Everything* you need to know about Process Algebra in 20 minutes**

**(more or less)
*(definitely less)

Motivation: Compositionality

- Compositionality \cong Modularity
- Ability to "compose" verifications of modules to verify a larger system
- Logic example: Verify a program using pre- and postconditions of verified procedures
- Practical requirement: Verification or analysis results must be summarizations
- Compositionality in finite-state verification
- Hierarchical analysis, summarizing results at each level
- Potentially control state-space explosion

Non-Compositional Analysis

- We cannot find all behaviors of $P\|Q\| R$ by finding behaviors of $\mathrm{P} \| \mathrm{Q}$, then composing with R

Adding Compositionality ...

- W e want algebraic structure
- Commutativity, associativity, and a congruence
Δ e.g., $A+B=C \Rightarrow A+D+B=A+B+D=(A+B)+D=C+D$
- N eeded:
- Account for "potential" behaviors of a subsystem
Δ in $(P \| Q) \| R$, the partial result $P \| Q$ should include action b
- ... but limit to interface actions
- record "potential" behaviors only if they are visible outside a module (e.g., actions a and b don't matter to process R)
- ... and simplify subsystem analyses
Δ the difference between [a] and [b] should not matter outside the subsystem P\|Q

Processes as Terms

- Description of cooperating processes
- Terms: similar to regular expressions
\triangle Context free processes are describable but too hairy
- Process graphs: state machines denoted by terms
\triangle Regular processes denote finite-state process graphs
- Algebraic laws
- Associative, commutative laws and substitution of equals for equals (and "less for equals") for incremental reasoning:
$X=A \| B$ implies $X\|C=A\| B \| C \quad$ (equivalence)
$X \leq A \| B$ implies $X\|C \leq A\| B \| C \quad$ (preorder)

Process Expressions

- Constants
δ (deadlock, or no action)
τ (internal, unobservable action, similar to ε)
$a, b, c, \ldots \quad 0$ bservable actions
- Expressions formed from
; (sequence, with a;b abbreviated as ab)
+ (choice)
| (synchronization of 2 events)

$$
a P \| b Q=(a \mid b)(P \| Q)+a(P \| b Q)+b(a P \| Q)
$$

Why $\tau \neq \varepsilon$

P1||Q will not deadlock
P2||Q may deadlock
The other axioms of regular expressions come across without change, but note $a b+a c=a(\tau b+\tau c)$.

Synchronization

- $a P \| b Q=(a \mid b)(P \| Q)+a(P| | b Q)+b(a P \| Q)$
i.e., one moves first or else they move together
- In general, a|b is some action c
- In CCS, a|-a is τ, other pairs are δ
- synchronization is rendezvous between action and coaction, and rendezvous is unobservable by other processes
- In CSP, ala is a, other pairs are δ
- synchonization is agreement to do the same thing

Product of Processes

Equivalence and Congruence

- Language equivalence is too coarse:
- $a b+a c=a(b+c)$, which we have seen is wrong
- W e want something nearly as coarse, but preserving deadlock, cheap to check and compute quotients
- Bisimulation:
- $P=Q$ iff P - $a->P^{\prime}$ implies $Q-a->Q^{\prime}$ and $P^{\prime}=Q^{\prime}$

$$
Q-a->Q^{\prime} \text { implies } P-a->P^{\prime} \text { and } P^{\prime}=Q^{\prime}
$$

- Strong bisim equivalent if we consider t an action
- W eak bisim equivalent if an action is ar*
- C heap to compute: similar to DFA minimization

Abstraction and Restriction

- Abstraction: Substitute τ for a
- Meaning: I don't care about a in this context
- Especially: I don't interact with that action
- Restriction: Substitute δ for a
- Meaning: That can't happen in this context
- Especially: That interface isn't visible here
- At module boundaries,
- Abstract actions that can happen "in the box"
- Restrict actions in internal interfaces

Simplifying $\mathrm{P}|\mid \mathrm{Q}$

- Restrict a,b and abstract [a], [b]

$(P|\mid Q) \backslash\{a, b\}:$

2/16/98

Preorder and Precongruence

- W e don't always want equivalence
- W e want to permit looser specs, like a super/sub-type relation among processes
- Example: Bounded queue of unspecified length
- A "preorder" relates specification \leq implementation
- The "testing" preorders
- may: language inclusion
\triangle if p may pass a test, q may pass that test
- must: failures inclusion
Δ if p must pass a test, q must pass that test

Why should I care?

- Congruence (or preferably pre-congruence) is a useful definition of conformance of an implementation to an interface specification
- Process product permits one to say "these processes to gether meet that spec"
- Abstraction and restriction are the semantic building blocks for modularity
- Algebraic structure is essential (but not sufficient) for reasoning hierarchically about complex systems

State-space exploration example: Alternating Bit Protocol

Alternating Bit Protocol:
 After reduction

- After restriction and abstraction, process graphs can be reduced to equivalent form with respect to a congruence relation

... but radical reductions in process graph size occur only when the system to be analyzed is "well-structured"

Scalable analysis

An example (redesigned)

Compositional analysis of revised design

Experience with Compositional Analysis using Process Algebra

- Has worked well for well-structured designs, poorly for code and "as built" designs
- (Re-)structuring for analysis is often necessary
- A nalyzable designs are more understandable and modifiable
- BUT ... real designs are seldom structured as we want
- AND W ORSE ... there are good reasons for "bad" structure in source code
Δ W e must accept that the relation between a verified design and the "as built" structure of a system will not be simple

