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Abstract

Documentation has traditionally played a key role as an aid in program understanding.
However, most documentation is \in-the-small," describing the program at the algorithm
and data structure level. For large, legacy software systems, one needs \in-the-large" docu-
mentation describing the high-level structural aspects of the software system's architecture
from multiple perspectives. One way of producing such structural documentation for exist-
ing software systems is to use reverse engineering technologies. This paper describes a case
study in structural redocumentation: an analysis of SQL/DS (a multi-million line relational
database system) using a 
exible reverse engineering approach developed as part of the Rigi
project.
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1 Introduction

Programmers have become part historian, part detective, and part clairvoyant.

| Thomas A. Corbi, IBM [1].

Challenges in rediscovering system structure

Design may be di�cult, but reconstructing and e�ectively (re)documenting the design of existing software

systems is even more di�cult. Recognizing abstractions in real-world systems is as crucial as designing

adequate abstractions for new ones. This is especially true for legacy software systems written 10{25

years ago, which are often in poor condition because of prolonged, sometimes dramatic (even traumatic)

maintenance. Evolving over many years, legacy systems embody substantial corporate knowledge and

cannot be replaced without reliving their entire maintenance history. Thus, managing long-term software

evolution is critical, especially considering the economic value of these systems.

Understanding system structure

It is widely accepted that over �fty percent of software evolution work is devoted to program under-

standing. Documentation has traditionally served an important role in this regard. There are, however,

signi�cant di�erences in documentation needs for software systems of vastly di�erent scales (1,000 lines ver-

sus 1,000,000 lines). Most software documentation is in-the-small, since it typically describes the program

at the algorithm and data structure level. For large legacy systems, an understanding of the structural

aspects of the system's architecture is more important than any single algorithmic component.

Program understanding is especially problematic for software engineers and technical managers responsible
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for the maintenance of such systems. The documentation that exists for these systems usually describes

isolated parts of the system; it does not describe the overall architecture. Moreover, the documentation

is often scattered throughout the system and on di�erent media. It is left to maintenance personnel to

explore the low-level source code and piece together disparate information to form high-level structural

models. Manually creating just one such architectural document is always arduous; creating the necessary

documents that describe the architecture from multiple points of view is often impossible. Yet it is exactly

this sort of in-the-large documentation that is needed to expose the structure of large software systems.

Using reverse engineering to discover software structure

Software structure is the collection of artifacts used by software engineers when forming mental models of

software systems. These artifacts include software components such as procedures, modules, and interfaces;

dependencies among components such as client-supplier, inheritance, and control-
ow; and attributes such

as component type, interface size, and interconnection strength. The structure of a system is the orga-

nization and interaction of these artifacts [2]. One computer-aided technique of reconstructing structural

models is reverse engineering.

The process of reverse engineering identi�es the system's current components, discovers their dependencies,

and generates abstractions to manage complexity. This understanding can then improve subsequent devel-

opment, ease maintenance and re-engineering, and aid project management. Using reverse engineering to

reconstruct the architectural aspects of software may be termed structural redocumentation. As a result,

the overall \gestalt" of the subject system can be derived, and some of its architectural design information

can be recaptured. In addition, structural redocumentation does not involve physically restructuring the

code (although this might be a desirable outcome).
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Real-world experiences

The reverse-engineering approach developed under the Rigi1 project has been successfully applied to several

real-world software systems. These include a physician's patient-record information system (written in

COBOL), a control program for a particle accelerator (written in C), and numerous UNIX2 utilities. Early

experience has shown that we can produce views that are compatible with the mental models used by the

maintainers of the subject software.

These maintainers bene�tted from the documentation produced by the Rigi system in several ways. First,

they were able to see, in visual and concrete form, the logical software structure previously held only

in their minds. Second, the views highlighted critical areas of the software structure that needed more

attention, such as central components that have a large number of incident dependencies. Third, the views

provided an objective basis for discussion and software maintenance, since they are based on the actual

source code instead of out-of-date system documentation. Fourth, the views veri�ed that the software

structure of their system was, at least, understandable to an experienced analyst from the outside.

Previously, the largest program analyzed using this methodology was about 120,000 lines of code. While

such a program is reasonably large in an academic setting, it is not exceptional for commercial legacy

software. It was not until the challenge of redocumenting SQL/DS that we began to validate our approach

e�ectively.

Outline

The next section outlines the Rigi system and methodology. Section 3 introduces the subject software of a

case study in structural redocumentation: a large relational database management system called SQL/DS.3

1Rigi is named after a mountain in central Switzerland.
2UNIX is a trademark of Unix System Laboratories, Inc.
3SQL/DS is a trademark of International Business Machines Corporation.
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This overview is followed by a description of the changes to the Rigi system needed to analyze SQL/DS.

Section 4 discusses the results of our case study, including feedback from the management and development

teams of the SQL/DS product. Finally, Section 5 summarizes our results and brie
y outlines future work.

2 The Rigi environment for structural understanding

Rigi is a 
exible environment for architectural understanding under development at the University of

Victoria. It provides the following components of a reverse engineering system:

� a parsing system to support the common imperative programming languages4 of legacy software,

� a repository to store the information extracted from the source code,

� an interactive, window-oriented graph editor to manipulate program representations.

Phases of structural redocumentation

In Rigi, the �rst phase of structural redocumentation is automatic, and involves parsing the source code of

the legacy system and storing the extracted artifacts in the repository. This produces a 
at resource-
ow

graph of the software. Software maintainers can use this graph to represent the structural dependencies

of interest, such as function calls and data accesses. To manage the complexity, the second phase involves

human pattern recognition skills and features language-independent subsystem composition techniques to

generate multiple layered hierarchies for higher-level abstractions [3]. For example, the analyst can cluster

functions into subsystems according to business rules or by accepted principles of software modularity,

providing the multiple, alternative perspectives needed for maintaining the software.

4Such as C and COBOL. The Rigi system also includes a parser for LaTEX to support the understanding of documentation.
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Subsystem composition is a recursive process of grouping building blocks such as data types, procedures,

and other components into composite subsystems to help manage the complexity of understanding the

software structure. The composition criterion depends on the application. For program understanding

purposes, the process is guided by partitioning the resource-
ow graph based on established modularity

principles such as low coupling and strong cohesion [4]. Exact interfaces and modularity quality measures

are used to evaluate the generated software hierarchies.

What Rigi provides to deal with legacy software

There are several requirements of a reverse engineering tool for dealing with large legacy software. Our

research has focused on meeting these requirements, which include:

Dynamic views: Rigi presents structural documentation using a collection of \views." A view is a bundle

of visual and textual frames that contain, for example, resource 
ow graphs, overviews, projections,

exact interfaces, and annotations. A view is similar to a database view and is a dynamic snapshot that

re
ects the current reverse engineering state. Because views are ultimately based on the underlying

source code, they remain up-to-date.

Flexibility: Because program understanding involves many di�erent facets and applications, it is wise to

make the approach as 
exible as possible for use in many di�erent domains. Most reverse engineering

tools provide a �xed set of extraction, selection, �ltering, organization, documentation, and represen-

tation techniques. We provide a scripting language that allows analysts to customize, combine, and

automate these activities in novel ways. For example, analysts have used this language to express or

access additional software metrics, clustering strategies, and graph layout algorithms.

Human input: There is a tradeo� in program understanding environments between what can be auto-

mated and what should (or must) be left to humans. The best solution lies in a combination of the

two. The Rigi approach relies heavily on the experience of the analyst using it; the analyst makes all

6 Draft: Limited Distribution



IEEE Software Wong/Tilley/M�uller/Storey

the important decisions. For example, as the software engineer forms subsystems based on various

high-level criteria, the Rigi system can o�er selection and search algorithms based on aspects such

as graph connectivity, component type, and dependency type, and provide statistics such as exact

interfaces between subsystems and graph quality metrics. Nevertheless, the process is one of synergy

as the analyst also learns and discovers interesting relationships by exploring software systems using

the environment. We advocate a \hands-on" approach to reverse engineering to help transfer the

constructed abstractions into the minds of the software engineers.

Multiple views: Because the user is in charge, the subsystem composition process can be based on di-

verse criteria, such as business rules, tax laws, requirements, or other semantic information. These

alternative and orthogonal decompositions may exist simultaneously under the structural represen-

tation supported by Rigi. Views can accurately capture co-existing architectural decompositions,

providing many di�erent perspectives for later inspection. In e�ect, multiple, virtual representations

of the software's architecture can be created, manipulated, and saved.

Scalability: To deal e�ectively with legacy software, we must train program understanding tools and

methods on large, multi-million line source codes. Techniques that work on toy projects often do not

scale up. Our current scalability objective is to analyze systems of up to �ve million lines of code.

3 Analyzing the source code of SQL/DS

This section introduces the subject software of the case study and describes the changes to the Rigi system

needed to handle the analysis.
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The evolution of SQL/DS

SQL/DS (Structured Query Language/Data System) is a large relational database management system

that has evolved since 1976. It is based on a research prototype and has undergone numerous revisions

since the �rst release in 1982. Originally written in PL/I to run on VM, SQL/DS is now over 2,000,000

lines of PL/AS code and runs on several di�erent operating systems, including VM and VSE.5 PL/AS is a

proprietary IBM systems programming language that is PL/I-like and allows embedded S/370 assembler.

Simultaneous support of SQL/DS for multiple releases on multiple operating systems requires multi-path

code maintenance, increasing the di�culty for its many maintainers.

SQL/DS consists of about 1,300 compilation units, roughly split into three large systems (and several

smaller ones). Because of the size and complex evolution, no individual alone can comprehend the entire

program. Developers are forced to specialize in a particular component, even though the various com-

ponents interact. Existing program documentation is also a problem; there is too much to maintain and

keep current with the source code, and too much to read and digest. SQL/DS is a typical legacy software

system: successful, mature, and supporting a large customer base while adapting to new environments and

growing in functionality.

Extending Rigi

Since SQL/DS is written in a proprietary language, commercial o�-the-shelf analysis tools are often un-

suitable. This presented us with an enticing and rare opportunity to exercise our approach on a classic

industrial legacy system and an excellent test of whether the tool and method would scale up. Before we

could perform the analysis, however, some aspects of our tool had to be enhanced to respond to the unique

challenges posed by SQL/DS: its proprietary implementation language, its size and complexity, and its

application domain.

5S/370, VM/XA, VM/ESA, VSE/XA, and VSE/ESA are trademarks of International Business Machines Corporation.
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Our initial work on analyzing the SQL/DS code exposed some shortcomings of the Rigi system. The

sheer amount of code compelled changes to all three components of the environment, but mostly to the

graph editor rigiedit. The parsing system rigireverse was augmented with a PL/AS interface and

successfully processed the entire source code in an incremental manner. The repository rigiserver was

able to handle the large graph structures produced by the parser.

Managing scale

The parsing system rigireverse is composed of several subsystems, one for each supported programming

language. Each subsystem communicates with rigireverse via a tuple stream. Users can specify which

artifacts to extract, and at various levels of detail. For example, an option selects whether the parser

should extract calls to system routines. The ability to pinpoint speci�c subsets of the software system to

be considered is important for scalability reasons.

After deciding what information to extract from the source code, we added a new parsing subsystem to

handle PL/AS. Storing entire abstract syntax trees for such a large system would require several hundred

megabytes of storage. While this level of detail may be necessary for tasks such as control-
ow analyses

or code optimization, it is not necessary for understanding and redocumenting the software architecture.

For program understanding, it is important to build abstractions that emphasize important themes and

suppress irrelevant details; deciding what to include and what to ignore is an art. Ignoring intra-procedural

details, we reduced the repository size for a multi-million line program signi�cantly, making a major

di�erence when retrieving data interactively. For example, the generated database for SQL/DS is under

two megabytes.
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plas2c
DCL VERSION FIXED(15) CONSTANT(7);

CALL ARIXEDB(FETCH,RSIBASEP,RSIRSSRC);

IF RDATRACI >= ’1’ THEN DO;
  CALL ARIXETR(SCORDSCD);
  GEN CODE( DC H’6715’);
END;

ALLDONE:
RETURN;
END EXAMPLE;

EXAMPLE: PROC(FOO,BAR)
         OPTIONS(ID(’EXAMPLE  PLAS’),REENTRANT;

@EJECT ASM;
@MACINCL SYSLIB(MEMBER1);

/* File example.c created by plas2c */
/* from file example.plas on        */
/* Mon Jan 24 13:08:14 PST 1994.    */

void EXAMPLE()
{
  ARIXEDB();
  ARIXETR();

  return;
}

Figure 1: A PL/AS code fragment and its C representation

Handling a new proprietary language

Parsing PL/AS is problematic because the language is context-sensitive. However, it was not necessary

for us to parse the entire language completely. Interested in the high-level architecture, we focused on

extracting only external6 procedure de�nitions and calls. For our initial experiments, we did not extract

intra-module procedure calls, nor procedure calls to library routines or builtin functions.

The easiest way to add support for PL/AS within Rigi was to extract the relevant information from the

SQL/DS source code using a collection of csh, awk, and sed scripts, translate this information to its skeletal

representation in C, and feed the result into the existing C parser. In this way, the rigireverse program

was isolated from most of the changes. In addition, by extracting just a subset of the available information

in the PL/AS source, we immediately reduced one of the problems of scale. For example, a 400,000 line

subsystem of SQL/DS is reduced by two orders of magnitude to only 2,000 lines of C. A sample PL/AS

code fragment and its C equivalent (for Rigi's purposes) is shown in Figure 1.

The automatic parsing of all 1,303 modules of SQL/DS into Rigi took about two and three quarter hours

6PL/AS supports nested procedures.
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and required roughly ten megabytes of virtual memory on an IBM RISC System/60007 M375. The resultant

database uses 1.6 megabytes of disk space.

Scaling up the editor user interface

The graph editor rigiedit is the heart of our reverse engineering environment. As such, it is extremely

important that it be easily usable and respond in real time to commands given by the user. This is one

major aspect of the scalability of program understanding approaches. One of the challenges in editing

graphical representations for programs such as SQL/DS is managing visual complexity.

We changed the editor so that the screen is not redrawn every time a single graph operation is carried

out. Graphs with over 1,000 nodes and arcs need to be refreshed e�ciently to avoid degrading interactive

response time. Thus, we tuned the user interface, redesigning it to allow the user to batch sequences of

operations and specify when to update a window.

Adding a scripting layer to the editor

A more dramatic change was needed in one of the philosophies underlying our approach. We have always

felt that a semi-automatic reverse engineering environment is better than a fully automatic one, because

human cognitive abilities are still much more powerful and 
exible than \hard-wired" algorithms. In

essence, the user should always be in control. However, many of the operations performed during the

initial decomposition of the SQL/DS code were repetitive and could be automated. The user would still

be in charge of accepting, rejecting, or modifying automatically generated subsystem decompositions, but

the decomposition itself could be made easier. These observations led us to introduce a scripting layer into

the editor.

7Trademark of International Business Machines Corporation.
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Previously, the graph editor consisted of two tightly-coupled subsystems: the user interface and the editor

itself. All editing and selection operations were intermingled with operations for manipulating the user

interface, such as window size, menu selection, and so forth. We separated the user interface from the

graph editor and added a transparent intermediate layer to make the environment programmable.

Instead of writing yet another command language, we used Tcl [5]. It provides an extendable core language

and was speci�cally written to be embedded into interactive windowing applications. Tcl is application-

independent and provides two di�erent interfaces: a textual interface to users who issue Tcl commands,

and a procedural interface to the host application. In the new rigiedit, the Tcl interpreter sits between

the graphical user interface and the graph editor. This integration process is more fully described in [6].

Incorporating and exploiting domain knowledge

Program understanding takes place within the context of a speci�c application domain. Aspects of the

domain that a�ect reverse engineering include artifact representation, application semantics, and environ-

mental concerns. We initially analyzed SQL/DS without using any domain-dependent knowledge. However,

it shortly became clear that to make e�ective use of the extracted information we had to leverage existing

informal application-speci�c domain knowledge.

Our approach to reverse engineering adapts to new application domains through scripting. This enables

users to write customized routines for common activities such as artifact extraction, graph presentation,

and object search and selection. This makes the system domain-retargetable. For the SQL/DS source code,

we created a library of speci�c scripts to aid in our analysis. One such script is shown in Figure 2. It is

used to construct an initial decomposition of the subsystems of SQL/DS based on existing documentation

and the current physical modularization.
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# Build a subsystem using naming conventions.
proc BUILD_SUBSYSTEM {name} {
  set numnodes [GREP "$name"]
  if {$numnodes > 1} {
    CREATE_NEW_SUBSYSTEM "$name"
  }
}

# Build Level 1 of SQL/DS
proc SQL_LEVEL1 {} {
  scan "A" "%c" char
  scan "Z" "%c" lastchar
  while { $char <= $lastchar } {
    # ARI is the product code of SQL/DS.
    set string [format "ARI%c" $char]
    BUILD_SUBSYSTEM $string
    incr char 1
  }
}

Figure 2: Domain-dependent script for SQL/DS

4 Lessons learned in the case study

The target audiences for our case study were the development and management teams of the SQL/DS

product. The study was guided, in part, by the need to produce results directly applicable to them. An

increased emphasis on product quality mandated a di�erent approach to software maintenance than had

previously been used.

For the individual subsystems, we proceeded to analyze their inter-module dependencies, summarizing

them in a set of views depicting di�erent architectural perspectives. We then presented these views to

the development teams with a series of carefully designed one-hour demonstrations. These demonstrations

allowed us to exhibit the structural views of the subsystems pertinent to a particular development group,

allowed the audience to interact with the software structures using the views as starting points, and allowed

individual developers to create new views on the 
y to re
ect and record speci�c domain knowledge. The

case study involved three experiments.
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Experiment I: Call graph

For our �rst experiment, we generated a view of the entire call graph without considering any SQL/DS-

speci�c domain knowledge. The result was not as encouraging as we would have liked: the developers

did not recognize the abstractions we generated, making it di�cult for them to give us constructive feed-

back. This rea�rmed our belief that successful reverse engineering must do more than manipulate system

representations independent of their domain; the results must add value for its customers. Informal infor-

mation and application-speci�c knowledge provided by existing documentation and expert developers are

rich sources of data that should be leveraged whenever possible.

Experiment II: Naming conventions

Our second experiment used product-naming conventions and existing physical modularizations to con-

struct another set of views. The pre�x ARI is the unique code for the SQL/DS product, hence all module

names begin with these three letters. The fourth letter in each module's name represents the physical

subsystem to which the artifact belongs, the �fth letter represents further subsystem re�nement, and so

on. This information was captured by Rigi using a series of scripts and views, resulting in decompositions

the developers readily recognized. These views were of value to the developers because they established

a common ground for further discussions and analysis. Moreover, the developers were able to use them

to verify their system documentation as well as to suggest where our decomposition did not fully conform

their mental models.

One such view created using Rigi is shown in Figure 3. It contains three di�erent windows, each with

icons representing di�erent components of the software system. Arcs connecting icons represent resource-


ow relationships between components, such as a procedure call. The arcs are typed and give rise to a

multi-layered semantic network representing the many di�erent dependencies within the system. The top
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Figure 3: A view of SQL/DS and the ARIX subsystem

window shows a portion of all the low-level modules of SQL/DS.8 Each module is represented by a MOD

icon, such as
ARIXI32

for the ARIXI32 module. The lower-left window shows a high-level \horizontal"

view of the major subsystems, each depicted by a SYS icon, such as
ARIX

for the ARIX component. The

arcs in this window represent composite dependencies between the major subsystems. The hierarchical

subsystem structure within the highlighted ARIX component in this window is expanded, �ltered, and

presented in the bottom-right overview window.

8For clarity, the arcs have been �ltered from the view.
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Figure 4: Two views of the path selection optimizer subsystem

Experiment III: A subsystem in detail

Decomposing the ARIX relational data subsystem was the focus of our third experiment. This subsystem is

roughly one million lines and consists of nine physical subsystems. With the help of an SQL/DS developer,

we decomposed it into four logical subsystems: (1) runtime access generator, (2) optimizer pass one and two,

(3) path selection optimizer, and (4) executive, interpreter, and authorization. Four distinct development

teams are in charge of each of these subsystems.

We then further decomposed the path selection optimizer subsystem ARIXO. The developer in charge of

this subsystem had created her own diagrams of its structure, based on product development logbooks

and the mental model she had formed from her maintenance experience. A view was easily created using

Rigi to portray this mental model. More importantly, an alternative view was created, based on the actual
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structure as re
ected by the current source code. These two views of ARIXO are shown in Figure 4. The

window on the left contains the maintainer's view and the window on the right the newly constructed view.

The maintainer's view re
ects a left to right ordering of the major product components according to func-

tional design layers. The new view re
ects a top-down control 
ow based on actual information extracted

from the source code. This second view presented a somewhat di�erent perspective and in fact con
icted

with existing architectural documentation in some respects. However, because it was constructed using au-

tomatically extracted information, it was a more accurate representation of the subsystem's \operational"

architecture. The maintainer was able to form a more accurate mental model based on a combination

of information gained from maintenance experience and information extracted from the code. The two

perspectives can be uni�ed in a single Rigi view.

Developer feedback

While our prepared views did not uncover the exact mental model of each developer, the audience read-

ily recognized the presented structures. There were two main reasons for this. First, these developers

knew their subsystems intimately. Second, and more importantly, the views represented the right level

of abstraction. Most satisfying for us was when the developers used their individual knowledge to design

additional views to re
ect their personal mental models more closely. This was usually done by emphasiz-

ing components of particular interest and �ltering irrelevant information (from the point of view of each

individual developer).

Could we have achieved the same result without tool support? Yes and no. It is true that system description

diagrams have been in use for a long time. However, recreating and updating them for legacy systems of

this magnitude would be ponderous, if not impossible. Moreover, our semi-automatic approach enables

several such documents to be created and maintained simultaneously. These system-level documents are

always up-to-date since they are based on the underlying source code.
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5 Summary

There will always be old software that needs to be understood. It is critical for the software industry to

deal e�ectively with the problems of software evolution and the understanding of legacy software systems.

Tools and methodologies that e�ectively aid software engineers in understanding large and complex software

systems can have a signi�cant impact.

Legacy software systems require a di�erent approach to software documentation than has traditionally been

used. As an aid to program understanding for large, evolving software systems, structural redocumentation

through reverse engineering plays a key role. Through this process, one can produce accurate in-the-large

design documents describing the architecture of the software system's current state|not that of the original

system before numerous maintenance changes were made.

The Rigi environment focuses on the architectural aspects of the subject system under analysis. The

environment supports a method for identifying, building, and documenting layered subsystem hierarchies.

Critical to its usability is the ability to store and retrieve views|snapshots of reverse engineering states.

The views are used to transfer information about the abstractions to the software engineers.

Script-based decompositions capture domain-speci�c knowledge and can be generated quickly. For example,

it took two days to semi-automatically create a decomposition using Rigi, but only minutes to automatically

produce one via a prepared script. Either method would be much faster and more e�cient of the analyst's

time and e�ort than a manual process of reading program listings and consulting volumes of, perhaps

out-of-date, system documentation.

Our analysis of the source code of SQL/DS has proven to be very valuable to the developers and our

own research. It has shown that our methodology scales up to the million-lines-of-code range and that

the structural redocumentation produced during system analysis is an aid in understanding such legacy

software.
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Finally, we have shown that we can provide businesses with valuable information about the architecture

of their legacy systems. Experienced software developers who are familiar with the system can design

additional views in Rigi according to multiple, alternative perspectives. This produces charts and graphs

that can ease software maintenance, thereby save the company time and money, as well as extending the

useful life of their legacy system.

Future work

Further analysis of SQL/DS is underway. One of our research associates is using the Software Re�nery to

parse PL/AS and export more �ne-grained relationships among procedures and variables. Most of our work

until now has been focused on exploring control dependencies. However, the architecture of SQL/DS is

based on global data structures manipulated by many di�erent software modules. While the the developer

looks at code that is over 90% control logic, the compiler sees over 90% as data structure declarations,

placed in shared `%INCLUDE' �les. It will be fruitful to investigate this aspect of the system.

We are currently designing and developing a more ambitious reverse engineering environment based on

seven years of experience gained with Rigi. This new environment involves three universities and IBM as an

industrial partner; collaboration is the main theme. McGill University is extending the structural pattern

matching capabilities of the Rigi system to support syntactic, semantic, functional, and behavioral search

patterns. The University of Toronto is building a more 
exible repository for storing software artifacts,

pattern matching rules, and software engineering knowledge. The University of Victoria is making the Rigi

system more extensible by enhancing the scripting language, improving the user interface, and providing

a method for modelling the domain of discourse.
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