
1

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 1

Software Development Processes

Sequential, Prototype-based RAD,
Phased, Risk-based Spiral

Software Life-Cycle Models

• Planning
– ``What do I do next?''

• Process visibility
– ``Are we on schedule?''

• Intellectual manageability
• Division of labor

Breaking projects down into pieces for ...

2

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 3

Process Models in Other Fields

• Reliable, efficient production
– Process improvement for quality, efficiency

• Predictable production
– Ability to plan, schedule, and budget

production

• Standardization
– Economic advantage of standard processes and

components

• Automation

(c) 1998 M Young CIS 422/522 4/3/98 4

Inadequacy of
Industrial Process Models

• Software is primarily an intellectual, design-
based process
– Unlike fabrication of physical things
– More like designing an automobile than

building it

• Software is “unstable”
– Malleability is a major advantage of software

over hardware, but
– Changing requirements and design make

controlled processes more difficult

3

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 5

The “Code and Fix” Model
(or, Software through Chaos)

• Process steps:
– Write some code
– Fix and enhance
– Repeat until satisfied, or until unmanageable

• Characteristics of code-and-fix model
– Suitable when: Developer is the user (no formal

requirements), schedule is short (no planning), quality
need not be high (fix as needed)

– Highly unstable: Software structure deteriorates over
time, or collapses as complexity increases

(c) 1998 M Young CIS 422/522 4/3/98 6

Changes Motivating Defined
Processes

• Non-technical users, distinct from developers
– Problem of “building the wrong system”
– Need for careful analysis of requirements, distinct from

design and implementation

• Scale and complexity => Team development
– Organizational structure and coordination
– Control of communication complexity
– Need for design phase, unit & integration testing

• Need for predictability => Scheduling
• Quality requirements => Checkpoints

4

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 7

The “Waterfall” model

• Inspired by industrial product development
cycles, esp. aircraft

• A document-based model
– Stages in development are marked by

completion of documents
– Feedback and feed-forward are through

documents

• Several variations

(c) 1998 M Young CIS 422/522 4/3/98 8

Waterfall Model (example)

Feasibility
Study

Requirements
Analysis

Design

Code &
Unit Test

Integration &
System Test

Delivery

Maintenance

Each passage from phase to phase
is marked by completion of a document
that governs the following phase

(from Ghezzi et al, 1991)

5

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 9

Waterfall Model Phase

• Goal is an output document consistent with the
input document; an “error” is an inconsistency

• Phase is complete when document is finished
• Each phase has specific methods

Input document Output document

Elaboration
Method

(c) 1998 M Young CIS 422/522 4/3/98 10

Feasibility Study

• Evaluate costs and benefits of a proposed
application
– Required for go/no-go decision or choice

among competing projects
– Ideally requires complete analysis and design;

 Practical reality: Limited time and resources
– Results in problem definition, alternative

solution sketches, and approximate resource,
cost, and schedule

Example waterfall stages ...

6

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 11

Requirements Analysis

• Produce specification of what the software must
do
– User requirements; may be divided into problem

analysis and solution analysis
– Suppress the “how” until design phase
– Must be understandable to user, which in practice

means it is necessarily somewhat informal
– To the extent possible, should be precise, complete,

unambiguous, and modifiable; Should include object
acceptance tests and a system test plan

Example waterfall stages ...

(c) 1998 M Young CIS 422/522 4/3/98 12

Design and Specification

• May be divided into external design (and/or
system specification), preliminary design,
and detailed design

• Results in (semi-)formal diagrams and text
defining structure and function of the
software, ready for programming individual
units

• Many notations, methods, and tools for
different “styles” of design

Example waterfall stages ...

7

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 13

Coding and Module Testing

• Individual programmers produce program
“units,” which are assembled into
subsystems and the final system

• Includes unit testing and debugging, and
may include inspections

• Often includes much non-product code,
called “scaffolding”

Example waterfall stages ...

(c) 1998 M Young CIS 422/522 4/3/98 14

Integration and System Testing

• Assembly of units into larger and larger
substructures

• Proceeds according to a “build plan” which
is typically “top-down” or “bottom up”

• Subsystem test followed by system, apha,
and beta test; purpose of testing shifts from
debugging to acceptance, and may involve
an independent test team

Example waterfall stages ...

8

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 15

Delivery and Maintenance

• Beta test: controlled release to a small (or
adventurous) real-world clientele

• Alternative: single-client and critical
applications “run parallel”

• After delivery, further change to sofware is
called “maintenance” (of which most is
NOT fixing bugs)

Example waterfall stages ...

Royce’s Waterfall
 Model (1970)

System
Requirements

Software
Requirements

Preliminary
Design

Analysis

Program
Design

Coding

Testing

Operation

Preliminary
Design

9

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 17

Characteristics of the Waterfall
Model

• Limited iteration
– Naive version is purely sequential; more

commonly there is some iteration and
adjustment, but the model is highly sequential

– Well-suited to a “contract” mode of
application

• “Big bang” development
– Beginning from nothing
– Ending with a single delivery of a single product

(c) 1998 M Young CIS 422/522 4/3/98 18

RAD: Rapid Application
Development

A variant of “evolutionary
prototyping”

Based partly on: www.cs.ucl.ac.uk/staff/D.Fulton/
interim.html

10

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 19

Main characteristics of RAD

• Rapid ≈ 6 weeks to 9 months
• Small, flat, highly skilled teams
• Intense user participation
• Iterative prototyping (with less paper-based

documentation)

(c) 1998 M Young CIS 422/522 4/3/98 20

Origins

• Evolutionary prototyping
– vs. throw-away prototypes: closer to

incremental build, but more dynamic

• DuPont (mid-80s) Rapid Iterative
Production Prototyping

• IBM Joint Application Development method
(JAD)

• Popularized by J. Martin (1991) and others

11

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 21

RAD “philosophy”

• Initially fix:
– high-level requirements,
– project scope
– plan (schedule)

• Then iteratively build the product
– with intense user involvement to negotiate

requirements and test deliverables

(c) 1998 M Young CIS 422/522 4/3/98 22

Joint Application Development
“Workshops”

• Objective: Scope the project
• Participants:

– Development team

– User representatives
– Facilitator

• Intense negotiation to create stable scope
and plan
– similar to “design to schedule,” applied to

requirements

12

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 23

RAD communication structure

• Peer-to-peer communication between users and
developers

• Intense user involvement (and commitment) in negotiating
requirements and testing prototypes

Conventional RAD

User organization Developers User organization Developers

(c) 1998 M Young CIS 422/522 4/3/98 24

RAD team structure

• Small teams of highly-skilled developers
• Fixed team through full development

– Less specialization; each developer must fill
several roles

– Less reliance on formal documents to record
requirements and design

• Requires stable staffing
– Loss of a developer is a larger risk than in

document-based process models

– Loss of user representatives is also a danger

13

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 25

Timeboxing

• If functionality not delivered by date, scale
back or abandon
– Radical application of “design-to-schedule”

• The build-plan is stable; the product
functionality is fluid within bounds of
project scope
– What is actually built depends on technical

feasiblity as well as user wants

(c) 1998 M Young CIS 422/522 4/3/98 26

Prototype-based requirements
elicitation

• Cycle: Build, demo, revise design
– Scheduled review meetings with demos and

feedback
– Additional internal prototype build cycles
– Additional ad hoc user demos

• “Shopping list” replaces detailed
requirements document
– Broad list of desirable functions can change

depending on user feedback

14

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 27

Reduced Paper Documentation

• Emphasis on rapid delivery and change
– Not on preserving information for a longer period
– Fixed personnel (including user representatives)

reduces need for documents as orientation and
communication

– Active, intense user participation

• Reliance on computerized documentation
– CASE tools, databases and application generators
– The prototype itself as “documentation”

• Developer “logs” of design rationale

(c) 1998 M Young CIS 422/522 4/3/98 28

RAD on Contract?

• Requires stronger relationship than typical
contracts
– Since requirements are not fully known when

contract is let

• May be based on fixed effort, rather than
fixed functionality

15

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 29

RAD tools

• RAD projects typically rely on strong tool
support
– application generators, database engines

(including interface builders, etc.)
– CASE tools
– ...

• Reported success is mostly within well-
understood and supported domains, esp.
information systems

(c) 1998 M Young CIS 422/522 4/3/98 30

“Super designers”?

• Small, flat teams require multi-talented individuals
– Technical, inter-personal, and managerial skills
– Overall view of project, not only pieces

• Vague requirements require strong motivation to
do more than “enough”

• Strong management needed to hold human
resources
– Loss of a developer can be disastrous
– Loss of adequate user involvement can be nearly as

bad

16

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 31

When is RAD appropriate?

• Requirements are not clear or stable
• Technical pre-requisites available: adequate

tool and facility support
• Developer expertise in domain and tools

– especially: able to anticipate likely change

• Strong facilitator/manager
– able to keep project appropriately scoped
– able to hold resource (people) for duration of

project

(c) 1998 M Young CIS 422/522 4/3/98 32

RAD issues

• Quality: Little process control, little
documentation on which to base measurement
and acceptance
– Quality measured by “the smile on the user’s face”

• Lifetime cost: What will it cost to maintain RAD
projects?
– BUT if initial build cost is comparable to a revision

cycle, a “disposable” system may be acceptable

• Heavy reliance on individuals
– Risk may be too high for critical projects

17

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 33

Summary: RAD

• Evolutionary prototyping method
– with particular management features like “timeboxing”

• Small team, limited scope approach
• Intense, continuous user involvement
• “Programming in the small” at its outer limits?

– Most of what has been omitted (documents, clear
process, etc.) are the measures we use to cope with
multiple people and long schedules

(c) 1998 M Young CIS 422/522 4/3/98 34

Phased Projects

• Develop & Deliver in Increments
– May repeat entire waterfall model in each

increment

• Goals:
– Keep clients/customers happy
– Improve requirements through feedback
– Improve process visibility through more

frequent milestones

18

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 35

Dividing a Large Project into Phases

• Division by function • Incremental Delivery

Time
Tim

e

(c) 1998 M Young CIS 422/522 4/3/98 36

Functional Division in Practice

• Some shared infrastructure is developed
(incrementally)

• Some revision to previous phases is required

19

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 37

Planning Incremental Development
What is a good increment?

• Identify system subsets
– Minimal usable feature sets
– Encapsulated functions (limit scope of

change)

• Choice driven by:
– Schedule

(opportunity cost, time-to-market)
– Decomposability

(minimize duplicated work)
– Risk control

Spiral Model
(Risk-driven evolutionary development)

20

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 39

In each “turn” of the spiral

• Problem definition
– Determine objectives (qualities to achieve)
– Identify alternatives and constraints

• Risk analysis
– Determine risks
– Gain information (typically through prototyping)

• Develop & verify next level “product”
– may be only requirements, or design

• Plan next phase

(c) 1998 M Young CIS 422/522 4/3/98 40

Prototypes vs. Incremental
Deliveries

• The primary goal of a prototype is information
– Should address the most significant risks

• Incremental deliveries should be useful
– May avoid the highest risks

• These goals are in conflict!
– It is sometimes possible to serve both purposes
– but ... Many “prototypes” fail to serve either purpose,

because developers fail to distinguish goals and plan
accordingly

21

© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

CIS 422/522 Spring 1998

(c) 1998 M Young CIS 422/522 4/3/98 41

Prototyping for Information

• Requirements clarification
– Users “learn what they want” by using the

prototype
– Implicit requirements are identified through

failure
– Human interface can be assessed and refined

• Design alternatives
– Performance, complexity, capacity, ...
– Requires evaluation plan before implementation

(c) 1998 M Young CIS 422/522 4/3/98 42

Choosing a Process Model

• No single “best” model
– Depends on many factors, including the

experience of a particular organization in a
particular application domain

• Larger team, larger product
=> More elaborate process

• More risk, less experience
=> More iteration

