
11

Michal Young, SERC 2/9/98 1

Model Checking

Static analysis techniques for finite-state
models and design representations

Michal Young, SERC 2/9/98 2

A note on terminology

• “Model checking” often means “temporal logic
model checking”
– And recently, often just “Symbolic model checking

with OBDD models”

• Related terms:
– Finite-state verification (of concurrent programs)
– Reachability analysis, concurrency analysis

• Closely related to flow analysis of sequential and
concurrent programs

22

Michal Young, SERC 2/9/98 3

Models and Formulae

• An object may be a model of a formula
– i.e., the models of a specification are objects that

satisfy it; an inconsistent specification has no models

• Model checking: Given an object and a formula
(specification), determine whether the object is a
model of the formula

• Models derived from programs or designs,
formulas express desired properties

Michal Young, SERC 2/9/98 4

Models & Formulae: Examples

• Models
– Control flow graphs, data flow graphs
– Reachability graphs (of Petri nets, process graphs, etc.)

• Formulae & other specs
– Logics: Propositional or first-order, ordinary or

temporal, real-time, authentication, . . .
– Languages: Regular expressions, context-free languages
– Particular properties of interest, e.g., freedom from

deadlock

33

Michal Young, SERC 2/9/98 5

Temporal Logic

• Like a standard (first order or propositional) logic
with additional connectives
– first-order: with quantifiers; propositional: without

◊ “eventually” (“future,” “somtime”) Abbrev: F
❑ “always” (“henceforth,” “globally”) Abbrev: G
U “until” Abbrev: U
❍ “next” (seldom desirable at spec level) X

Michal Young, SERC 2/9/98 6

Meaning of “Eventually”

• Interpret propositional temporal logic as first-order
statements about a sequence of program states S0, S1, ...

• Si |– p iff p is true in Si
• Si |– F p iff Sj |– p, for some j ≥ i

Si Sj

time
p

44

Michal Young, SERC 2/9/98 7

Alternate definition of “eventually”

• S |– p iff S0 |– p
• S |– F p iff S |– p or X S |– E p

– This latter definition is the basis of model-checking algorithms

Si Sj

time
p

Michal Young, SERC 2/9/98 8

Other temporal connectives

• Eventually q: q in this state, or
 eventually q in the next state

• Always p: p in this state, and
always p in the next state

• p Until q: q in this state, or
p in this state and p Until q in the next

• Next p: p in the next state

55

Michal Young, SERC 2/9/98 9

Why temporal logic?

• To say:
“Eventually the call gets through”
“Race conditions never occur”
“N/S green does not come on until E/W light is red”
“If scheduler is fair, all processes eventually run”

• Properties of progress, but not of metric time
• Especially for eventuality; safety (never, always) can

be specified in other ways

Michal Young, SERC 2/9/98 10

Why use logic at all?
vs. operational spec or model

• Twin dangers of over and under-specification
– Logic specs often say too little
– Operational models often say too much

• Combination appears to be attractive
– Say a few simple things with an appropriate logic
– If the logic gets messy, move part of it into another

kind of spec

• Example: Lamport’s transition axiom method
– State machine with invariants for safety properties,

temporal logic for liveness properties

66

Michal Young, SERC 2/9/98 11

Temporal logic model checking

• Given a graph model of a program
– State machine in which the propositional variables can

be evaluated

• Given a propositional temporal logic formula
• Determine whether the model satisfies (“is a

model of”) the formula

Michal Young, SERC 2/9/98 12

CTL: Restricted branching-time logic

• Branching time: Quantification over paths
– A graph of possible execution histories, not a single

path through the program
– A: All paths (from here)
– E: Some path (from here)

• Restriction: Require quantifier with each
temporal connective (for efficient checking)
– AF, EF (inevitably, potentially)
– AG, EG (always)
– AU, EU (until)

77

Michal Young, SERC 2/9/98 13

Checking AFp

• Evaluate p in every state
• Initialize AFp to false in every state
• Apply inductive definition in each state until no

values change
– actual algorithm is a depth-first search, 1 pass over the

graph

Michal Young, SERC 2/9/98 14

Model checking algorithm

• Decompose specification formula into a tree
• Each node => one pass over the graph
• Example: a and b:

– Evaluate a at each node
– Evaluate b at each node
– Combine a and b at each node

• For temporal connectives,
node values propogate along edges; order of
evaluation is important for 1-pass evaluation

88

Michal Young, SERC 2/9/98 15

Fixed points

• A fixed point of a function f is a value x
such that f(x) = x

• A set of equations (constraints) may have a
set of solutions (fixed points), among them
a least fixed point

• Inductive definitions of temporal
connectives can be formulated as finding a
least fixed point solution

Michal Young, SERC 2/9/98 16

Temporal logic & fixed points

• AF p == p or AX AF p
• EF p == p or EX EF p
• AG p == p and AX AG p
• p AU q == q or (p and AX (p AU q))

“AX” and “EX” mean: Look at (all, any) of the edges
from this node to its successors. The inductive
defintions become a set of constraints, and a fixed point
solution gives the value of the temporal formulae at each
node.

99

Michal Young, SERC 2/9/98 17

Expressiveness of CTL

• There is no CTL equivalent for
GF p => GF q
• And this does come up in practice!

– Example: If at least some packets get through, the
protocol will eventually deliver a message

• Solution: Hack the algorithm
• Hard-wire the fairness property into the model checking

algorithm
• See Clarke, Emerson, Sistla 85 (Toplas) for details

Michal Young, SERC 2/9/98 18

Complexity and Expressiveness

• Restricted branching time logics: CTL, LTAC
– linear time checking procedures: |f| * |M|

• Linear time logic: PTL
– 2^|f| * |M|

• Why? Because formula is evaluated (in the worst case) on all
paths.

• Cheap extensions:
– arbitrary state machines as temporal connectives
– PTL to CTL* (linear time to unrestricted branching

time)

1010

Michal Young, SERC 2/9/98 19

Symbolic Model Checking

• The model (graph) could be very large.
• Q: Can we do better than explicitly evaluating

formulae in every state?
• A: Not always, but sometimes symbolic

representations and lazy evaluation help
• Represent graph as next-state function

(symbolically), represent formula as evaluation

