
11

CIS 422 S98 / M Young 4/14/98 1

Configuration Management

Controlling change & product integrity

CIS 422 S98 / M Young 4/14/98 2

What is Configuration
Management?

• Managing projects w.r.t. issues such as
– multiple developers working on the same code
– targetting multiple platforms
– supporting multiple versions
– controlling the status of code

• Process aspect
– e.g., authorizing and controlling change

• Tools aspect
– e.g.., tracking and storing version histories

22

CIS 422 S98 / M Young 4/14/98 3

Example 1: Interface Control

• Scenario:
– Small team development, tight deadline
– First incremental build nearing completion
– Developers note desireable changes that will affect

module interfaces
• Changing now could affect schedule; changing later will cost

more

• Issues:
– How do we decide which changes to make?
– How do we coordinate the change?

• esp. for other developers that depend on the current interfaces

Typical software engineering
class project

CIS 422 S98 / M Young 4/14/98 4

Example 2: “Evergreen System”

• Software system
– Digital telephone switch, millions of lines of code
– Always three system releases:

• Current customer release
• In development (detail design, code, test)
• In development (requirements and arch. design)

• Scenario
– Bug found in current customer release

• requires modification to maintain reliable function
• do the development versions require revision? If so, how

should they be coordinated?

Based loosely on Northern
Telecom digital switch

33

CIS 422 S98 / M Young 4/14/98 5

Example 3: Distributed Development

• Multiple development
organizations (A, B, C),
geographically distributed

• Scenario: Dependencies
– Testing tools developed by

A,B depend on API of
compiler developed by C

– Compiler depends on object
manager developed by A

– Compiler and object
management system are also
distributed independently of
higher-level packages

– New version of compiler
planned, with revised API,
will take approx. 1 year to
deliver initial version

• Issues:
– When should organizations

A and B revise their testing
tools to use the new
interface?

– How should the test tools
be packaged and distributed?
Should they include the
compiler and object
manager packages?

Based loosely on Arcadia
research project experience

CIS 422 S98 / M Young 4/14/98 6

Managing Change: Process

• Establish a baseline
• Change cannot be managed unless there is a “baseline”

configuration. Changes to the baseline require authorization.
• Scope and authorization procedure depends on stage

– During implementation cycle, authorization may be required only
for changes to design (interfaces) and schedule

– After release, any change may require a specified regression test
and distribution procedure

• Establish authority and procedures

44

CIS 422 S98 / M Young 4/14/98 7

Example change processes

• Ex. 1, small team: proposed interface changes at
weekly meeting
– negotiate and plan considering schedule impact

• Ex. 3, distributed development: “configuration
control board” with representatives from A,B,C
negotiates and schedules change
– Establishes 2 baselines: Development and Demo
– Demo “frozen” 3 months before demo schedule

• Snapshot of working system saved
• Only critical fixes allowed; no “improvements”

– Board schedules “changeover” periods for development
baseline

CIS 422 S98 / M Young 4/14/98 8

What is in a Configuration?

• Delivered system
– The “program” or “system” (executables, etc.)
– User documentation, requirements documents, ...

• Other work products
– Design, requirements, meeting notes, etc.
– Source code, including build scripts
– Test cases, drivers, ...
– Complete change history

• “External” dependencies
– Tools: compilers, CASE tools, word processors ...
– Libraries, system configurations, other “environment”

55

CIS 422 S98 / M Young 4/14/98 9

Configurations may overlap

• Overlapping platform builds
– Example: Windows (3.1, 95, NT), Mac

(68k, PPC), and Unix (HP, Sun Sparc,
x86 (Linux, Solaris X86))

• Overlapping product features
– Microsoft Office (Standard, Pro), MS

Word
– FrameMaker, FrameMaker+SGML

• Overlapping revisions
– Delivered, beta, internal development

CIS 422 S98 / M Young 4/14/98 10

Basic Tool Support

• Concurrency control:
– Prevent (or support) simultaneous changes to the same

configuration elements

• Versioning:
– Maintain a complete log of changes, and recreate any

previous version on demand

• Building:
– Construct derived artifacts (executables, documents,

etc.) from a consistent configuration

These are just the basics; higher-level and process-oriented
tools can be built on this foundation

66

CIS 422 S98 / M Young 4/14/98 11

Concurrency Control Approaches

• Locking control:
– Developer “checks out” an element

• Read only: without a lock
• Read/Write: with a lock

– Changes are committed at “check in”
• and become “current” version for next check-out

• Merging control:
– Multiple developers may “check out” a version

• Both may be making changes to local copies

– Changes “merged” at check-in
• Overlapping changes may require resolution

CIS 422 S98 / M Young 4/14/98 12

RCS: a Revision Control System

• Locking change control
– Developers may “break” a lock and send email

• Revision tree
– Revisions other than the “current” may be checked out and changed
– Revisions may be “merged” into the trunk

• Efficient (text) storage through deltas
– Complete copy of newest version, deltas (edit commands) for all previous

versions. Any version can be recreated on demand applying deltas.

• Other functions
– Manage version log in source file comments
– Inquire about status of any library component
– Compare any two versions, or compare local copy to historical version

Originally by W. Tichy, then at Purdue; still the
core of many commercial and free configuration
management systems.

77

CIS 422 S98 / M Young 4/14/98 13

Using RCS: Example (next slides)

• A revision control process suitable for a small
team, with a single shared file system, using Unix
– Can be adapted to Windows or Mac (e.g, using Visual

Source Safe and/or Metrwerks Code Manager)

• Not suitable for larger or smaller projects
– I use RCS in a simpler way for single-person

developments, including papers
– Larger projects require more elaborate tool support

and, especially, more elaborate procedures

CIS 422 S98 / M Young 4/14/98 14

A simple revision control process

• Typically three “builds” are current:
– Frozen: The “demo” version (shared)
– Work: The current integrated version (shared)
– Play: Individual developer’s version

• Steps:
– Programmer checks out module to “play”, makes

changes and tests against “work” modules of others
– Programmer checks in module when it has been tested

against the “work” version (this may require
coordination)

– On a regular schedule, “Work” version is tested and
moved to “Frozen” version

88

CIS 422 S98 / M Young 4/14/98 15

Directory Structure
for Version Management

• Using RCS or similar for revision and concurrency
control (locking) in a shared file system
– Have a policy on holding locks: e.g., 24 hours or less
– May need multiple RCS directories, or a protocol for indicating the

components of “work” vs “frozen” versions

Flavio Sara Master

RCS RCS

Play Play Work Frozen

symbolic
links

CIS 422 S98 / M Young 4/14/98 16

Distinguish “derived” from “source”

• All “ultimate source” should be under version/
revision control

• All “derived” objects should be produced
automatically (e.g., when you run “Make”)
– Never edit derived objects

• Examples: Object code (obvious?), lex output, generated web
pages

• When generating components, consider revision
procedure
– If post-generation changes are necessary, they should be

saved and applied to revised version

99

CIS 422 S98 / M Young 4/14/98 17

Version Building

• The basics: Make (or a Make-oid)
– Generate all derived objects in a consistent

configuration
– May interact with revision control, e.g.,

• The Makefile is versioned under RCS control
• The Makefile checks all other components out from RCS

• Beyond Make ...
– mkMake, and other Makefile generators

• Analyze source code for dependencies

– config, autoconfig, ...
• Adapting to an environment

CIS 422 S98 / M Young 4/14/98 18

Configuration Policy Support

• RCS, Make, and related tools provide basic
mechanism, but do not enforce policies

• Higher level process can be built on them
– Example: Work-flow enforcement including successful

regression test and management approval before
accepting changed version

– Sometimes integrated with problem report tracking
system

1010

CIS 422 S98 / M Young 4/14/98 19

Information resources

• Usenet news: comp.software.config-mgmt
• Web sites to start at:

//www.iac.honeywell.com/Pub/Tech/CM/CMFAQ.html
//www.iac.honeywell.com/Pub/Tech/CM/CMTools.html

• Books, tools: See the web sites for references
– Many tools are available, ranging from free (RCS) to

very expensive

• Current research: Workshop on Configuration
Management, before ICSE’97 (Boston, April 97)

CIS 422 S98 / M Young 4/14/98 20

Summary: Configuration Control

• Important for producing and maintaining quality
software, on schedule
– Not just code: Reports, web sites, ...
– Can be simple or complex, depending on the system and

organization
– A “key capability” in SEI Capability Maturity Model

• Management (process) aspects, and technical
aspects
– Neither management alone, nor tools alone, are enough
– Management policy and procedures must be supported

by technical capability to manage configurations

