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Everything* you need to know about

Process Algebra
in 20 minutes**

**(more or less) 
*(definitely less)
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Motivation: Compositionality

◆ Compositionality ≅  Modularity
◆ Ability to “compose” verifications of modules to verify 

a larger system
◆ Logic example:  Verify a program using pre- and post-

conditions of verified procedures
◆ Practical requirement:  Verification or analysis results 

must be summarizations

◆ Compositionality in finite-state verification
◆ Hierarchical analysis, summarizing results at each level
◆ Potentially control state-space explosion
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Non-Compositional Analysis

◆ We cannot find all behaviors of P||Q||R by finding 
behaviors of P||Q, then composing with R
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[b]

P||Q:

-c

R:
-c

R:
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Adding Compositionality ...

◆ We want algebraic structure 
◆ Commutativity, associativity, and a congruence

▲ e.g., A+B = C ⇒  A+D+B = A+B+D = (A+B)+D = C+D

◆ Needed: 
◆ Account for “potential” behaviors of a subsystem

▲ in (P||Q)||R,  the partial result P||Q should include action b

◆ ... but limit to interface actions
▲ record “potential” behaviors only if they are visible outside a 

module (e.g., actions a and b don’t matter to process R)

◆ ... and simplify subsystem analyses
▲ the difference between [a] and [b] should not matter outside 

the subsystem P||Q
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Processes as Terms

◆ Description of cooperating processes
◆ Terms:  similar to regular expressions

▲ Context free processes are describable but too hairy

◆ Process graphs: state machines denoted by terms
▲ Regular processes denote finite-state process graphs

◆ Algebraic laws
◆ Associative, commutative laws and substitution of 

equals for equals (and “less for equals”) for 
incremental reasoning: 
X = A||B implies  X||C = A||B||C     (equivalence)
X ≤ A||B implies  X||C ≤ A||B||C     (preorder)
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Process Expressions

◆ Constants
δ (deadlock, or no action)
τ (internal, unobservable action, similar to ε)
a,b,c, ...   Observable actions

◆ Expressions formed from 
; (sequence, with a;b abbreviated as ab)
+ (choice)
| (synchronization of 2 events)

aP||bQ = (a|b)(P||Q) + a(P||bQ) + b(aP||Q)
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Why τ  ε

The other axioms of regular expressions come across 
without change, but note ab+ac = a(τb + τc).

a

b c

a

b c

τ τ

-a

-b

P1: P2: Q:

P1||Q will not deadlock
P2||Q may deadlock
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Synchronization

◆ aP||bQ = (a|b)(P||Q) + a(P||bQ) + b(aP||Q)
i.e., one moves first or else they move together

◆ In general, a|b is some action c

◆ In CCS, a|-a is τ, other pairs are δ
◆ synchronization is rendezvous between action and co-

action, and rendezvous is unobservable by other 
processes

◆ In CSP, a|a is a, other pairs are δ
◆ synchonization is agreement to do the same thing
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Product of Processes
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This is progress? 

(not unless we can simplify the 
intermediate product)

P||Q:
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Equivalence and Congruence

◆ Language equivalence is too coarse: 
◆ ab + ac = a(b+c), which we have seen is wrong
◆ We want something nearly as coarse, but preserving 

deadlock, cheap to check and compute quotients

◆ Bisimulation: 
◆ P=Q iff P -a-> P’ implies Q -a->Q’ and P’=Q’

 Q -a->Q’ implies P -a-> P’ and P’=Q’
◆ Strong bisim equivalent if we consider t an action
◆ Weak bisim equivalent if an action is aτ*
◆ Cheap to compute: similar to DFA minimization
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Abstraction and Restriction

◆ Abstraction:  Substitute τ for a
◆ Meaning:  I don’t care about a in this context
◆ Especially: I don’t interact with that action

◆ Restriction: Substitute δ for a
◆ Meaning:  That can’t happen in this context
◆ Especially:  That interface isn’t visible here

◆ At module boundaries,
◆ Abstract actions that can happen “in the box”
◆ Restrict actions in internal interfaces
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Simplifying P||Q

◆ Restrict a,b and abstract [a], [b]
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Preorder and Precongruence

◆ We don’t always want equivalence
◆ We want to permit looser specs, like a super/sub-type 

relation among processes
◆ Example: Bounded queue of unspecified length
◆ A “preorder”  relates specification ≤ implementation

◆ The “testing” preorders
◆ may:  language inclusion

▲ if p may pass a test, q may pass that test

◆ must: failures inclusion
▲ if p must pass a test, q must pass that test
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Why should I care?

◆ Congruence (or preferably pre-congruence) is a 
useful definition of conformance of an 
implementation to an interface specification

◆ Process product permits one to say “these 
processes together meet that spec”

◆ Abstraction and restriction are the semantic 
building blocks for modularity

◆ Algebraic structure is essential (but not sufficient) 
for reasoning hierarchically about complex 
systems
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State-space exploration example:
Alternating Bit Protocol
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◆ After restriction and 
abstraction, process 
graphs 
can be reduced to 
equivalent form with 
respect 
to a congruence relation 

Alternating Bit Protocol: 
After reduction

 

-mm

... but radical reductions in process graph size occur only when 
the system to be analyzed is “well-structured”
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Scalable analysis

◆ When compositional 
analysis “works”, 
reductions at 
intermediate steps 
keep state-space to 
manageable 
proportions

◆ The question is, 
when does (or can) 
it work? 
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For the simple “dining 
philosophers” problem, both 
compositional and non-
enumerative approaches 
scale linearly with the 
number of processes
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An example (redesigned)
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Compositional analysis 
of revised design
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Experience with Compositional Analysis 
using Process Algebra

◆ Has worked well for well-structured designs, 
poorly for code and “as built” designs

◆ (Re-)structuring for analysis is often necessary
◆ Analyzable designs are more understandable and 

modifiable
◆ BUT ... real designs are seldom structured as we want
◆ AND WORSE ... there are good reasons for “bad” 

structure in source code
▲ We must accept that the relation between a verified design 

and the “as built” structure of a system will not be simple


