
Personalized Information Structures II: Hyperstructure Hotlists

Scott R. Tilley Walter M. Lamia

Software Engineering Institute

Carnegie Mellon University

Pittsburgh, PA 15213-3890

E-mail: fstilley, wmlg@sei.cmu.edu

Abstract

This paper describes ongoing research into the use of

a domain-retargetable reverse engineering environment

to aid the structural understanding of large informa-

tion spaces. In particular, it presents follow-on work

on the use of the environment in the documentation

and hypertext domain. This programmable environ-

ment has been integrated with a popular World Wide

Web browser to support hyperstructure hotlists: an

approach to managing link complexity, organizing con-

ceptual themes, and aiding Internet navigation through

the use of multiple virtual webs.

Keywords: hyperstructure, reverse engineering,

World Wide Web.

1 Introduction

The explosive growth of information sources on the

Internet, particularly those accessible via the World

Wide Web (WWW), has re-awakened interest in a clas-

sic hypertext problem: How to avoid the \lost in hyper-

space" syndrome due to disorientation caused by a tan-

gle of referential links in a hypertext web. However, the

WWW presents several unique cognitive problems|

problems that a�ect all classes of users, from the novice

to the seasoned expert.

For the novice, the amount of information available

on the WWW can be overwhelming. With little guid-

ance, \sur�ng the web" is analogous to turning some-

one loose in the U.S. Library of Congress without any

kind of organized cataloging system. Novices need a

starting point to categorize what is available in some

kind of taxonomic hierarchy, and to begin exploration

of the info-terrain. A large number of these starting

points are available on the WWW, which is itself a

problem, because each one presents the view favored

by the index's author. These views will certainly be

in
uenced by the authors' purposes or interests, which

may be academic, industrial, commercial, political, so-

cial, recreational, or almost anything else. Further-

more, there is almost no way to know what the biases

might be, so the user is subject to a great deal of un-

intentional or deliberate indirect in
uence.

Expert users develop their own personal research tech-

niques, usually employing one or more favorite index-

ing and directory servers, but this quickly leads to over-

loaded indexing. The problem is, what makes a page

interesting is highly dependent on the context in which

the user was working at the time, and this context con-

tinually evolves. Preserving the semantics of that con-

text, which makes the information meaningful to the

user, becomes more and more important as a variety

of di�erent, unrelated information is accumulated.

The use of hyperstructure hotlists is proposed as one

solution to this problem. Hyperstructure hotlists are

graphical representations of virtual webs. They are

supported through the integration of two existing tools:

Rigi,1 a domain-retargetable reverse engineering envi-

ronment used to aid the structural understanding of

large information spaces; and Netscape,2 a popular

WWW browser.

The goal of the integration e�ort is to provide users

with structuring mechanisms for conceptually clus-

tering web artifacts beyond that provided by sim-

ple hotlist and bookmark mechanisms. The graphical

paradigm provides a complementary navigation mecha-

nism that, when used in conjunction with existing URL

hotlinks, directly addresses one of the major problems

with the WWW: �nding and organizing information of

interest to each individual user.

The next section discusses the theoretical foundations

of hyperstructure hotlists. Section 3 outlines the sup-

port provided for hyperstructure hotlists through the

integration of Rigi and Netscape. Section 4 illustrates

the use of hyperstructure hotlists. Section 5 summa-

rizes the paper and discusses future work.

2 Hyperstructure hotlists

When one attempts to understand a large body of

information, the overall structure of the information

space is just as important as the inner structure of any

single artifact|if not more so. This is especially true

when the number of artifacts in the domain is much

larger than the size of each artifact. This process can

be termed hyperstructure understanding (HSU): iden-

tifying artifacts and understanding their structural re-

1In this paper, \Rigi" refers to version V of the Rigi reverse

engineering environment [1].
2Netscape Navigator version 1.1N.

lationships in complex information webs. HSU is an

objective, not a well-de�ned process [2]. The pre�x

hyper is used to distinguish HSU from the in-the-small

activity of understanding the internal structure of any

single artifact; the focus is the analysis of overall sys-

tem structure.

Existing WWW browsers provide limited functionality

to address the HSU problem. A hotlist (bookmark)

mechanism is typically used to store a semi-ordered

collection of links to WWW pages of interest. This

mechanism is useful for a small set of links, but it pro-

vides no other structuring mechanism. Morevover, few

browsers enable users to associate much context with

the entries in the hotlists. As the hotlist grows, it

quickly becomes unwieldy. Users forget why a certain

page is referenced from their hotlist.

More importantly, there is no way of conceptually clus-

tering links to represent common themes (other than

authoring HTML documents). Some browsers provide

a hierarchical tree-structured hotlist mechanism which

allows users to collect entries into meaningful taxo-

nomic groups. However, unless the user puts duplicate

entries in the �le to associate the same location with

two or more concepts, there is no way to build multi-

ple semantic threads through the hotlists. In addition

to the complexity this introduces, duplicate entries are

highly undesirable because of the con�guration man-

agement problem.

An example of a multiple-threaded subject index is the

Yahoo directory at http://www.yahoo.com. It presents

a main index hierarchy, but the index has many cross-

references embedded in it. For example, the main cat-

egory \Computers" has an entry \Computer Science",

which actually is a cross-reference to another branch,

\Science: Computer Science." While Yahoo represents

a good example of the semantic indexing function that

is desired, it achieves this only by extraordinary man-

ual e�ort and is still based on the judgment of the pro-

prietors, similar to what professional librarians do to

create catalog entries for books and other publications.

Additionally, Yahoo presents a purely textual view of

the data base to users; it does not capitalize on the ca-

pabilities of graphical user interfaces that can present

a richer view of the spatial interconnection topology of

the underlying information space.

Hyperstructure hotlists provide two valuable enhance-

ments to conventional WWW indexing tools. The �rst

is a powerful and easy-to-use method for constructing

arbitrary indexing schemes which capture the seman-

tics of the users' interest in any particular set of Web

locations. These semantic networks can be arbitrarily

large and arbitrarily complex, permitting the user to

build as many threads through the information space

as desired. The second is a graphical interface that can

display threaded structures in two-dimensional space

with functions for expanding and collapsing sub-nets,

and for creating and maintaining cross-reference links

among leaf nodes and sub-nets. This interface employs

shape and color to convey details about semantic con-

cepts which would be cumbersome in a purely textual

presentation.

3 Supporting hyperstructure

hotlists

This section discusses the support of hyperstructure

hotlists. The Rigi reverse engineering environment is

discussed. The modeling of the HTML domain is de-

scribed. The integration of Rigi with the Netscape

WWW browser is outlined.

3.1 Rigi

Hyperstructure hotlists as described in Section 2 are

supported through a prototype integration of the Rigi

reverse engineering environment and the Netscape

WWW browser. The current version of Rigi is the

result of a three-step reengineering process that has

been underway since 1992. The �rst step was to make

the central component of Rigi (rigiedit: a graphi-

cal, hypertext-oriented, multi-window hyperstructure

editor) programmable through the addition of a Tcl-

based [3] scripting language [4]. The second step was

to make the user interface customizable [5]. The third

step was to integrate a layered modeling paradigm [6]

into the environment.

Rigi is a prototype realization of the PHSE:3 an ar-

chitecture for a meta reverse engineering environment

[7]. It provides a basis upon which users construct

domain-speci�c reverse engineering environments. It

is instantiated for a particular application domain by

specializing its conceptual model, by extending its core

functionality, and by personalizing its user interface.

In addition to its use in aiding program understanding

for software maintenance, Rigi has also been retargeted

to support hypertext through the creation, representa-

tion, and structuring of online documentation [8]. This

earlier work presented the natural evolution of docu-

ment structure, from linear text to hypertext to struc-

tured hypertext to personalized information structures.

The use of personalized information structures was il-

lustrated by creating personalized hypertext versions

of LaTEX documents. In that case, the document's in-

ternal structure was of importance. For hyperstructure

hotlists, it is the inter-document structure that we are

interested in.

3.2 Modeling HTML

One part of retargeting Rigi is to provide a model of the

new application domain. This is done using the layered

modeling facilities provided by the PHSE framework.

The three-level model consists of a low-level data model

representing the atomic elements gathered from the im-

plementation domain (such as HTML anchors and pro-

tocols); a high-level knowledge model representing con-

cepts from the application domain (such as the struc-

tural relationships in and between documents); and an

graphical information model used for hyperstructure

navigation, analysis, and presentation. It should be

3The acronym PHSE, pronounced \fuzzy," stands for

Programmable HyperStructure Editor.

noted that the HTML domain model used is not a com-

plete representation of the HTML language; only the

structural aspects of HTML required to support HSU

are provided.

The relational data model is the foundation upon

which the conceptual model is constructed. The con-

ceptual model represents domain knowledge; it ac-

quires its semantics when the abstract conceptual

model is further re�ned to re
ect a particular applica-

tion domain. A semantic network information model is

used to represent selected artifacts of the subject sys-

tem; this layer forms the core of the graphical interface

to the underlying information space.

The data model is implemented as a store of binary

relations, similar to the mechanism used by Beynon-

Davies et al [9]. The binary relations that represent

the database are stored in one or more �les as a series

of RSF (Rigi Standard Format) triples. Each triple is

of the form type subject object. The interpretation of

this relation is straightforward: a directed relation of

the type `type' is asserted between the subject and the

object. Since every n-ary relation can be expressed as

a conjunction of n + 1 binary relations [10], the RSF

mechanism is su�cient to store the data required by

the reverse engineering environment. For example, the

RSF triple

ftp �le:/home.html ftp.sei.cmu.edu

might indicate the existence of an HTML relation using

the ftp protocol between the local �le /home.html and

the host ftp.sei.cmu.edu.

The language Telos [11] is used in the knowledge mod-

eling layer. Telos was selected over other conceptual

modeling languages because it is more expressive with

respect to attributes, it is extensible through its treat-

ment of metaclasses, and it has already proven suc-

cessful in other application domains. For example, it

has been used to provide a structural framework for

an authoring-in-the-large hypertext system [12]. The

primitive units of Telos, individuals and attributes,

have a direct mapping to the primitive units of hy-

pertext, namely nodes and links. Moreover, an RSF

representation of the knowledge base can be used to

represent all Telos propositions, from metaclasses to

tokens, in a uniform manner.

The information model used is a special-purpose se-

mantic network, represented as an attributed graph.

In the model, both artifacts (represented as nodes) and

relations (represented as arcs) are specializations of the

same parent class. Modi�cations to the repository oc-

cur through the insertion or deletion of artifacts and

the manipulation of relations.

The information model consists of four objects: webs,

nodes, links, and attributes. A web is a subset of

the entire knowledge base that is related in some fash-

ion. It is composed of typed nodes representing arti-

facts and typed arcs representing relations. Each node

has a set of incoming arcs and a set of outgoing arcs.

A node represents an artifact in the target domain.

Links between nodes represent relations between arti-

facts. Attribute/value pairs can be attached to nodes

or links, permitting the organization of nodes and links

into subgraphs and webs. For example, subsets of ob-

jects may be extracted from large graphs using �ltering

mechanisms based on attribute predicates.

Interrelated webs of objects form the cornerstone of

the information model. They are manipulated using

rigiedit. Portions (or all) of a web are viewed by

the user as a neighborhood. A neighborhood is sim-

ply a collection of artifacts that are immediately ac-

cessible from the current perspective. It is graphically

represented in the editor as a single window contain-

ing the artifacts. Artifacts can exist in any number

of neighborhoods simultaneously, since neighborhoods

are simply dynamically computed perspectives of the

underlying knowledge base. This permits multiple, co-

existing views of the information space.

3.3 Integrating Netscape

There are several WWW browsers currently on the

market, with more becoming available every day. Al-

though it would be possible to provide WWW browser

functionality by extending Rigi through the construc-

tion of the appropriate widgets, it was thought that

integrating with one of the more successful existing

WWW browsers would be better. The current gen-

eration of WWW browsers do not yet lend themselves

well to integration, although recent additions such as

Sun's Hot Java are changing that situation. In the end,

it was decided to use Netscape.

The Netscape Navigator is one of the most popular

WWW browsers currently available. The most recent

version provides a rudimentary application program in-

terface (API) that enables it to be remotely controlled

by another application. The Netscape API is di�erent

for each of its supported platforms. For Microsoft Win-

dows, DDE and OLE 2.0 are used; for the Macintosh,

Apple Events are used; for X-Windows, Xt actions are

used. The prototype integration of Rigi with Netscape

is under UNIX, so the X-Windows API is used.

Like many X-Window programs, Netscape provides an

application default �le (Netscape.ad) that may be

used to customize the user interface. To remotely con-

trol Netscape under X-Windows, the following com-

mand is issued:

netscape -remote Xt-action

where Xt-action represents the desired action for

Netscape to perform, and is the same name as the re-

source name given in Netscape.ad.

It is also necessary for Rigito be able to gather data

from the HTML documents. In particular, tags such as

<A> representing anchors are essential: they represent

the source or destination of a hypertext link and must

be captured in the information model. This is done

through the use of html2rsf, a Tcl procedure that

translates HTML to RSF. Html2rsf is really two sepa-

rate programs. The �rst is a Perl script that parses an

HTML document and extracts tags of interest. These

are then processed by a Tcl script that converts these

HTML tags into their RSF counterparts. In this way,

the data representing outgoing arcs from an HTML

document, as indicated by , are gath-

ered and modeled using RSF and the appropriate pro-

tocol (as de�ned in the conceptual model). This pro-

cess is illustrated in Figure 1.

4 Using hyperstructure hotlists

This section illustrates the use of hyperstructure

hotlists through the retargeting of Rigi and the inte-

gration of Netscape into the environment. The HSU

process manipulates three types of \artifacts:"4 (1)

data: the factual information used as a basis for rea-

soning, discussion, or calculation; (2) knowledge: the

sum of what is known and represents the body of truth,

information, and principles acquired; and (3) informa-

tion: the communication or reception of knowledge ob-

tained from investigation, study, or instruction. Based

on these de�nitions, we can identify three canonical

reverse engineering operations: (1) data gathering; (2)

knowledge organization; and (3) information naviga-

tion, analysis, and presentation. Therefore, the retar-

geting consists of three steps: (1) gathering data via

structural feature extraction, (2) organizing knowledge

by specifying a domain model, and (3) navigating, an-

alyzing, and presenting information by extending the

editor.

The �rst step is the construction of the knowledge layer

through the speci�cation of a Telos conceptual model

representing the HTML domain. A graphical repre-

sentation of this schema is shown in Figure 2. As

stated in Section 3.2, the model does not describe all of

HTML, just those features needed for illustration pur-

poses. Nodes in the HTML domain model represent

artifacts (such as documents), while links represent re-

lations (HTML protocols) between these artifacts.

4The de�nitions used here are in accordance with Webster's

online dictionary.

The following HTML fragment (from the �le sei.html):

<h1>Contacting us

<p>If you have questions about the SEI home page,

please send send e-mail to our webmaster.

is converted to the following RSF stream using the html2rsf program:

http sei.html http://www.sei.cmu.edu

mailto sei.html mailto:webmaster@sei.cmu.edu

Figure 1: Converting HTML to RSF

Artifact Icon representation

web

strand

document

host

user

newsgroup

Table 1: HTML artifacts and their icons

The second step is the construction of the data layer

through the gathering of HTML artifacts. There are

several ways this can be done. For example, because

the RSF formalism is so simple, an RSF representation

of an HTML web can be constructed by hand. How-

ever, the most common method is to use the html2rsf

translator to dynamically capture the artifacts and

relations of interest from user-selected HTML docu-

ments. Typically, the HTML documents will be those

currently accessed using the Netscape WWW browser,

but other tools might also be used o�-line to construct

hyperstructure hotlist representations of larger webs

(as discussed in Section 5).

The third step is the manipulation (navigation, analy-

sis, and presentation) of the information layer, which

is a graphical representation of the gathered artifacts

from the source document. The HTML artifacts are

represented in the editor by their respective icons, as

shown in Table 1. The icons used to represent HTML

artifacts, like almost all aspects of Rigi, are completely

under user control.

Traversing a web involves moving from one neighbor-

hood to another. All traversal operations are based

on the currently selected set of nodes. By default,

double-clicking on a single node invokes the prede-

�ned procedure rcl open node, which causes a new

neighborhood to be entered by following all outgoing

arcs of the current outarc type. The routine is usu-

ally replaced by users to perform actions speci�c to

a particular application domain, or speci�c to a node

type. More sophisticated web traversals are possible

using the widget shown in Figure 3. Webs may also be

edited (adding, deleting, or altering artifacts) and/or

analyzed. General-purpose widgets and routines are

provided for all of these operations, but they are usu-

ally augmented by the user during retargeting.

Figure 4 contains a screen dump of the environment

in use. The window at the top (with title PHSE) is

the main control widget. It contains a variety of action

HTMLObject

HTMLNode

document
user
host
newsgroup

HTMLLink

file
ftp
gopher
http
mailto
news
rlogin
telnet
tn3270
wais

PHSEObject

SimpleClass

Figure 2: HTML conceptual model

Figure 3: Web traversal widget

items, accessible through hot buttons, cascading menus

(not shown), or directly through the command line.

The window at left (with title General:2) is a view of

the reference hyperstructure hotlist. A special layout

algorithm that models the neighborhood as a physical

system of springs and anchors has been used to display

the hotlist in such a way as to enhance the structural

relationships between artifacts. For example, one can

see that two mailto artifacts are shared by both the

people and CMU webs. Although not discernible from

the black and white image, the nodes and arcs are color

coded to aid understanding; they are also scaled in

Figure 4 to �t in the window frame.

The rightmost window in Figure 4 is an instance of

Netscape; it is displaying the contents of the HTML

document http://www.sei.cmu.edu. This was accom-

plished by the user selecting the iconic representation

of this URL in the Rigi window at left (as reported by

the message at the bottom of the window) and push-

ing the right-most hot-button . This button is

attached to a simple user-de�ned Tcl procedure that

causes Netscape to access the selected HTML nodes.

If just one artifacts is currently selected, the current

instance of Netscape is used; if more than one artifact

is selected, a new Netscape session is initiated for the

second and subsequent artifacts.

Figure 4: Using hyperstructure hotlists

5 Summary

This paper presented hyperstructure hotlists, an ap-

proach to managing link complexity, organizing con-

ceptual themes, and aiding WWW navigation through

the use of multiple virtual webs. A proof-of-concept in-

tegration of the Rigi reverse engineering environment

and the Netscape WWW browser provides the support

for hyperstructure hotlists. The result is an improve-

ment over the simple hotlist mechanism provided by

most browsers and an alternate perspective of the un-

derlying information space.

Hyperstructure hotlists are constructed by retargeting

Rigi to support HTML. A simple relational model is

used to represent HTML at the data level, while a

scripting language is used to enable the gathering of

this data from HTML documents, and to communi-

cate with Netscape. A conceptual modeling language is

used to organize knowledge and reduce cognitive over-

head concerning the (potentially very large) informa-

tion space of the WWW. A graphical representation

of the semantic network used to model the information

artifacts facilitates the interactive navigation, analysis,

and presentation of the information space.

In summary, the information space is constructed out

of data artifacts, structured through the construction

of conceptual models, and interactively explored in a

hypertextual manner by representing neighborhoods as

(parts of) semantic networks. The approach encour-

ages the integration of additional tools into the reverse

engineering environment, building on other research

work in an evolutionary manner.

5.1 Future work

This work has opened up several areas of future re-

search, including re�ning the integration between Rigi

and Netscape, visualizing larger URL databases, and

integrating other tools into the environment.

The integration of Rigi and Netscape is by no means

complete; further work is needed if the two tools are

to become truly cooperating processes. It would be in-

teresting to integrate Rigi with other WWW browsers.

A prime candidate is Hot Java, since it provides a pro-

grammable interface through the Java language.5 As

there is already work underway on a Tcl to Java in-

terface, the integration between Rigi and a Tcl-aware

browser would be much easier, and much more func-

tionally complete, than the current Netscape interface.

The use of more advanced browsers such as Hot Java

will also open the door to more interactive HTML

browsing, through the use of \applets."

It would be interesting to integrate existing WWW

search and catalog tools, such as Lycos and Yahoo,

into the current environment. This would enable the

user to navigate a graphical representation of poten-

tially very large WWW information spaces. The visual

representation of the underlying webs might uncover

interesting \hot" spots. Tools that verify link integrity

could also be used to \clean" webs of dead links. The

consolidation of separate webs through the use of the

web editing and navigation mechanisms provided by

Rigi would also permit one to view incoming links to

selected HTML documents, something that Nelson's

Xanadu [13] system aspired to.

There is a growing interest in the use of intelligent

agents to aid users in �nding, �ltering, and �ling infor-

mation of interest to them on the WWW. The integra-

tion of such a tool into the environment would enhance

the use of hyperstructure hotlists by facilitating their

dynamic construction based on speci�c, user-speci�ed,

search criteria.

5It was recently reported that Netscape has licensed the Java

language from Sun, so that Netscape will also be Java-enabled.

For example, there are now several commercial pack-

ages available that analyze HTML documents and au-

tomatically extract their semantic content. Such tools,

used alone or in conjunction with the aforementioned

intelligent agents, would also increase the usefulness

of hyperstructure hotlists by re�ning the webs con-

structed by the user.

Natural language processing tools could also be used

for automatic semantic thread generation. This is a

rapidly advancing technology which is becoming fast

enough and accurate enough to automatically con-

struct useful semantic networks from a large textual

information base. The synthesis of these tools with

graphical tools such as Rigi shows much promise for

users who are rapidly being
ooded by the burgeoning

overabundance of information on the WWW.

Acknowledgments

The genesis of this work began while the �rst author

was at the University of Victoria. The pioneering work

on personalized information structures was shared by

the co-authors of [8]. The referees' comments are also

greatly appreciated.

References

[1] K. Wong, B. D. Corrie, H. A. M�uller, M.-A. D. Storey,

S. R. Tilley, and M. Whitney. Rigi V user's manual,

1994. Part of the Rigi distribution package.

[2] A. O'Hare and E. Troan. RE-Analyzer: From source

code to structured analysis. IBM Systems Journal,

33(1):110{130, 1994.

[3] J. K. Ousterhout. An Introduction to Tcl and Tk.

Addison-Wesley, 1994.

[4] S. R. Tilley, H. A. M�uller, M. J. Whitney, and K. Wong.

Domain-retargetable reverse engineering. In Proceed-

ings of the 1993 International Conference on Software

Maintenance (CSM '93), (Montr�eal, Qu�ebec; Septem-

ber 27-30, 1993), pages 142{151. IEEE Computer So-

ciety Press (Order Number 4600-02), September 1993.

[5] S. R. Tilley. Domain-retargetable reverse engineering

II: Personalized user interfaces. In International Con-

ference on Software Maintenance (ICSM '94), (Vic-

toria, BC; September 19-23, 1994), pages 336{342.

IEEE Computer Society Press (Order Number 6330-

02), September 1994.

[6] S. R. Tilley. Domain-retargetable reverse engineer-

ing III: Layered modeling. In Proceedings of the

1995 International Conference on Software Mainte-

nance (ICSM '95), (Nice, France; October 16-20,

1995), May 1995. To appear.

[7] S. R. Tilley. Domain-Retargetable Reverse Engineering.

PhD thesis, Department of Computer Science, Univer-

sity of Victoria, January 1995. Available as technical

report DCS-234-IR.

[8] S. R. Tilley, M. J. Whitney, H. A. M�uller, and M.-A. D.

Storey. Personalized information structures. In Pro-

ceedings of the 11th Annual International Conference

on Systems Documentation (SIGDOC '93), (Waterloo,

Ontario; October 5-8, 1993), pages 325{337. ACM (Or-

der Number 6139330), October 1993.

[9] P. Beynon-Davies, D. Tudhope, C. Taylor, and

C. Jones. A semantic database approach to knowledge-

based hypermedia systems. Information and Software

Technology, 36(6):323{329, 1994.

[10] R. Kowalski. Logic for Problem Solving. North-Holland,

1979.

[11] J. Mylopoulos. Conceptual modelling and Telos. Tech-

nical Report DKBS-TR-91-3, Department of Computer

Science, University of Toronto, November 1991.

[12] R. Sobiesiak. A hypertext authoring framework based

on ceonceptual modelling. Master's thesis, University

of Toronto, 1991.

[13] G. Wolf. The curse of Xanadu. Wired, pages 137{202,

June 1995.

