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Abstract

Given generators for a group of permutations, it is shown that generators for the subgroups
in a composition series can be found in polynomial time. The procedure also yields permutation
representations of the composition factors.
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Introduction

The order of a permutation group G on n letters can be exponential in n. So it is natural,
for computational purposes, to avoid listing the group elements, specifying G only by a generat-
ing set of permutations. But this, in turn, leads to the question of whether such a concise repre-
sentation admits polynomial-time solutions to basic questions concerning the structure of the
group. Motivated by links, suggested by Babai [3], to the computational complexity of the graph
isomorphism problem, Furst, Hopcroft, and Luks [8] undertook the study of this issue. It was
shown, in particular, that an algorithm of Sims [15] can be implemented in polynomial time, thus
establishing several basic tools for complexity studies (see section 1). Additional results devel-
oped in [13] brought a significant instance of graph-isomorphism testing into polynomial time. In
this paper, we extend the polynomial-time machinery, demonstrating, in particular, an algorithm
for exhibiting the ‘‘building blocks’’ of the group, that is, its composition factors. For the correct-
ness proof, Schreier’s Conjecture (that the outer automorphism group of a finite simple group is
solvable) is extracted from the classification of finite simple groups.

The composition factors of a group are essential tools in several computational problems, as
they are in theory. Indeed, the results of this paper have already been applied extensively by Kan-
tor [10],[11] to the polynomial-time construction of Sylow subgroups and related problems.
Completing a cycle, there are applications also in the graph isomorphism problem ([5], [14]).
The main result of this paper was announced in [13, section 4] and a sketch of the algorithm
appeared in [5].

The results of this paper are also used by Babai, Luks, and Seress [4] in the parallelization
of solutions to fundamental permutation group problems. In fact, they show the problem of com-
puting composition factors is, itself, highly parallelizable, that is, it is in the class NC (solvable in
time (log n)constant using a polynomial number of processors).

Notation, definitions, and some known polynomial-time results are given in section 1. In
section 2, we outline properties of primitive permutation groups that guide the algorithm; these
properties are derived from the O’Nan-Scott Theorem (see [6]). Of independent interest is the
problem, solved in polynomial time in section 3, of finding the centralizer of a normal subgroup
of a permutation group. In section 4, we discuss the problem of finding a solvable normal sub-
group, if one exists; this subcase of simplicity-testing uses only elementary ideas. The general
simplicity test is given in section 5. If the group is non-simple, a proper normal subgroup is pro-
duced as witness. Finally, in section 6, it shown how to replace a non-maximal normal subgroup
by a larger proper normal subgroup. Thus, one can obtain a maximal normal subgroup, and, by
repeating the process, a composition series. The algorithm also returns faithful permutation rep-
resentations of the composition factors.

We restrict our attention to the issue of polynomial time without digressing, at this point, to
optimize the time bounds.

1. Preliminaries and basic algorithms

We write H ≤ G to indicate that H is a subgroup of G and H < G to indicate that H
is a subgroup ≠ G. If H ≤ G, we denote by G/H the set of right cosets of H in G. To specify
that H is a normal subgroup of G we write H <| G. The centralizer in G of any subset A is
{ σ ∈ G | σ α = ασ for all α ∈ A } and is denoted CtrG(A). If H ≤ G, we denote by NclG(H)
the normal closure of H  in G, that is, the smallest K such that H ≤ K <| G, and by CorG(H)
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the core of H  in G, that is, the largest K such that K ≤ H and K <| G. The socle of a group
G, denoted Soc(G), is the group generated by all minimal normal subgroups of G. If Φ is a
subset of a group G then /\Φ\/ denotes the subgroup generated by Φ. If P = H1 × . . . × Hr is a
direct product of groups each isomorphic to a fixed group H , a diagonal of P is a subgroup
comprised of { ( f1(σ ), . . . , fr(σ )) | σ ∈ H }, where, for each i, fi : H → Hi is a fixed isomor-
phism; typically the fi do not require explication and we denote the diagonal subgroup by
Diag(P).

The group of all permutations of the set X is denoted Sym(X). A permutation group
G ≤ Sym(X) will always be given by a set of generating permutations. Frequently, we refer to
actions of G on other sets, that is, homomorphisms G → Sym(Y ) that are not necessarily faith-
ful (injective). Suppose G acts on Y . The image of y ∈ Y under σ ∈ G is denoted by yσ .
If y1, y2, . . .  , yr ∈ Y we denote by Gy1 y2

...yr
the subgroup { σ ∈ G | \−/i, yσ

i = yi }. The orbit of
y ∈ Y is { yσ | σ ∈ G }. Then G acts transitively if Y consists of a single orbit. Suppose G
acts transitively on Y . We say G acts regularly (or that G is regular when G ≤ Sym(Y )) if
G y = 1 for any (and therefore all) y ∈ Y . A G-block (or block if the group is clear) is a proper
subset Z of Y such that, for all σ , τ ∈ G, Z σ and Z τ are disjoint or identical. We say that G
acts primitively (or, when G ≤ Sym(Y ), that G is primitive) if there are no blocks in Y of size
> 1. If Z is a G-block then the induced set of blocks { Zσ | σ ∈ G } is called a block system
in Y . A block system is called minimal if G acts primitively on the collection of blocks.

We recall some of the permutation-group constructions that can be carried out in polynomial
time:

Lemma 1.1 Given generators for G ≤ Sym(X), the following problems have polynomial-time
solutions.

(1) Find the orbits of G.

(2) If G is transitive, find a minimal block system in X .

(3) Find the order of G.

(4) Given σ ∈ Sym(X), test whether σ ∈ G.

(5) Given x1, . . .  , xr ∈ X , find generators for Gx1
...xr

.

(6) Given generators for H ≤ Sym(X), test whether H ≤ G and, if so, whether H <| G.

(7) Given generators for H < G, find generators for NclG(H).

(8) Given an action f : G → Sym(Y ) (specified by the images in Sym(Y ) of the generators
of G), find generators for the kernel of f .

Discussion: A transitive closure algorithm (see, e.g., [1, chapter 5]) suffices for (1) (consider the
directed graph on X induced by the generators). For (2), one finds any non-trivial block system
(for example, fixing x find, for all y, the unique smallest block containing x and y by taking
the component of x in the undirected graph whose edges are given by the G-orbit of {x, y} in
the set of all unordered pairs); Akinson [2] first observed this to be in polynomial time. Repeat,
considering the action of G on the block system, until G acts primitively. Problems (3),(4),(5)
were shown to be in polynomial time in [8] using, in effect, a version of Sims’ algorithm [15].
Problem (6) follows directly from (4); for H <| G, it suffices to test for membership in H the
conjugates of the generators of H by the generators of G. As observed in [8], Problem (7) is an
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easy extension of (6) for, when one of the conjugates fails the membership test, increase H by
adding this element to the generating set. Problem (8) is a corollary to (5) (for, consider the
faithful embedding of G in Sym(X ∪Y ) and fix all the points in Y ).

2. Primitive permutation groups

We summarize some properties of primitive permutation groups (see, e.g., [6]).

Suppose G ≤ Sym(X) is primitive. Any normal subgroup of G is transitive on X (its
orbits are blocks for G). If non-trivial normal subgroups N , M centralize each other then both
M and N are regular (the fact that M centralizes a transitive group implies M x = 1, for any
x ∈ X) and each is precisely the full centralizer in G of the other (for any x, y ∈ X , there is at
most one permutation in X that commutes with a given transitive group and maps x to y); fur-
thermore, identifying the (regular) action of M on X with the right-regular action of M on
itself (i.e., by right multiplication), we see that the action of N must correspond to the left-regu-
lar action of M , and so N and M are isomorphic. It follows that G has either one or two
minimal normal subgroups, and in the latter case, both are regular. In either case,

Soc(G) = T1 × . . . × Tr ,

where T1, . . .  , Tr are all isomorphic to a simple group T .

O’Nan and Scott have offered a classification of the structure and action of a primitive per-
mutation group G according to the nature of Soc(G)x (see [6, section 4] for proofs and addi-
tional details). We extract a subset of the O’Nan-Scott Theorem for use in our main algorithms.
Observe that, if H acts transitively on X , then |X | = |H |/|H x|, for any x ∈ X .

Proposition 2.1 Let G be a primitive subgroup of Sym(X). Then exactly one of the following
holds,

Case 1. Soc(G) is regular or the direct product of two regular normal subgroups.

Case 2. Soc(G) is nonabelian and is the unique minimal normal subgroup of G (so that G
acts, by conjugation, transitively on #[T1, . . .  , Tr]#). For any x ∈ X ,
1 < Soc(G)x < Soc(G) and

Soc(G)x = T1x × . . . × Trx .

Thus, |X | = (|T |/|T1x|)r .

Case 3. Soc(G) is nonabelian and is the unique minimal normal subgroup of G. Also, r = kl,
with k > 1, and upon renumbering of the Ti’s, the sets #[T(i−1)k+1, . . .  , Tik}, 1 ≤ i ≤ l
form blocks for the conjugacy action of G. For any x ∈ X ,

Soc(G)x = D1 × . . . × Dl .

where Di is a diagonal subgroup of T(i−1)k+1 × . . . × Tik . Thus, |X | = |T |r−l .

We warn the reader that we have slightly rearranged the subcases of the O’Nan-Scott Theo-
rem to suit our purposes, in particular, to isolate Case 1. Note that Case 1 includes the situation
that Soc(G) is abelian, whence regular. It also subsumes the possibility that Soc(G) is non-
abelian and regular; the discussion in [6] implicitly excludes this subcase.
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3. Centralizer of a normal subgroup

The algorithm in the next section requires a procedure for finding CtrG(N ), given N <| G.
Private communication describing our polynomial-time solution to this problem has led to signifi-
cant applications by Kantor [10],[11] and Kantor-Taylor [12], and has inspired an alternate
approach for the special case of CtrG(G), i.e., the center of G, by Hoffman [9]. However, this
original version has not appeared.

More generally, we need only assume G normalizes N . We offer a polynomial-time algo-
rithm for

Problem 3.1 Centralizer of Normalized Group.
Input: Generators for G, N ≤ Sym(X), where G normalizes N .
Output: Generators for CtrG(N ).

For σ ∈ Sym(X), set

Γσ = { (x, xσ ) | x ∈ X } ⊂ X × X .

Then, with the natural action of Sym(X) on X × X ( (x, y)τ = (xτ , yτ ) ), for τ ∈ Sym(X),
σ τ = τ σ iff τ stabilizes Γσ . Thus, if N = /\Ψ\/, τ centralizes N iff τ stabilizes Γψ , for all
ψ ∈ Ψ. The collection { Γψ | ψ ∈ Ψ } induces a coloring of X × X in which two elements are
colored alike iff they belong to precisely the same Γψ ’s. Then, τ centralizes N iff τ is a
‘‘color automorphism’’ (preserves colors) on X × X .

By the above, Problem 3.1 involves finding ColG(Y ), the subgroup of color automorphisms
in a group G that acts on a colored set Y . It is unfortunate that no subexponential-time algo-
rithm is known for ColG(Y ) in general, for graph isomorphism reduces to it as well [13]. How-
ev er, we hav e additional information in the present problem, namely, since G normalizes N , G
normalizes CtrG(N ) = ColG(Y ). Thus, we need only find ColG(Y ) in the instance when it is
known (somehow) to be normal. More generally, we solve

Problem 3.2 Core of Color Automorphism Subgroup.
Input: Generators for G < Sym(Y ), Y a colored set.
Output: Generators for CorG(ColG(Y )).

The polynomial-time algorithm for Problem 3.2 uses

Proposition 3.3 Suppose Y is a colored set and G < Sym(Y ). Then CorG(ColG(Y )) is the ker-
nel of an induced action of G on a set Z with |Z | ≤ |Y |.

Proof: Let K = CorG(ColG(Y )). For C ⊂ Y , σ , τ ∈ Sym(Y ), τ stabilizes C iff σ −1τ σ stabi-
lizes Cσ . Hence, if C is a color class and σ ∈ G, Cσ is stabilized by σ −1Kσ = K . It follows
that K stabilizes the cells in the coarsest refinement of the given color partition that is compati-
ble with the action of G (i.e., the generators of G map cells to cells). Denoting the collection
of cells in that refinement by Z , we hav e then an induced action f : G → Sym(Z ) such that
K ≤ kernel( f ). On the other hand, kernel( f ) ≤ ColG(Y ) since the color classes are unions of cells
in Z . It follows that K = kernel( f ).

From above remarks

Corollary 3.4 The center of G ≤ Sym(X) is the kernel of an action of G on a set of size ≤ |X |2.
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To solve Problem 3.2, and therefore Problem 3.1, in polynomial time, it suffices to observe
that the refinement, Z , is obtainable in polynomial time. In fact, using [1, Algorithm 4.5], it costs
O(|Y | log |Y |) to achieve compatibility of a partition with any giv en generator of G.

Remark. In practice, the center of G < Sym(X) is typically computed by cutting G down in
stages, each of which centralizes an additional generator of the starting group. Though it seems
to have eff icient implementations, we note that there is no known polynomial-time algorithm fol-
lowing this approach. Indeed, finding CtrG(σ ) for σ ∈ Sym(X) is polynomial-time equivalent
to finding the subgroup of a permutation group that stabilizes a given subset (which, in turn, is at
least as hard as graph isomorphism [13]). For, suppose we want to find the stabilizer in
G < Sym(X) of W ⊂ X . Let G act naturally on the disjoint union X = X ∪. X of two copies
of X , and let σ ∈ Sym(X) switch corresponding elements in the two copies of W while it fixes
ev ery other point. Then CtrG(σ ) is precisely the stabilizer in G of W . The reverse reduction
has been indicated earlier.

4. Solvable normal subgroup

We discuss testing for the presence of a solvable normal subgroup both for the intrinsic
interest of this case and because it employs only elementary ideas. A key observation (Lemma
4.3) will play a role in the next section.

A polynomial-time algorithm is given for

Problem 4.1 Solvable Normal Subgroup (SNS).
Input: Generators for G ≤ Sym(X).
Output: Generators for a non-trivial solvable normal subgroup of G or a report that none

exists.

We first reduce the problem to one of locating any proper normal subgroup though only
under the assumption that a non-trivial solvable normal subgroup exists. In this reduction we
observe that the proper normal subgroup of G facilitates an effective divide-and-conquer proce-
dure. For this, suppose we have K <| G. Then we could proceed as follows:

solve SNS for K
if some solvable H <| K was found then output NclG(H)
else solve SNS for CtrG(K )

if some solvable H <| CtrG(K ) was found then output NclG(H)
else output ‘‘G does not have a non-trivial solvable normal subgroup’’

To see why this reduction works, note that if H is solvable and H <| N <| G then NclG(H) is
generated by solvable normal subgroups of N (the G-conjugates of H) and is solvable; on the
other hand, any normal subgroup of G either intersects K non-trivially or centralizes K , so that
a piece of any solvable normal subgroup must show up in K or in CtrG(K ). We must also con-
sider the effect of such reductions on the timing. Letting t(G) denote the time required to solve
SNS for G, the reduction gives

t(G) ≤ t(K ) + nc, if K has a solvable normal subgroup,
t(G) ≤ t(K ) + t(CtrG(K )) + nc, otherwise,

where n = |X | and the nc subsumes the cost of elementary operations and finding normal
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closures, as well as centralizer of a normal subgroup (section 3). We point out, if the second
recursive call to SNS has to be employed, then we know that K ∩CtrG(K ) = 1 so that
|G| ≥ |K || CtrG(K )|. Thus, if we show that K can be found in polynomial time, say again within
O(nc) steps, it will follow that t(G) ≤ O(log(|G|) nc.

We may assume G is not cyclic of prime order. By the above, it suffices to indicate a poly-
nomial-time algorithm for

Problem 4.2
Input: Generators for G ≤ Sym(X), |G| not prime.
Output: Generators for a proper normal subgroup of G or a report that G does not have a

non-trivial solvable normal subgroup.

Note, if G does not have a non-trivial solvable normal subgroup, the algorithm for Problem 4.2
may or may not come up with a proper normal subgroup.

To solve Problem 4.2, we search for normal subgroups in the kernels of certain induced
actions. The trick is to build a collection of such actions sufficient to bring out a proper kernel.
We consider, first, the kernel of the action on a non-trivial orbit. If this kernel is non-trivial, we
are done. Otherwise, G acts faithfully on the orbit, which, we may assume to be all of X .
Breaking X into a minimal system of imprimitivity blocks, we consider the kernel of the action
on the set of blocks. Again, if the kernel is trivial, we replace X by the set of blocks, on which
G acts faithfully and, now, primitively.

We next construct a collection, {G → Bz}z , of at most n induced actions of G on
domains each of size less than n2. For this construction,

Fix any two distinct points x, y ∈ X .
Find all z ∈ X such that

(i) z is a fixed point of G xy, and
(ii) for some σ ∈ G, (x, y)σ = (y, z)

Each such z gives rise to an action of G as follows:
fix a σ such that (x, y)σ = (y, z) and form the σ -orbit, Oz , of x;
viewing Oz as a directed cycle (. . . → x → y → z → . . .), form the set Yz of all G-

images of Oz (the cycles . . . → x ρ → y ρ → z ρ → . . . for ρ ∈ G),
output a minimal G-block system Bz in Yz .

A cycle O ρ
z in the collection Yz is completely determined by any edge, u → v, in it, for an

appearance of u → v → w implies that (u, v, w) is in the G-orbit of (x, y, z), and so, by (i), w,
and similarly the rest of O ρ

z , is uniquely determined by u → v. Thus, |Bz| ≤ |Yz| < n2.

We need to show, under the assumption that G is primitive (on X) and has a non-trivial
solvable normal subgroup, that G acts infaithfully on some Bz . For such G, Soc(G) is neces-
sarily abelian and regular (Proposition 2.1), in particular, |Soc(G)| = |X | = n. For further applica-
tion we prove more generally

Lemma 4.3 Suppose that G has a proper normal subgroup, N , and that N acts regularly on X .
Then none of the induced actions G → Sym(Bz) are trivial. Further, if they are all faithful then
at least one involves a permutation domain smaller than X .

Proof of Lemma 4.3: Observe that |Bz| = 1 only if |Yz| = 1 and the latter would imply not only
that the vertices of Oz comprise all of X , but also that G x fixes all vertices in Oz (if either
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failed there would be distinct images of Oz). Since N and G cannot both be regular, the
actions are non-trivial. The regularity of N also means that for any u, v ∈ X there is a unique
ν ∈ N satisfying uν = v. Suppose then xµ = y, where µ ∈ N and let w = yµ . Let τ ∈ G xy.

Since xτ µτ −1
= y and τ µτ −1 ∈ N , the uniqueness of µ forces τ µτ −1 = µ. Thus

wτ = yµτ = yτ µ = yµ = w.

Hence, w satisfies (i) and (ii), so that a G-action will be constructed on a set Bw. It suffices to
show that, if the kernel of G → Sym(Bw) is trivial then |Bw| < |X |. Now we employ, in the con-
struction of Bw, any σ ∈ G that we find to satisfy xσ = y and yσ = w. In general, σ ≠ µ.
However, since both µ and σ µσ −1 are elements of N that map x to y, we know µ = σ µσ −1.
It follows that the orbits (directed cycles) of x under µ and σ are identical. (Thus, we shall
have constructed an orbit of the element µ ∈ N without having any element of N in hand).
Since µ fixes its own orbits, µ has a fixed point in Yw, namely Ow, and the corresponding
block is a fixed point for µ in the action on Bw. This is a primitive action of G. Hence, if it is
faithful then N would act transitively on Bw, and since we know N does not act regularly on
Bw, that would imply |Bw| < |N | = |X |.

Finally, to complete the discussion of Problem 4.2, we show that if G is primitive on X
and Soc(G) is abelian then G cannot act faithfully on a domain Bz with |Bz| < |X |. By con-
struction, G acts primitively on Bz . If the action is faithful then Soc(G) would again act regu-
larly. This is impossible on a smaller domain.

Of course, failure to find any non-trivial kernels in the collection of actions
{G → Sym(Bz)}z would mean G does not have a non-trivial solvable normal subgroup.

5. Normal subgroups

We describe a polynomial-time algorithm for

Problem 5.1 Proper Normal Subgroup (PNS)
Input: Generators for G ≤ Sym(X), G ≠ 1.
Output: Generators for a proper normal subgroup of G or the report ‘‘G is simple’’.

It is convenient to present the main idea in an algorithm for the following Problem 5.2. Clearly,
repeated application when the output is of type (iii) yields an algorithm for PNS.

Problem 5.2
Input: Generators for G ≤ Sym(X), G ≠ 1.
Output: One of the following.

(i) The report ‘‘G is simple’’.
(ii) Generators for a proper normal subgroup of G.

(iii) A faithful action of G on a domain smaller than X .

In all but one case (when G has a normal subgroup of small index) outputs of types (ii) or (iii)
are discovered in induced actions of G. Each constructed action gives rise to a primitive action
in which we test the kernel and the size of the domain. The procedure TEST_ACTION formal-
izes these steps. The input, Y , is a set, with |Y | > 1, on which G acts transitively (it is assumed
globally that G is faithfully represented on the set X and n = |X |).
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procedure TEST_ACTION(Y )
begin

B := a minimal G-block system in Y ;
N := the kernel of the G-action on B ;
if N ≠ 1 then (output N ; halt);
if |B| < n then (output #[G → Sym(B)}; halt)

end

Algorithm for Problem 5.2:

Step 1. Y := any non-trivial orbit of G in X ;
TEST_ACTION(Y )

Step 2. if |G| = n then (output ‘‘G is simple (abelian)’’; halt)

Step 3. A := any subset of G of size n + 1;
for all σ , τ ∈ A, σ ≠ τ , do

begin
N := NclG(/\σ τ −1\/);
if N ≠ G then (output N ; halt)

end

Step 4. x, y := any two distinct points in X ;
for all z ∈ X do

if z is fixed by G xy and (x, y)σ = (y, z) for some σ ∈ G then
begin

fix any σ such that (x, y)σ = (y, z);
Oz := the orbit (directed cycle) of x under σ ;
Yz := the collection of G-images of Oz;
TEST_ACTION(Yz)

end

Step 5. x := any point in X ;
for all y, z, w ∈ X do

begin
H := /\G xy, Gzw \/ ;
if H ≠ G then TEST_ACTION(G/H)

end

Step 6. x := any point in X ;
for all y ∈ X \ #[x]# do

begin
Z y := the G-orbit of {x, y} (in set of unordered pairs); TEST_ACTION(Z y)

end

Step 7. output ‘‘G is simple (nonabelian)’’

Proposition 5.3 The above algorithm solves Problem 5.2 in polynomial time.

Proof: That the algorithm can be implemented in polynomial-time follows easily from Lemma
1.1 and, for Step 4, section 4 (where it is shown that Yz has polynomial size). We need to estab-
lish its correctness.
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It is clear that the algorithm halts correctly if it encounters a proper normal subgroup (in Step 3
or in a call to TEST_ACTION) or a smaller domain (in TEST_ACTION). If Step 1 is passed
then G acts primitively on X . If, at this point, |G| = n then G acts regularly and so n must be
prime (in the regular action any proper subgroup would correspond to an imprimitivity block);
the algorithm would correctly halt at Step 2. It is sufficient now to show that, if the algorithm
reaches Step 7, then G is simple.

Having passed Step 2, |G| > n, so that a set A will be available in Step 3. If Step 3 is passed,
then G cannot have any proper normal subgroup N with [G: N ] ≤ n, otherwise some distinct
σ , τ ∈ A would be congruent modulo N whence NclG(/\σ τ −1\/) ≤ N < G.

By Lemma 4.3, if Step 4 is passed then G does not have a regular normal subgroup, eliminating
Case 1 of Proposition 2.1.

Claim 1: Suppose the action of G on X falls into Case 2 of Proposition 2.1 with r > 1  or
Case 3 with l > 1. If Step 5 is reached, the algorithm will halt there (i.e., in a call to
TEST_ACTION).

Proof of Claim 1: We extract from Proposition 2.1

(a) Soc(G) = N1 × N2 × . . . × Nm , with m > 1
(b) G acts (by conjugation) transitively on {N1, . . .  , Nm} .
(c) Soc(G)x = N1x × . . . × Nmx
(d) Nix is a proper subgroup of Ni ,

where

in Case 2: m = r , Ni = Ti , and n = (|T |/|T1x|)r ,

in Case 3: m = l , Ni = T(i−1)k+1 × . . . × Tik , Nix = Diag(Ni), and n = |T |r−l .

By (d), there is some ν ∈ N2 such that xν ≠ x. In running Step 5, one eventually encounters
y = xν . Suppose now τ ∈ G xy and say τ −1 N2τ = N j . We hav e

xντ −1ν −1τ = yτ −1ν −1τ = yν −1τ = xτ = x ,

so that ντ −1ν −1τ ∈ Soc(G)x . But ντ −1ν −1τ ∈ N2 N j . Since ν ∈/ N2x , we conclude by (c) that
j must be 2. Hence, in the action of G on {N1, . . .  , Nm}, G xy fixes N2 . By (d) again, there is
some z ∈ X that is not fixed by N1x . In running Step 5, one eventually encounters such z as
well as some w such that Gzw fixes N2 . For this {x, y, z, w} then, H fixes N2 so that
H ≠ G and the non-trivial action of G on G/H will be constructed and tested. Assume that the
resulting primitive action on B (in performing TEST_ACTION(G/H)) is faithful. We shall show
that |B| < n. For this, we consider the stabilizer GH of the ‘‘point’’ H in the action of G on
G/H ; of course, GH = H . Now, since ν commutes with N1, N1x = N1y , and so

N1x ≤ G xy ≤ H = GH .

Similarly, N1z ≤ GH . By assumption N1x ≠ N1z . But, since these subgroups have the same size,
together they generate a strictly larger subgroup. We hav e

N1x < /\N1x, N1z
\/ ≤ N1H

≤ N1h
,

where h denotes the block in B containing H (actually, the cosets in h comprise a maximal
subgroup of G containing H). If the action of G on X is in Case 2, the primitive action on
B is also in Case 2 (since, for example, a non-trivial subgroup of T1 = N1 fixes a point); in this
case

|B| ≤
1

2





|T |

|T1h
|





r

< 


|T |

|T1x|



r

=
n

2
.
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If the action of G on X is in Case 3, the primitive action on B is also in Case 3 (since, for
example, N1h

projects onto T1 because N1x does); in this case, the fact that N1h
is strictly

larger than N1x = Diag(N1), implies it must be the product of diagonal subgroups corresponding
to a proper partition of {1 , . . .  , k} into cells of size k′ < k. Hence, if l′ = r/k′,

|B| = |T |r−l′≤ |T |r−l /2 = n/2.

This proves Claim 1.

Claim 2: Suppose the action of G on X falls into Case 3 of Proposition 2.1 with l = 1. So
n = |T |r−1 (k = r). If Step 6 is reached, the algorithm will halt there.

Proof of Claim 2: Note that the sets Z y constructed in Step 6 are non-trivial, i.e., |Z y| > 1, other-
wise n = 2 and the algorithm would have halted by Step 2. Let σ ∈ T1 have order 2 (such σ
exists by the Feit-Thompson Theorem [7]). Running Step 6, one eventually encounters y = xσ

(xσ ≠ x since T1x = 1). Assuming that a kernel is not detected in the call TEST_ACTION(Z y), a
faithful primitive action G → Sym(B) is constructed in which σ has a fixed point, namely the
block containing {x, y}. This action then is in Case 2 of Proposition 2.1 and so
|B| = (|T |/|H |)r . where H is a proper subgroup of T . It remains to show that |B| < n. Suppose,
to the contrary, |B| ≥ n. Then

|T |r−1 = n ≤ 


|T |

|H |



r

≤
|T |r

2r
.

Hence, |T | ≥ 2r and so n ≥ 2r(r−1) > r!. Then the kernel, K , of the action of G on {T1, . . .  , Tr}
has index < n. Also, since G acts transitively on {T1, . . .  , Tr}, K ≠ G. But, in such case, the
algorithm would have halted in Step 3, outputting a proper normal subgroup. This proves Claim
2.

By the above, if Step 7 is reached, the action of G on X must fall into Case 2 with r = 1.
Thus, Soc(G) is a nonabelian simple group, T . Then G is faithfully embedded in Aut(T ) (σ →
inner automorphism induced by σ ; this is faithful since the center of G must be trivial, else it
would intersect Soc(G) non-trivially). Also G = G′ (derived group), otherwise a maximal nor-
mal subgroup containing G′ would have prime index ≤ n and the algorithm would not have
passed Step 3. (We could also have inserted a step that simply outputs G′ if its a proper sub-
group [8]). To conclude, finally, we inv oke Schreier’s Conjecture, that is, the outer automorphism
group of a finite simple group is solvable, which is known to hold by virtue of the classification of
finite simple groups. It follows that G = T .

6. Finding composition factors

A polynomial-time algorithm is given for

Problem 6.1 Composition Factors.
Input: Generators for G ≤ Sym(X).
Output: Generators for the composition factors of G, and a representation of each composition

factor on a set of size ≤ |X |.

It suffices to show how to find generators for a maximal normal subgroup N of any giv en
G together with a permutation representation of G/N .
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If G is not simple, the algorithm for PNS (Problem 5.1) returns some proper normal sub-
group M . Denote by G(i) the subgroup of G that fixes each of the the first i points of X
(with G(0) = G). Let j be the smallest integer such that G( j+1) M ≠ G( j) M . Then G acts on

Y = G/G j+1 M = G( j) M /G( j+1) M ,

and |Y | ≤ [G( j): G( j+1)] ≤ |X | − j . Let K be the kernel of this action, so M ≤ K . We hav e in
Sym(Y ) a faithful action of G/K . Thus, we may use the algorithm for PNS to test simplicity of
G/K . If G/K is simple, K is a maximal normal subgroup and we are done. Otherwise, PNS
returns a proper normal subgroup of G/K which we may pull back to a subgroup L of G that
is not contained in K (in fact, by retaining the action of G-elements on X through all computa-
tions on Y , L is constructed in the process of solving PNS). Replace M by LK and repeat.

We remark that the problem of faithfully representing G/N for general N <| G appears
more difficult. In fact, we do not know a reasonable criterion for deciding when G/N has a
‘‘small’’ faithful action.
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