
Michal Young

2/16/98 1

2/16/98 1CIS 610, W98

Everything* you need to know about

Process Algebra
in 20 minutes**

**(more or less)
*(definitely less)

2/16/98 2CIS 610, W98

Motivation: Compositionality

◆ Compositionality ≅ Modularity
◆ Ability to “compose” verifications of modules to verify

a larger system
◆ Logic example: Verify a program using pre- and post-

conditions of verified procedures
◆ Practical requirement: Verification or analysis results

must be summarizations

◆ Compositionality in finite-state verification
◆ Hierarchical analysis, summarizing results at each level
◆ Potentially control state-space explosion

Michal Young

2/16/98 2

2/16/98 3CIS 610, W98

Non-Compositional Analysis

◆ We cannot find all behaviors of P||Q||R by finding
behaviors of P||Q, then composing with R

a

b c

P:

-a

-b

Q:

[a]

[b]

P||Q:

-c

R:
-c

R:

2/16/98 4CIS 610, W98

Adding Compositionality ...

◆ We want algebraic structure
◆ Commutativity, associativity, and a congruence

▲ e.g., A+B = C ⇒ A+D+B = A+B+D = (A+B)+D = C+D

◆ Needed:
◆ Account for “potential” behaviors of a subsystem

▲ in (P||Q)||R, the partial result P||Q should include action b

◆ ... but limit to interface actions
▲ record “potential” behaviors only if they are visible outside a

module (e.g., actions a and b don’t matter to process R)

◆ ... and simplify subsystem analyses
▲ the difference between [a] and [b] should not matter outside

the subsystem P||Q

Michal Young

2/16/98 3

2/16/98 5CIS 610, W98

Processes as Terms

◆ Description of cooperating processes
◆ Terms: similar to regular expressions

▲ Context free processes are describable but too hairy

◆ Process graphs: state machines denoted by terms
▲ Regular processes denote finite-state process graphs

◆ Algebraic laws
◆ Associative, commutative laws and substitution of

equals for equals (and “less for equals”) for
incremental reasoning:
X = A||B implies X||C = A||B||C (equivalence)
X ≤ A||B implies X||C ≤ A||B||C (preorder)

2/16/98 6CIS 610, W98

Process Expressions

◆ Constants
δ (deadlock, or no action)
τ (internal, unobservable action, similar to ε)
a,b,c, ... Observable actions

◆ Expressions formed from
; (sequence, with a;b abbreviated as ab)
+ (choice)
| (synchronization of 2 events)

aP||bQ = (a|b)(P||Q) + a(P||bQ) + b(aP||Q)

Michal Young

2/16/98 4

2/16/98 7CIS 610, W98

Why τ ε

The other axioms of regular expressions come across
without change, but note ab+ac = a(τb + τc).

a

b c

a

b c

τ τ

-a

-b

P1: P2: Q:

P1||Q will not deadlock
P2||Q may deadlock

2/16/98 8CIS 610, W98

Synchronization

◆ aP||bQ = (a|b)(P||Q) + a(P||bQ) + b(aP||Q)
i.e., one moves first or else they move together

◆ In general, a|b is some action c

◆ In CCS, a|-a is τ, other pairs are δ
◆ synchronization is rendezvous between action and co-

action, and rendezvous is unobservable by other
processes

◆ In CSP, a|a is a, other pairs are δ
◆ synchonization is agreement to do the same thing

Michal Young

2/16/98 5

2/16/98 9CIS 610, W98

Product of Processes

a

b c

P:
-a

-b

Q:
-a

-b

-a

-b

b

c

a

a
b

c

b

c

-a

-a

a

-b

-b

[a]

[b]

This is progress?

(not unless we can simplify the
intermediate product)

P||Q:

2/16/98 10CIS 610, W98

Equivalence and Congruence

◆ Language equivalence is too coarse:
◆ ab + ac = a(b+c), which we have seen is wrong
◆ We want something nearly as coarse, but preserving

deadlock, cheap to check and compute quotients

◆ Bisimulation:
◆ P=Q iff P -a-> P’ implies Q -a->Q’ and P’=Q’

 Q -a->Q’ implies P -a-> P’ and P’=Q’
◆ Strong bisim equivalent if we consider t an action
◆ Weak bisim equivalent if an action is aτ*
◆ Cheap to compute: similar to DFA minimization

Michal Young

2/16/98 6

2/16/98 11CIS 610, W98

Abstraction and Restriction

◆ Abstraction: Substitute τ for a
◆ Meaning: I don’t care about a in this context
◆ Especially: I don’t interact with that action

◆ Restriction: Substitute δ for a
◆ Meaning: That can’t happen in this context
◆ Especially: That interface isn’t visible here

◆ At module boundaries,
◆ Abstract actions that can happen “in the box”
◆ Restrict actions in internal interfaces

2/16/98 12CIS 610, W98

Simplifying P||Q

◆ Restrict a,b and abstract [a], [b]

-a

-b

-a

-b

b

c

a

a
b

c

b

c

-a

-a

a

-b

-b

[a]

[b]

P||Q:

τ

(P||Q)\{a,b}:

τ c

Michal Young

2/16/98 7

2/16/98 13CIS 610, W98

Preorder and Precongruence

◆ We don’t always want equivalence
◆ We want to permit looser specs, like a super/sub-type

relation among processes
◆ Example: Bounded queue of unspecified length
◆ A “preorder” relates specification ≤ implementation

◆ The “testing” preorders
◆ may: language inclusion

▲ if p may pass a test, q may pass that test

◆ must: failures inclusion
▲ if p must pass a test, q must pass that test

2/16/98 14CIS 610, W98

Why should I care?

◆ Congruence (or preferably pre-congruence) is a
useful definition of conformance of an
implementation to an interface specification

◆ Process product permits one to say “these
processes together meet that spec”

◆ Abstraction and restriction are the semantic
building blocks for modularity

◆ Algebraic structure is essential (but not sufficient)
for reasoning hierarchically about complex
systems

Michal Young

2/16/98 8

2/16/98 15CIS 610, W98

State-space exploration example:
Alternating Bit Protocol

-m

-a0

-m

m0

m1

-a1

-a1
-n0
-n1

η

η

-a0
-n0
-n1

-m0

-m1

n0 η

a1

η

η

η

m

a0

-m1

-m0

n1

m

-m

-mm

m

m

m

2/16/98 16CIS 610, W98

◆ After restriction and
abstraction, process
graphs
can be reduced to
equivalent form with
respect
to a congruence relation

Alternating Bit Protocol:
After reduction

-mm

... but radical reductions in process graph size occur only when
the system to be analyzed is “well-structured”

Michal Young

2/16/98 9

2/16/98 17CIS 610, W98

Scalable analysis

◆ When compositional
analysis “works”,
reductions at
intermediate steps
keep state-space to
manageable
proportions

◆ The question is,
when does (or can)
it work?

5 10 20 50 100 philosophers

3

10

30

100

300

1000

3000

10000
seconds PAL, global analysis

CATS, global analysis

PAL, hierarchical analysis

constrained expression
 analysis

For the simple “dining
philosophers” problem, both
compositional and non-
enumerative approaches
scale linearly with the
number of processes

2/16/98 18CIS 610, W98

An example (redesigned)

R
ea

dT
em

p S
en

d

AckNak

X
p

A
ck

N
ak

Xp_ack

in
_c

ha
n

R
ec

v

R
sl

t

R
ec

v

S
en

d

AckNak

X
p

In
_c

ha
n

Xp_ack

A
ck

N
ak

N
ew

In
t

A
le

rt

ReadTemp

Req

UI

XP
OUT XO

ACK
IN

XI

ACK
OUT

 CP
INPUT

CP
FPACK

INTR FURNACES

THERMOMETER

DEVICES

DP

XP
OUTXOXI

ACK
IN

ACK
OUT

 DP
INPUT

CLIENT REMOTE FURNACE SYSTEM

DT_Intr

Michal Young

2/16/98 10

2/16/98 19CIS 610, W98

Compositional analysis
of revised design

Furnace System

UI

FPACK THERMOMETER

NEW_INT

FURNACES

DEVICES

 CP
INPUT CP

XP
OUT

ACK
IN

ACK
OUT

XI XO

 DP
INPUT DP

XP
OUT

ACK
IN

ACK
OUT

XI XO

6^2

2^2

6=>3

234=>170

444=>35310=>5

6 6

9

325=>5

5

90=>70

378=>28810=>5

296=>4

7=>4

5

6 6

29=>7 7=>4

15=>15 24=>22

61=>2

6

4

364=>50

body
body

4=>3
6

12=>11

33=>26

9=>8

11=>10

21=>18

2/16/98 20CIS 610, W98

Experience with Compositional Analysis
using Process Algebra

◆ Has worked well for well-structured designs,
poorly for code and “as built” designs

◆ (Re-)structuring for analysis is often necessary
◆ Analyzable designs are more understandable and

modifiable
◆ BUT ... real designs are seldom structured as we want
◆ AND WORSE ... there are good reasons for “bad”

structure in source code
▲ We must accept that the relation between a verified design

and the “as built” structure of a system will not be simple

