principle obstruction to membership-testing is man-
ifest. It arises in the instance of a complete symmetric
group acting on a set of non-trivial blocke. If we view
the “sliced” semisimple problem, (I), (II) of Section 4 are
actually solvable, To be precise, one can recognize (in
NC) that this is, indeed, the complete symmetric group
(so that membership-testing is clear). But, the algebraic
machinery that goes into that recognition is impressive,

. 'We can teet that the group is at least @-transitive, i.e.,
‘that every 6 point sequence maps to every other one. It

is known that the only 6-transitive groups are the al-
ternating or symmetric groups, and one can distinguish
between the two. So the membership test does not come
along with a ready solution to (III), One might speculate
that the proof of the 6-transitivity result may carry more .
constructive information and it probably does. However,
that proof cites the monumental classification of finite
simple groups. Thus, the obstruction may simply lie in
our ability to comprehend the algorithm,

We comment, also, on two intereating complexity gaps
that have opened.

In these proceedings, Babai [Ba2| has borrowed some
of our machinery in an algorithm for pointwise-set-
stabilizer in the class of permutation groups with
polynomial-size orbit constituents (without the T, hy-
pothesis). His methods, however, are random, putting
the result into Las Vegas NC. We congect.ure that that
will be improvable to NC

In both {Bal] and [Lul], it was observed that the
polynomial-time isomorphism tests did not seem to
guarantee computation of canonical forms in the graph
classes. - After a time, these issues were resolved
[BL),[FSS). We reopen it. now, for we do not know how
to compute canonical forms for CGy in NC. Amongst
the difficuities in extending the present method could be
the canonical choice of maximal mdependent sets (case
(iii) in Section 6.) -
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