
11

Michal Young, SERC 5/19/98 1

Software Reuse

From informal reuse (scavenging)
 to systematic reuse

Management and technical issues

Michal Young, SERC 5/19/98 2

Motivations

• Development cost
– it is (or should be) cheaper to use existing software

components than to develop them “from scratch”
– cost advantage is not only for code: also for

specifications, design, test, documentation

• Cycle time
– adapting existing software should be faster than writing

new software

• Predictability
– reuse and adaptation should not only be faster, but

should also be easier to predict

22

Michal Young, SERC 5/19/98 3

Stage 0: Scavenging

• Code scavenging: Use existing component as
“template” for new component
– New code (or document, or ...) is constructed by

editing an existing file which is “close” or has at least
some common parts

• Almost universal for code. Very few components
begin as empty files

• Often completely ad hoc and personal

Michal Young, SERC 5/19/98 4

Limitations of ad hoc scavenging

• Time savings are limited to initial coding
– Only code (not documents, not test cases, ...) are

reused
– Changes (editing) is arbitrary, so there is no savings in

test effort

• Maintenance problems
– Fixes and enhances must be applied to each copy of

reused code

33

Michal Young, SERC 5/19/98 5

Stage 0.5: Template libraries

• Organizational support for reuse
– Maintain a library of “template” modules

• Shared and classified for efficient location

– May include quality control (approved templates)
– Should include record keeping and traceability

• How many times was this template reused last year?
• Which modules are based on it?

• Still limited
– Maintaining several variants is still expensive
– Inspections, testing, user documentation etc. may be

accelerated but not fully reused

Michal Young, SERC 5/19/98 6

Stage 1: Component reuse

• Better to re-use a component without change
– Reuse testing, inspection, documentation, etc., not only

coding effort
– Component dependability improves with reuse
– Maintain and enhance one version

• Component library is an organizational asset
– Maintaining and enhancing it is an investment

44

Michal Young, SERC 5/19/98 7

Barriers to Component Reuse

• Organizational and contractual
– Customers (e.g., U.S. D.o.D.) who want to pay only for

“new development”
– Organizations that measure productivity by amount of

new code written
– Budgeting extra effort to produce general, reusable

components (typically 2x or 3x cost of single-use
component)

• Technical
– Finding, understanding, assessing, and “fitting”

components

Michal Young, SERC 5/19/98 8

Finding Reusable Components

• Partial match problem
– There is seldom a component that does exactly what is

needed; we look for components that do most of or
almost what is needed

• Example: Search the web for a “best bus route” component,
or parts. What do you look for?

• Sipping from the firehose (information overload)
– There are often too many components that do most of

or almost what we need.
– Many are not really suitable; it is easy to lose the few

that are.

55

Michal Young, SERC 5/19/98 9

Understanding Reusable Components

• Large libraries are complex
– Example: Leda graph structures/algorithms library

• Possibly no savings in the first use

– Example: Motif user interface toolkit (or Mac toolbox,
or Windows API, or ...)

• Documentation is essential
– Orientation to the library as a whole
– Indexing and organization to find what is needed
– Clear, complete descriptions of components and

(especially) component dependencies
– Complete examples (templates again?) are helpful

Michal Young, SERC 5/19/98 10

Assessing Reusable Components

• Does this component do what I need?
• Is it dependable?
• Is it (small | fast) enough?
• Does it fit?

66

Michal Young, SERC 5/19/98 11

Component Mismatch

• Analogy: My printer
• The printer is just fine — with 110v AC current, 50Hz
• In Italy it is useless

• Software component mismatches
– Wrong programming language
– Wrong interface

• file io vs. procedure arguments
• data push vs. data pull, internal vs. external control

– Wrong assumptions
• shared vs. copied structures
• error handling

Michal Young, SERC 5/19/98 12

Fitting Reusable Components

• A mismatch may not be fatal; we may be able
to adapt to a component

• Often there is more than one strategy
• Analogy: Adapt 220v to 110v for my printer, or

replace the transformer?
• Similar in circuit design: “glue logic” fits standard ICs

to their roles in the overall circuit

• Approaches
– Portability layer (for whole library), shims
– Wrappers, servers (for language & interface

mismatch)

77

Michal Young, SERC 5/19/98 13

Stage 1.5: Component Frameworks

• Organized component libraries with standard
“patterns” of use
– Patterns may be templates
– Clear overall principles of organization
– Inheritance may help organize library of OO

framework

• Examples (for user interface)
– MetroWerks PowerPlant; Microsoft Foundation

Classes; SmallTalk MVC

Michal Young, SERC 5/19/98 14

Investing in a Framework

• Wide scope frameworks are usually cheaper to
buy than to build
– Examples: The interface/application frameworks on

previous slide; domain-specific frameworks for
accounting, real-time control, simulation, etc.

• Narrow domain frameworks can be developed
gradually over time
– Accumulate, refine, organize: Not one big investment,

but an ongoing effort to build a foundation for future
development

88

Michal Young, SERC 5/19/98 15

Stage 2: Higher level programming

• There is no clear line between library and language
– Intermediate stage (1.75?) is partial generation of applications

using a framework (e.g., interface “painters”)

• Eventually a domain becomes “formalized”
– Standard notation and semantics with coresponding component

support for “programming” at the domain level
– Closely related to (domain-specific) software architectures and

virtual machines
– Example: SQL has (mostly) replaced lower-level programming of

database functions

Michal Young, SERC 5/19/98 16

From here to there ...

• It is probably not possible to jump from ad hoc reuse
to a framework in one step

• Premature efforts to build reusable components are usually wasted

• Incremental strategy
– Use ad hoc reuse to trigger reusable component

construction:
• Can I retrofit a generalized component to its original context and

the new context?

– Use maintenance history to identify the “right” component
interfaces:

• Can I factor the rapidly changing parts from the stable or slowly
evolving parts (e.g., with a mechanism/policy split)?

99

Michal Young, SERC 5/19/98 17

Management Support for Reuse

• Remove obstacles
– Reward system and corporate culture must place as high (or

higher) value on reusing and improving, as on producing entirely
new software

• Mistake to avoid: rewarding production of “reusable” components
more than actual reuse

• Organize and make visible
– Make identification, assessment, and adaptation of reusable parts

an explicit part of development
– Include feedback mechanisms

• Provide adequate support
– Budget extra effort to improve the asset
– BUT move incrementally — avoid a disasterous big-bang effort

Michal Young, SERC 5/19/98 18

Summary — Reuse

• More than just faster coding
– Goal is reuse of design, documentation, test and analysis, etc., and

reduction of maintenance effort, in addition to faster production
of software

• The situation is not so bad
– Commercial component frameworks are reuse successes on a

grand scale (but often ignored as such)
– But it could be better ... at the domain & organization level

• Some issues are non-technical
– Management and organization support are essential

• Reuse can be approached incremetally
– Gradually move from ad hoc reuse to component libraries,

frameworks, and domain engines

