
11

Michal Young, SERC 5/19/98 1

Software Maintenance

Overview

Michal Young, SERC 5/19/98 2

Post-Deployment Evolution
a.k.a. “maintenance”

• General definition: Any changes after deployment
• Unreliable statistics:

– More than 50% of total software cost
– More than 50% of budget
– Growing proportion as organization and products

mature

22

Michal Young, SERC 5/19/98 3

Why does software need maintenance?
(more old, unreliable statistics)

• Corrective (bug-fixes): 15%
• Adaptation: 18%
• Enhancement: 65%

These numbers are not reliable or consistent across
organizations ... but the basic picture is right: Most
maintenance involves evolution of software function,
not fixing bugs.

Michal Young, SERC 5/19/98 4

Maintenance is not a “phase”

• In traditional waterfall model (and some
textbooks), maintenance is treated as the final
“phase” of a project
– This might be appropriate if all or most of maintenance

were bug fixes

• In fact, maintenance involves activities from every
other phase
– AND it may involve adjusting products (documents)

from each phase

33

Michal Young, SERC 5/19/98 5

Decay

• Observation from OS/360:
– Each new version is more expensive than the previous,

and takes longer

• Belady on software “entropy”
– Software seems to be “decaying”
– Original structure is gradually lost through successive

changes in maintenance

Michal Young, SERC 5/19/98 6

How Software Rots

• Design is lost or out of date
• Comments are missing or wrong
• Each change makes it a little worse

– Fossil code accumulates
– “Secrets” leak out of modules

• Eventually there is no design, only an ecology of
code
– “What it should do” is replaced by “What it did

before”
– Bugs become features

44

Michal Young, SERC 5/19/98 7

Software Archeology

• Reverse engineering / visualization
– Extract structural views from existing software, using

static (and occasionally dynamic) analysis
– Typically semi-automatic, analysis + user-controlled

summarization. Main challenge is scale.
– Examples: Rigi system, Murphy’s reflexion models

• Query systems
– Example: ISI natural language query system

How can we make sense of a system
without adequate documentation?

Michal Young, SERC 5/19/98 8

Suggested Exercise

• Find the GCC source directory, or download it
• Imagine you are assigned to make a change

– Can you determine which parts are the compiler
“front end”, and which parts are the “back end”

– Could you find where to add a new control construct
to C++?

– Could you find where to add profiling code?
These things are possible, but they are harder than they

should be

• How much does the GCC “porting and
maintaining” document help?

55

Michal Young, SERC 5/19/98 9

Reflexion Models

• Comparing a design model to “as-built” system
– Map implementation components to modules in design

• Many implementation components (e.g., files) may be
associated with a single module

• Begins with a rough approximation (e.g., from file names and
directory structures), and improves iteratively

– Show augmented design model
• Where the design connections (e.g., “uses”) correspond to

the implementation
• Where a design conection is “missing”
• Where implementation has additional connections

G. Murphy & D. Notkin, 1995&

Michal Young, SERC 5/19/98 10

Restructuring

• Ideally, “information hiding” aids maintenance
– If a change was anticipated, it should be confined to the

“secret part” of a module
– In practice, we can’t always anticipate what will change

• If change is not contained, we may need to
restructure
– “move the walls” to keep change impact contained

• Change and restructure, or restructure and
change?
– Notkin & Sullivan: restructure first, so regression test

is easier

66

Michal Young, SERC 5/19/98 11

Perspective: Maintenance as Reuse

• Maintenance is reuse on a grand scale
– given system X, produce system X’

• Maintainable systems have reusable parts
– a component that survives much maintenance without

change can probably fit in another system as well

• Evolution should create reusable parts
– goal of restructuring is to facilitate current and future

reuse, given evidence of actual change

Michal Young, SERC 5/19/98 12

Preventive Maintenance

• To avoid decay, we must actively maintain
systems to enhance structure
– Contrary to the rule: “If it aint broke, don’t fix it”

• Opportunity-based restructuring
– A required change is an opportunity to make other,

structure-enhancing changes
– Always leave the system better than you found it

Note: This is a personal view of good practice, not widely
accepted in industry. The more common strategy is
occasional “redevelopment” of badly decayed systems.

77

Michal Young, SERC 5/19/98 13

Generalizing Software

• If part of a system requires frequent adaptation or
extension, it is a candidate for generalization
– Mechanism/policy split
– Table-driven processing
– Application generator
– . . .

• Generalized component may be highly reusable

Michal Young, SERC 5/19/98 14

Generalization examples

• Query language (vs. hard-coded queries)
• Simulation systems & languages
• Configuration tables (termcap, mailcap, etc.)
• Screen & user interface generators
• Spreadsheets, visual basic, user-programmable

databases

