CIS 422/522 Spring 1998
1

Requirements Elicitation

(c) 1998 M Young CIS 422/522 5/4/98 1

Proactive vs. Reactive Elicitation

» Users seldom provide complete, reasonable
requirements without coaxing.
— The user doesn't know what is practical or

possible.

» Requirements elicitation is an active
process
— gathering information
— negotiating

* We could do X, but it would take Y months longer.

— suggesting alternatives

(c) 1998 M Young CIS 422/522 5/4/98 2

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
2

Problems vs. Solutions

» Users typically have a solution in mind, and
it is typically a small variation on current
activities.

» Back up. Understand the problem.

 Separate the what from the how

— The how is already on your mind, but it must
be carefully partitioned from the what.

(c) 1998 M Young CIS 422/522 5/4/98 3

Who do you talk to?

If the client is an organization, analysts should
consult with

» Someone with authority

— ensure an organizational commitment (“buy-
in”) to the project objectives and direction

 Each user group

— at all levels: the boss may not know how it's really
done

 Each enabling group
— unhappy people can ensure failure

(c) 1998 M Young CIS 422/522 5/4/98 4

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
3

Organizational Context

« Elicitation problems depend partly on the
organizational context of system
development

» Example contexts and variations:

— Central development organization vs.
decentralized development

— Client/Buyer vs. Market

» Sometimes we can adjust the context;
more often we must adapt to it

(c) 1998 M Young CIS 422/522 5/4/98 5

External Clients & Contract Projects

» Advantages
— Variable resource levels and kinds
— Less fixed budget commitment
— “Flatter” organizations

* Problems
— Premature specification freezing
— Institutional memory and relationships
— Products vs. product lines

(c) 1998 M Young CIS 422/522 5/4/98 6

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
4

Specifications as Contracts

* Problem: Premature specification freeze

— May narrow solution space and stifle creative
approaches

— Changes may become very expensive

— Works best when developers produce a product line
with limited variatons (“precedented” products)

* Problem: Product lines

— Contracting rules can discourage reuse and
infrastructure development

» But some contract developers do well by amortizing
development across several clients

(c) 1998 M Young CIS 422/522 5/4/98 7

Developing for a Market

e.g., shrink-wrap software

» The “client” is potential buyers in a software
market, but we still need requirements analysis
» Approaches:
— Study the competition and market

* and talk to users of the competing or related
products

— Recruit potential users
* surveys, interviews, mock-ups
* the “client” may need to be paid!
— Prototypes and incremental deliveries

(c) 1998 M Young CIS 422/522 5/4/98 8

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
5

Internal Development:
Centralized or Decentralized?

Organizational context affects requirements analysis

* In a large enterprise, developers can be organized
in a single centralized “service” organization, or
small development organizations can be
distributed throughout the enterprise

(c) 1998 M Young CIS 422/522 5/4/98 9

Internal Development:
Centralized vs. Decentralized

Software system development for clients within the
same enterprise (e.g., company or agency)
» Centralized resource
— Serves clients in many sub-areas of the enterprise
— Clients are in competition for the resource

» Decentralized resource
— Developers are distributed throughout the enterprise
— Clients have dedicated resource

(c) 1998 M Young CIS 422/522 5/4/98 10

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
6

Requirements Elicitation in
Centralized Development

» Advantages:

— Larger development organization with more
specialized work roles. Experienced analysts
work with a variety of clients and apply “tried
and true” approaches

* Problems
— Developers lack domain expertise

— “Gold plating”: Competition for development
resource encourages clients to hold resource
as long as possible

(c) 1998 M Young CIS 422/522 5/4/98 11

Developing Domain Expertise

Techniques for Centralized Development

 Explicitly schedule and budget for domain
analysis and training

» Develop specializations within the
development organization
— but also cross-train to spread the knowledge

(c) 1998 M Young CIS 422/522 5/4/98 12

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
7

Avoiding Gold-Plating

Techniques for Centralized Development

 Remove the incentive

— Fixed-schedule projects

* Bound the schedule before commiting to a project,
and make schedule feasibility a condition of
continuing beyond requirements

— Prioritize by size
* Special “small projects” development queue
— Rationalize budgeting (difficult!)

* Larger projects should “cost more” (but this is
difficult ...)

» Avoid perverse incentives (also difficult)
(c) 1998 M Young CIS 422/522 5/4/98 13

Requirements Elicitation in
Decentralized Development

» Advantages:
— Developers work closely with users and acquire domain and
organizational expertise
— Incremental development and evolution of requirements occur
naturally
* Problems:
— Balkanization of information resources

¢ redundant and inconsistent information; difficult to build applications
that span sub-organizations

— Isolated developers

« do not develop as much “intellectual capital” of reusable design,
quality standards, components, etc.

« do not have as wide a range of specialized skills
« higher risk in losing an individual

(c) 1998 M Young CIS 422/522 5/4/98 14

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
8

Coordinating Decentralized
Development

In Large Enterprises
» “Matrixed” organizations
— Developers belong to a centralized
organization but are semi-permanently
assigned to a client organization

* but there is a “two bosses” management problem
— Project teams may be part matrixed, part
centralized
» Developers may be rotated

— but this trades away some advantages of
decentralization

(c) 1998 M Young CIS 422/522 5/4/98 15

Everyone must win

* An automated system typically depends on
several groups of users
— Not only the users for who the system is designed;
consider every input and every administrative or other
task needed to keep the system running
o |t is surprisingly easy for unhappy users to
torpedoe a system.
— If the introduction of a new or modified system makes

work even a little harder for someone, with no
compensation, they can help it fail.

(c) 1998 M Young CIS 422/522 5/4/98 16

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
9

A Failure to Provide Win Conditions

City of Eugene, Oregon, information system to
schedule public works projects (repairing signs,
patching roads, trimming trees), early 1980s

* Inputs: Inspectors fill out forms describing needed
repairs.

 Qutputs: Planning reports for managers

DISASTER: No win condition for inspectors. The
system was technically sound, but failed miserably.

(c) 1998 M Young CIS 422/522 5/4/98 17

Lollipops

 After the doctor gives the child a shot, she
also gives him a candy

[J Try to ensure a natural benefit for every class of
user on which a software system depends

[ If there is no natural benefit, invent a lollipop

- a software function that is not naturally part of
the system functionality, but which provides
enough benefit to encourage use

(c) 1998 M Young CIS 422/522 5/4/98 18

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
10

Systematizing the Domain

» We want to go from a Ptolmeic universe to a
Copernican universe
— A clean specification with general rules and few special
cases
» The user sees epicycles, and at first so does the
analyst

— Usually there is an (almost) orderly system, but it is
not easy to find

— Strange but true: Humans can use rules without being
aware of them. Example: Language.

(c) 1998 M Young CIS 422/522 5/4/98 19

Rule Discovery and Test

« Similar to scientific method
— Observe cases (procedures, special case rules)
— Hypothesize general rule
— Test hypothesis
* Probably can’t just ask
» Checking rule validity

— It is difficult for ananalysts or users to understand the
consequences of a rule
* quantification (“all”, “some”, “never”) is particularly hard

— Examples (“experiments”) can help

(c) 1998 M Young CIS 422/522 5/4/98 20

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
11

Examples as “Experiments”

« If a rule is valid, then all of its consequences
should be valid

— It is easier for the user to judge the validity of
particular examples than of the general rule
e Try to “cover” the rule
— Consider the “typical” case
— Consider “boundary” cases

— Especially consider “vacuous” cases of
quantifiers
* e.g, if rule says “if all foo are pink™, consider no foo

(c) 1998 M Young CIS 422/522 5/4/98 21

Using Redundancy

A general technique for identifying
and repairing faulty information

» Redundant examples

— Vary factors that shouldn’t matter (check for
hidden variables)

» Multiple reports

— Different users, with different viewpoints
should confirm rules
* a good confirmation must be capable of invalidating
the hypothesized rule; avoid bias toward the
original interpretation
— User should re-confirm (using a few different
examples) on another occasion

(c) 1998 M Young CIS 422/522 5/4/98 22

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
12

Scenarios

» Hypothetical situations and activities
— a “storyboard” is a presentation of a scenario

» Help the user describe requirements through
examples

» Help the user and analyst test rule consequences

— Like experimental design in the sciences, look
for consequences that could disconfirm a
hypothesis

— Confirmation through strange consequences is
more convincing than obvious consequences

(c) 1998 M Young CIS 422/522 5/4/98 23

Asking questions through scenarios

o “Suppose the furnace is in normal
operation, and then a wild value is recieved
from the sensor. How should the furnace
system react?”

» Look for general rules in the examples
» Look for exceptions to the general rules

(c) 1998 M Young CIS 422/522 5/4/98 24

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
13

Scenarios and Prototypes

* |f a prototype is produced in the
requirements phase (or in an earlier turn of
the spiral), it can be used to present
scenarios

— But mockups and “cardboard prototypes” can
often be good enough for requirements
clarification

(c) 1998 M Young CIS 422/522 5/4/98 25

Exceptional Conditions

» Be careful of “always”
— Explicitly ask for exceptions; explore extreme
cases
— Users sometimes say “Always X, (except when
Y)”
» Some “exceptions” are really consequences of a
general rule
» Some exceptions are not universally known
— especially: The manager may not know how
the rules are really applied

(c) 1998 M Young CIS 422/522 5/4/98 26

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
14

Exploring Undesired Events

» Explore desired responses to unusual and
undesired events

— Especially when replacing a manual system.
People are flexible and creative in coping with
problems; software systems aren’t

» Work forward from undesired events

» Work backward from undesired outcomes

— example: Never remove an old copy of data
until a new version is in place and verified

(c) 1998 M Young CIS 422/522 5/4/98 27

Likelihood of Change

» For each requirement and aspect of the system,
determine
— How likely is it to change over time?
— In what ways is it likely to change?

 Likelihood of change will guide modular
organization, where we “hide” design decisions
that may need to be changed

» Unfortunately, you can’t always believe what
you're told

— Reporting of past changes is often more accurate than
prediction of future changes

(c) 1998 M Young CIS 422/522 5/4/98 28

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



CIS 422/522 Spring 1998
15

Stratifying Requirements

» Developers need a hierarchy of subsets
— for “design to schedule” or incremental delivery
» Users may be reluctant to prioritize features
— especially if they fear losing the resource

— common in large organizations with centralized
development, and in organizations with perverse
budget incentives (encouragement to spend more)

 Incremental delivery may be easier to negotiate
than final feature set

(c) 1998 M Young CIS 422/522 5/4/98 29

© 1996-1998 Michal Young; portions © 1998 Mauro Pezze
For reprint permissions contact michal@cs.uoregon.edu



