
OFFICE OF SAFETY AND MISSION ASSURANCE NASA-GB-A302

SOFTWARE FORMAL INSPECTIONS GUIDEBOOK

National Aeronautics and
Space Administration
Washington, DC 20546

Approved: August 1993

FOREWORD

The Software Formal Inspections Guidebook is designed to support
the inspection process of software developed by and for NASA.
This document provides information on how to implement a
recommended and proven method for conducting formal inspections
of NASA software.

This Guidebook is a companion document to NASA Standard 2202-93,
Software Formal Inspections Standard, approved April 1993, which
provides the rules, procedures, and specific requirements for
conducting software formal inspections. Application of the Formal
Inspections Standard is optional to NASA program or project
management. In cases where program or project management decide
to use the formal inspections method, this Guidebook provides
additional information on how to establish and implement the
process.

The goal of the formal inspections process as documented in the
above-mentioned Standard and this Guidebook is to provide a
framework and model for an inspection process that will enable
the detection and elimination of defects as early as possible in
the software life cycle. An ancillary aspect of the formal
inspection process incorporates the collection and analysis of
inspection data to effect continual improvement in the inspection
process and the quality of the software subjected to the process.

The software formal inspection process supports NASA Management
Instruction (NMI) 2410.10B, NASA Software Management, Assurance,
and Engineering Policy, effective April 20, 1993.

This document has been prepared under the direction of the
personnel shown on the following page. Specific questions
concerning this publication should be referred to one of them,
while general questions should be referred to the Office of
Safety and Mission Assurance, NASA Headquarters, Washington, D.C.
20546.~
Original signed by

Charles W. Mertz
Acting Associate Administrator for Safety and Mission Assurance

NASA-GB-A302

SOFTWARE FORMAL INSPECTIONS GUIDEBOOK

Approvals

(Original Signed by)

Lawrence E. Hyatt
Manager, Software Assurance Technology Center

(Original Signed by)

Alice Robinson
Manager, NASA Software Assurance Program

(Original Signed by)

Dr. Daniel Mulville
Director, Engineering Division

TABLE OF CONTENTS

Section and title Page
FOREWORD 2

I. GENERAL 6
II. CONCEPTS AND DEFINITIONS 7
III. THE FORMAL INSPECTION PROCESS 9

A. Planing 11
B. Overview 12
C. Preparation 12
D. Inspection Meeting 13
E. Third Hour 14
F. Rework 15
G. Reinspection 15
H. follow-up 15

IV. THE INSPECTION TEAM 16
A. Inspectors 16
B. Moderator 16
C. Reader 17
D. Recorder 17
E. Author 17

V. FORMAL INSPECTIONS DURING THE SOFTWARE LIFE CYCLE 18
A. Software Concept and Initiation Phase 18
B. Software Requirements Phase 18
C. Software Architectural (Preliminary) Design Phase 18
D. Software Detailed Design Phase 19
E. Software Implementation Phase 19
F. Software Integration and Test Phase 19
G. Software Acceptance and Delivery Phase 20
H. Software Sustaining Engineering and Operations Phase 20

Vl. STARTING A FORMAL INSPECTIONS PROGRAM 21
VII. PROCESS EVALUATION AND IMPROVEMENT 24
VIII SUMMARY 26
APPENDIX A Sample Checklists 27
APPENDIX B Sample Inspection Forms 68
APPENDIX C References 69

Note: The following items are not available in this electronic
version:

Table 1 Candidate Work Products for Formal Inspections
Table 2 Scheduling Guidelines for Inspections
Figure 1 Formal Inspections Process - Stages and People

I. GENERAL

Software formal inspections are in-process technical reviews of a
product of the software life cycle conducted for the purpose of
finding and eliminating defects. Formal inspections may be
applied to any product or partial product of the software
development process, including requirements, design, and code.
Formal inspections are embedded in the process of developing
products and are done in the early stages of each product's
development.

Formal inspections were developed by Michael Fagan at IBM to
improve software quality and increase programmer productivity. As
such, the formal inspection process involves the interaction of
the following five elements:

o Well-defined inspection steps

o Well-defined roles for participants (moderator, recorder,
reader author, inspector)

o Formal collection of process and product data

o The product being inspected

o A supporting infrastructure

The formal inspection process was designed to help the developing
organization produce a better product. The process also provides
other advantages. As defects are found and fixed the quality of
the product increases. A more technically correct base is
available for the each new phase of development. The overall
software life cycle cost is lower since defects are found early
and are easier and less expensive to fix. The effectiveness of the
test activity is increased and less time may have to be devoted to
testing the product. Another important benefit of formal
inspections is the immediate evaluation and feedback to the author
from his/her peers which will bring about improvements in the
quality of future products.

This guidebook describes the formal inspection process, shows
where formal inspections fit during each life cycle phase, and
provides some suggestions on how a formal inspection program may
be started and improved. It is intended as a tutorial
introduction to the inspection process. The Software Formal
Inspection Process Standard, NASA-STD-2202-93 should be cited and
used where formal definition of the process is needed, such as in
process requirements and contracts.

II. CONCEPTS AND DEFINITIONS

A software formal inspection is a defect detection, defect
elimination, and correction verification process carried out by a
small group during the development life cycle. A defect is any
error, nonconformance, or failure to satisfy a requirement in a
product. The goal of formal inspections is to ensure that defects
are fixed early in the life cycle rather than late, when they are
harder to find and more costly to fix. Formal inspections are
held throughout the software development life cycle phases to
correct the products and to provide a short feedback loop for
authors.

Formal inspections are distinguished from other types of peer
reviews in that they follow a well-defined, tried, and proven
process for evaluating, in detail, the actual product or partial
product with the intent of finding defects (see Section III).
They are conducted by individuals from development, test, and
assurance, and may include users. Formal inspections are more
rigorous and well-defined than other peer review processes such as
walkthroughs, and significantly more effective. Inspections do
not take the place of milestone reviews, status reviews, or
testing.

Table 1 provides a list of candidate work products for formal
inspections. The first category, Typical Work Products, indicates
the most likely candidates for inspections. The designations in
parentheses are commonly used by Fagan and others and are included
for reference. The second category in Table 1, Additional
Candidate Work Products, shows that virtually any product that has
requirements, constraints, and guidelines can be examined by using
the formal inspection process.

Inspections should be used to judge the quality of the software
work product, not the quality of the people who create the
product. For this reason, managers should neither participate in
nor attend the inspection meeting. In addition, the results of
inspections should be presented to management either statistically
or as results for groups of products. This grouping of results
will show managers the value of the inspection process without
singling out any author. Using the inspection process to judge
the capability of authors may result in less than honest and
thorough results; that is, co-workers may be reluctant to identify
defects if finding them will result in a poor performance review
for a colleague.

Formal inspections are performed by a team that may be comprised
of a moderator, reader, recorder, author, and other inspectors.
The actual team size should consist of four to seven persons,
although a minimum of three is acceptable. Each team member has a
specific, defined role. In addition, it is the responsibility of
the entire inspection team to find and report defects; therefore,
all members of the team are considered inspectors. The
moderator's primary responsibility is to accomplish a good

inspection. In addition, the moderator selects team members,
prepares the team for the inspection, conducts the inspection
meeting, and reports on the results. The reader's responsibility
is to guide the team through the work product. The recorder's
responsibility is to accurately report each defect during the
inspection meeting. The author's responsibility is to answer
inspectors' questions and, after the inspection meeting, correct
found defects. In addition, support may be provided to the
inspection process by the project library, which may assist the
moderator in keeping the status and statistics of formal
inspections. Refer to Section IV for more extensive information
on each role.

Entrance and exit criteria are used to determine if a product is
ready to be inspected (entrance) and has successfully completed
the process (exit). Entrance criteria to be satisfied depend on
the product, but generally involve a determination that the
product is mature enough to be used as is after defects are
removed. For example, entrance criteria for a code inspection are
usually that the code has been compiled successfully and run
through any static analyzers used by the project, such as an
automated standards checker. It should not, however, have been
tested. Exit criteria are used mainly to assure that major
defects found during the inspection process have been corrected.
Correction of minor defects, those that will have no impact on the
use of the product, may not be required by exit criteria. All
work on the product to be inspected should cease once it has been
submitted for inspection, otherwise the purpose of the inspection
process will be defeated. Thus, the inspection must be scheduled
in a timely manner.

The formal inspection process and its results are supported and
documented by a set of forms. Some of the forms that may be used
are: Inspection Announcement, completed by the moderator, that
notifies participants of the inspection date, time, location, and
other important information; Preparation Logs, completed by each
inspector, that list defects found and time spent in preparation;
and an Inspection Defect List, completed by the recorder, to
provide information on each defect. In addition, the moderator
should complete a Detailed Inspection Report at the end of each
inspection. Other useful forms include checklists that provide
guidance for inspectors in finding possible defects, and the
Inspection Summary Report that summarizes data found during the
inspection. Refer to Appendix A for sample checklists, and
Appendix B for sample inspection forms.

III. THE FORMAL INSPECTION PROCESS

In order to use the formal inspection technique to its fullest
extent, i.e., to increase product quality while maintaining cost
effectiveness, it is important to follow the procedures that have
been tested and refined. A formal inspection is accomplished
through a series of steps or stages using a trained inspection
team. Team members include the moderator, reader, recorder,
author, and other inspectors. Figure 1 is a chart of the formal
inspection process and team members.

The seven stages that comprise the inspection process are
described briefly below. In addition, if reinspection is
required, several stages may be repeated if a high number of
defects were found during the inspection or if defects required
complex corrections. Determination of the need for reinspection
is done by the inspection team at the end of the inspection
meeting.

Planning The period of time used to determine whether
the product to be inspected meets the entry
criteria, plan the inspection, select the
team, assign roles, schedule the inspection
meeting, and prepare and distribute the
inspection forms materials. In addition, a
determination is made on whether to hold an
overview.

Overview The optional stage in which the inspection
team is provided with background information
for the inspection. This stage may not be
necessary if the team is already familiar with
the product being inspected.

Preparation Key stage in which members of the inspection
team prepare individually for the inspection
by reviewing and finding potential defects in
the product being inspected. Potential defects
found by individuals are discussed during the
actual inspection meeting.

Inspection Meeting Meeting where team members as a group review
the product to find, categorize, and record,
but not resolve, defects.

Third Hour Optional additional time, apart from the
inspection meeting, that can be used for
discussion, possible solutions, or closure of
open issues raised in the inspection meeting.

Rework Stage when the author corrects defects found
during the inspection.

Follow-up Short meeting between the moderator and author
to determine if defects found during the
inspection meeting have been corrected and to
ensure that no additional defects have been
introduced.

Each stage of the formal inspection process is addressed more
completely in the following sections. The responsibilities of
each member of the inspection team are described in Section IV.

A. Planning

Activities in the planning stage are performed primarily by the
moderator, who assures that the product is ready for inspection,
selects the inspection team and assigns roles, schedules the
meeting place and time, and assures the distribution of inspection
materials. Inspection materials include the product to be
inspected, the inspection announcement, the preparation log,
background information, and checklists.

Entrance criteria are used to screen out products that are not
ready for inspection. For example, the entrance criteria for
inspection of code should require that a clean compilation has
been achieved. Entrance criteria should also specify that
available automatic tool checking (using such tools as static
analyzers, spell checkers, CASE tools, compilers, etc.) should be
performed prior to distributing material to the inspection team.

The moderator determines whether the product to be inspected is of
reasonable size so that the inspection can be completed in one
meeting. If not, the moderator divides the product into
manageable pieces. Sample size criteria are given in Table 2.
The moderator then selects members for the inspection team and
assigns them roles (See Section IV). An inspection package
containing the product to be inspected, checklists, references to
relevant higher level documents, and blank preparation logs should
be distributed to all inspection team members. Sample checklists
and inspection forms are provided in Appendix A and Appendix B,
respectively.

The moderator also must decide whether the inspection team members
are adequately familiar with the material to be inspected or
whether an overview must be held. The team should know the
background material from which the product was derived (e.g.,
design and requirements for source code). The team also should
know how the material fits into the overall system being
developed. In most cases, team members will be adequately
familiar from their own work on the project. If they are not, an
overview by the author should be scheduled.

If there is a project library, it may support the moderator during
the planning stage by keeping records of the items to be inspected
and those that have been completed. Once the moderator selects
the inspection team, the library may provide each inspector with
the inspection package. The project library can provide copies of
reference and backup material to the inspection team. If there is
no project library, or if the library cannot provide the needed
support, the moderator must perform these functions.

B. Overview

The overview is an optional stage that is scheduled if the
inspection team is not familiar with the material being inspected
and its background. At the overview, the author presents the
rationale for the product, its relationship to the rest of the
products being developed, its function and intended use, and the
approach used in developing it. This information is necessary to
the inspection team so that it can perform a successful
inspection. Interested persons aside from the inspection team may
be invited to attend; however, all team members must attend.

An overview is scheduled if one or more of the following
circumstances apply:

o The inspection team is not familiar with the product.

o The product is new or is being inspected for the first time.

o Inspections are new to the project.

o Novel techniques have been used in the product.

C. Preparation

Preparation is the key part of the inspection process. During
this stage, inspection team members individually prepare for their
roles in the inspection meeting. Each inspector reviews the
product line by line. The inspector looks at the product for
general problems as well as those related to his/her specific area
of expertise. Checklists should be used during this stage for
guidance on typical types of defects to be found in the type of
product being inspected. In addition, the product being inspected
is checked against higher level work products, standards, and
interface documents to assure compliance and correctness. While
familiarizing themselves with the product, inspectors record on
the preparation log the defects found and the time spent during
preparation. Completed preparation logs are submitted to the
moderator prior to the inspection meeting. Sample checklists are
shown in Appendix A; sample inspection forms are included in
Appendix B.

Prior to the inspection meeting, the moderator reviews the logs
submitted by each inspector to determine whether the team is
adequately prepared. The moderator also checks for trouble spots
that may need extra attention during the inspection, common
defects that can be categorized quickly, and areas of major
concern. If the logs indicate that the team is not adequately
prepared, the moderator should reschedule the inspection meeting,
as a team not fully prepared will waste time and will not be
effective in finding defects. Preparation Log forms are returned
to the inspectors at the inspection meeting for their use in
pointing out defects.

D. Inspection Meeting

During the inspection meeting, the inspectors review the product
as a team. Again, the focus of the meeting is finding defects.
Briefly, the activities of the inspection meeting are: the reader
provides a logical reading and interpretation of the product, the
author provides clarifying information as needed, and the team
identifies defects that are classified and recorded.

The moderator calls the meeting to order and notes the product
being inspected. If the team is new or contains new members, the
moderator may begin the inspection meeting by introducing team
members, briefly describing their roles, and restating the purpose
of the inspection and the product.

The reader then begins a logical and orderly interpretation of the
product. This description should note the function of items
(e.g., paragraphs, code blocks) and their relationship to the
product and higher level documents. The inspection meeting is
structured so that any inspector may interrupt the reader at any
time when an item containing a possible defect is read. If a
short discussion of the possible defect is needed, the reading is
halted temporarily. The reading is resumed when the defect is
noted and categorized by the recorder on the inspection defect
list (see Appendix B). The moderator should try to limit
discussions that appear to be consuming too much of the inspection
meeting time. Imposing a time limit on discussions may be useful.
If discussions are not completed within the time limit, the
moderator will declare the issue unresolved and proceed with the
meeting. The recorder should note unresolved issues as open items
to be resolved during the third hour (see section E.).

The team should reach a consensus on whether each possible defect
raised is an actual defect. Sometimes, what seems to be a
potential defect may be a mistake on the part of the inspector or
is only a misunderstanding that may be clarified by the author .
If consensus cannot be reached, the potential defect should be
recorded as an open issue to be dispositioned during the third
hour. This ensures the right of every inspector to have each
possible defect recorded and resolved. The recorder will itemize
each agreed upon defect by recording its location, a brief
description, its classification, and the inspector who found it.

The question of whether a potential defect is a real defect may be
resolved by reference to parent documents, which should be
available to the inspectors. If the discussion identifies the
parent document as potentially in error, an open issue should be
noted and the inspection should continue. Resolution of the issue
(whether the defect is in the product being inspected or in the
parent document) can be done during the third hour. Open issues
are logged on the Inspection Report form.

To determine the priority for fixing the defects in the product,
the inspection team or moderator should classify them by severity

(major or minor). For example, a defect that would cause the
system to fail to satisfy a requirement would be classified as
major; all others would be classified as minor (e.g.,
typographical errors, minor standards violation,). Additional
data collected from each inspection is the classification of
defects by type such as data error, requirements compliance,
standards compliance, logic, interface, data, performance, and
readability. If using the Inspection Defect List sample form in
Appendix B, this information goes in the "Type" field for each
defect.

At the end of the meeting, the number of defects are summarized,
and the moderator and/or the team determines whether reinspection
will be needed. At this time, the moderator also determines
whether a third-hour activity is needed. If a third hour is
needed, action items are assigned to individual inspectors at this
time.

The team must focus on finding defects and should not be
concerned with other activities such as problem solving. It is
the responsibility of the moderator to control and focus the
meeting. To avoid fatigue and thus missing defects, the
inspection meeting should be limited to 2 hours. If the
inspection is not completed in the original meeting, a second
meeting must be scheduled.

After the meeting, the author and moderator meet briefly to
estimate rework time and schedule the follow-up meeting. The
author is given a copy of the defect list for reference during
rework. Note that formal discrepancy reports (DRs) and change
requests (CRs) are not written against defects found in the
document or code being inspected; however, discrepancy reports
should be written against any defects found in higher level
documents. The reason that DRs and CRs are not required is that
inspections take place before the product is under configuration
control and that closure is assured by the defect list, the follow
up stage, and by reinspections.

E. Third Hour

The third hour is time that is used for discussion or for closing
open issues. A third hour should be scheduled when the author
wishes to discuss corrections of defects found, or when open
issues, such as a potential major defects in parent (higher level
reference) documents, need to be dispositioned. The third hour
may take the form of an additional meeting or of time for team
members to perform and report on action items. It does not have
to take place immediately after the inspection meeting and it does
not have to be limited to 1 hour.

When used as meeting time, the third hour provides an opportunity
to discuss solutions and resolve disagreements. Attendees may
include any subset or superset of the inspection team including
relevant managers (present for technical reasons only), outside

technical experts, and other people who could be affected by the
way the defect is fixed or the issue resolved. In many cases,
only those inspectors who have a specific interest need attend.
During a third hour meeting, the author is provided with
information that would make rework more effective, major defects
found in parent documents are reported, and any open issues
remaining from the inspection are resolved.

When used as an opportunity for individual inspectors to perform
action items, the third hour usually is spent researching and
dispositioning open issues, finding information to resolve a
discrepancy, or writing discrepancy reports or change requests for
major defects found in parent documents under configuration
management.

F. Rework

The purpose of rework is to correct defects found during the
inspection. The author is responsible for correcting all major
defects noted in the inspection defect list. Minor defects should
be resolved if cost and schedule permit. The moderator should
make sure that information generated from any open issues or
action items are communicated to and addressed by the author .

G. Reinspection

Reinspection may be required when there are a large number of
defects in the product or when one or more defects require
extensive or complicated corrections. Reinspection allows the
changes to the product to be reviewed by the entire team instead
of just the moderator. The moderator and the team decide the
necessity for reinspection at the end of the inspection meeting.

H. Follow-Up

Follow-up is a short meeting between the moderator and the author
to ensure that all major defects found during the inspection have
been corrected and no secondary defects have been introduced. The
author reviews the measures taken to correct each major defect
with the moderator. The moderator ensures that all open issues
have been resolved and that changes due to the resolution, if any,
have been incorporated in the product. Corrections to minor
defects also may be reviewed, but with less emphasis. The
moderator ensures that the exit criteria for the type of
inspection have been met. The moderator may include additional
reviewers in the follow-up meeting if extra technical expertise is
required.

If all of the major defects have been corrected, all open issues
have been resolved, and the product has satisfied the exit
criteria, then the moderator "Passes" the product by recording the
completion of inspection on the Inspection Summary Report. If
these conditions are not met, the author returns to the rework
stage to make the necessary changes.

IV. THE INSPECTION TEAM

The inspection team is a small group of peer staff members with a
vested interest in the product. The minimum team size is three
persons, although a typical team varies from four to seven.
Larger teams are generally used for high level documents, while
smaller teams are used at detailed technical levels. Members are
added when their point of view is needed. A good mix of
inspectors representing various areas of expertise is important to
the inspection process. The knowledge and experience of such a
group, each looking at the product from his/her own perspective,
helps bring many subtle defects to light. "Synergy," where an idea
from one team member often leads to another idea from a different
team member, is one indication of a healthy inspection process.
The role of each individual is explained in the following
sections.

A. Inspectors

Every member of the inspection team is considered an inspector in
addition to any other assigned role. Inspectors are responsible
for finding defects in the work during preparation and during the
inspection meeting. In addition to functioning as an inspector,
some members of the inspection team will carry out roles as
moderator, author, reader, and recorder, as appropriate.

Primary candidates for inspectors are personnel involved with the
product in immediately preceding, current, and following life
cycle phases. For example, in a design inspection, good
inspectors may be selected from the individuals who wrote the
requirements, people who will code the design, and designers of
interfacing segments of the system. An exception to this rule is
that the author of a unit of code should not serve as an
inspector for test procedures that are to be used to test that
code, because the code author may want changes made to the test
procedures so they will work with the code as it exists. Any
group with an interest in the product should be considered for
potential team members including Systems Engineering, Testing,
Software Assurance, Systems Administrators and Operators, and
Users. Sources for inspectors are not limited to the staff of the
software development organization. Outside inspectors should be
brought in when they have a particular expertise that would add to
the effectiveness of the inspection.

B. Moderator

The moderator leads the inspection team and is responsible for
ensuring that a good inspection is achieved. Because this role is
critical to the formal inspection process, training for moderators
is more important and extensive than that of other inspectors.
The moderator is directly active in all stages of the inspection
process except rework. Since acting as a moderator is time
consuming and requires specific skills, moderators often are
selected and trained by the development organization and then

assigned to a specific development project. Primary duties of the
moderator include coordinating the selection of the inspection
team, assigning team roles, and leading the team throughout the
process. A major function of the moderator is to ensure that the
team keeps its emotions in check and that the inspection meeting
is not used to find faults with the author. The moderator is also
responsible for assuring inspection data are collected on the
inspection report forms.

C. Reader

The reader is responsible for guiding the inspection team through
the product during the inspection meeting by reading or
paraphrasing the product. An individual who will use the product
during the next life cycle phase is an excellent candidate for
reader as the process of reading and paraphrasing it will cause
this potential user to become very familiar with the product
before it is delivered. The reader also performs the duties of a
regular inspector.

D. Recorder

The recorder is responsible for accurately recording information
during the meeting about each defect found on the inspection
defect list. The list should include the location of the defect,
a brief description of it, its classification, and the identity of
the inspector who found it. The recorder also must record
information on any issues raised and not resolved, and any defects
that are found in parent documents. The recorder also performs
the duties of a regular inspector.

E. Author

The author is the originator of the product being inspected. As
such, she/he is primarily responsible for providing information on
the product being inspected and for answering inspectors'
questions to ensure that simple misunderstandings are not
classified as defects. In addition, the author should also
perform the duties of a regular inspector. The author is required
to correct all major defects found during the formal inspection,
and minor defects as time and resources allow.

V. FORMAL INSPECTIONS DURING THE SOFTWARE LIFE CYCLE

Formal inspections are in-process peer reviews conducted within
the phase of the life cycle in which the product is developed.
The following describes the life cycle phases of software
development and suggests products that may be inspected during
each phase. The software life cycle used is the NASA standard
waterfall model; the material may be adapted to other life cycles
if needed.

A. Software Concept and Initiation Phase

During this phase, the software concept is developed, the
feasibility of the software system is evaluated, and the
acquisition strategy is developed. Much of the documentation for
the project is started or a draft provided within this phase. The
most important document to inspect is the portion of the system
requirements document that applies to software. This inspection
has the shorthand designation of R0 (see table 1). Other
candidates for inspection include system specifications and plans
such as the software management and assurance plans. Potential
inspectors are the users and assurers of this documentation and
the system to be developed.

B. Software Requirements Phase

During this phase, the software concept and allocated system
requirements are analyzed and documented as detailed software
requirements. Test planning is started, with a preliminary method
for verifying each requirement identified and included in a first
version of a test plan. Risks are identified and planned for, and
the size and scope of the remainder of the project is re-
estimated. Methods, standards, and procedures are detailed and
put in place.

The requirements document is the product that is most typically
inspected in this phase. This is known as the R1 inspection. The
requirements document should be inspected for completeness and
accuracy, for traceability to higher level documents, and to
assure that a sufficient base is provided for the software design.
Other documents that are produced during this life cycle phase,
such as the draft acceptance test plan, can also be inspected
(Inspection IT1). Candidates for inspectors include the assurers
and potential users of the documents, including designers, coders,
and testers.

C. Software Architectural (Preliminary) Design Phase

During this phase, the overall design for the software is
developed, allocating all of the requirements to software
components. The architectural design inspection is designated I0.

The design should be inspected for satisfaction of and
traceability to the requirements, correctness, clarity,
codability, testability, and consistency.

D. Software Detailed Design Phase

During this phase, the architectural design is expanded to the
unit level. Interface control documents are completed and test
plans updated. Constraints and system resource limits are re-
estimated and analyzed, and staffing and test resources are
validated.

The detailed design should follow exactly the base-lined higher
level design, and should be inspected for the same
characteristics. As a secondary condition, the design should be
inspected for satisfaction of software quality engineering
standards such as information hiding, use of simple structures,
etc. The detailed design inspection is designated I1.

Candidates for the inspection team may be selected from
participants in the design, code, and test phases.

E. Software Implementation Phase

During this phase, the software is coded and unit tested. All
documentation is produced in quasi-final form, including internal
code documentation.

Code and all new documentation are the candidates for inspections
during this phase. Code inspections (designated I2) should check
for technical accuracy and completeness of the code, verify that
it implements the planned design, and ensure good coding practices
and standards are used. Code inspections should be done after the
code has been compiled and all syntax errors removed, but before
it has been unit tested. Other candidates are the integration and
test plan and procedures, and other documents that have been
produced. Documents should be inspected for accuracy,
completeness, and traceability to higher level documents. The
inspection team may be selected from participants in the detailed
design, code, test, verification and validation, or from software
quality assurance.

F. Software Integration and Test Phase

During this phase the software units are integrated into a
completed system; nonconformances are detected, documented, and
corrected; and it is demonstrated that the system meets its
requirements. The integration and test plan is executed, the
software documentation is updated and completed, and the products
are finalized for delivery.

The final version of the Acceptance Test Plan should be inspected
to detect defects in the definition of test cases and to verify
that each test case will verify the requirements with which it is

associated. This is the IT1 inspection. Test case and test
procedure inspections should verify that they are in accord with
one another and with the Acceptance Test Plan. These inspections
should verify that the test cases and procedures will execute
properly and correctly, and that all needed data are available.
Potential inspectors are representatives from any of the life
cycle phases before or after this one.

While the products listed above are used in the Integration and
Test Phase, they may have been developed in prior phases.
Inspections should be integrated into the development process, and
these products inspected when they are developed. If so, few or
no inspections may actually be done during this phase; inspections
are needed only if new test cases and procedures are developed.

G. Software Acceptance and Delivery Phase

The formal acceptance procedure is carried out during the
acceptance and delivery phase. As a minimum, there is a
requirements-driven demonstration of the software to show that it
meets its requirements. The phase also may include acquirer
tests, field usage, or other arrangements that are intended to
assure that the software will function correctly in its intended
environment.

There is little or no inspection activity during this phase.

H. Software Sustaining Engineering and Operations Phase

During this phase, the software is used to achieve the objectives
for which it was developed and acquired. Corrections and
modifications are made to the software to sustain its operational
capabilities and to upgrade its capacity to support its users.
Software changes may range in scope from simple corrective action
up to major modifications that require a full life cycle process.

Formal inspections should be scheduled in response to the degree
of new development activity involved. Significant new material to
be incorporated into any product should be inspected. A useful
technique is to have the need for inspections evaluated as part of
the change control and configuration management process.

VI. STARTING A FORMAL INSPECTIONS PROGRAM

Formal inspections have been proven to be effective in detecting
and removing defects, and to be cost effective when compared to
the cost of finding defects by testing. However, they represent
an up-front cost and a diversion from more traditional uses of
software development resources. Since there may well be
skepticism about inspections, beginning a program may find some
resistance. Educating management in the advantages of formal
inspections, particularly stressing how the up-front costs are
likely to be made up by reduced testing costs may help to overcome
the skepticism.

A critical first step in initiating an inspection program is to
select the class of material to first be inspected. It is
advisable to begin with material in which everyone will agree that
defects have to be found and removed. Based on their own
experiences in starting inspection programs, both JPL and LaRC
recommend starting with requirements inspections, as the benefits
of formal inspections are shown early in the software life cycle.

Defects in requirements also have more impact than those in other
products. For example, for each defect found and corrected in the
requirements, many "defects" would have been present in the design
and code. If these resultant defects were not found until
testing, they would cause a great deal of rework to many products.
Such early results will be popular with management, and should
raise enthusiasm for starting the program. Defects in
requirements, especially, and in design, are more expensive to
correct after the system has been implemented than are code
defects.

NASA experience has shown that inspection of requirements and
design will significantly reduce code "errors;" some projects
conduct formal inspections of all of their requirements and
design, but only inspect critical code. Although code inspections
may be the easiest type of inspections to perform, they may not be
the most productive.

Once a starting point for inspections has been selected, needed
resources must be budgeted and roles and responsibilities decided
upon. Resources will be needed for start-up costs, overhead
costs, and operational costs. Start-up costs include training of
moderators and other inspectors, development of forms and report
formats, and acquisition of data processing resources for the
recording and trending of inspection data. Overhead costs
associated with the formal inspection program consist of moderator
time for arranging and scheduling inspections and follow-up, and
the moderator's or project librarian's role in making copies of
materials available and keeping track of the status of items as
they progress through the inspection process. In addition, while
the collection and trending of data is important, it will consume
some resources. Operational costs consist of the time spent by

project members preparing for and participating in inspection
meetings.

The chief moderator is key to the whole formal inspection program
and should be selected as part of the start-up. The chief
moderator oversees and directs the inspection program; analyzes
the effectiveness of the inspection process; and coordinates the
evolution of the program, forms, and checklists. The chief
moderator should be the moderator for the inspections on the
initial project. When sufficient inspectors have been trained and
become experienced, additional moderators may be selected from
this pool and trained for new projects to which formal
inspections are to be applied.

If it is possible to arrange, project libraries can make both the
start-up and the inspection process run more smoothly; this
support will allow the moderator to concentrate on the success of
the inspection program. The project library helps the moderator
to maintain lists of what is to be inspected and assists with some
of the mechanics of the inspection process such as delivering
materials, setting up meeting rooms, etc. The library should
provide reference documentation for the inspectors.

Checklists to guide the inspectors may be developed from the
samples provided in Appendix A, obtained from JPL, or developed
specifically according to the needs of the program. In the long
run, checklists will be needed for each type of material to be
inspected and each major language used. For example, there should
be checklists for requirements, design, Ada code, C code, user's
guides, etc. At the start-up, only checklists for the limited
items to be inspected are needed.

Forms to record results and collect inspection data should be
defined. Example forms are shown in Appendix B. They should be
tailored as needed to reflect working conditions and to capture
the specific data desired. The standard forms will evolve over
time.

Once the centralized resources are in place (e.g., chief
moderator, librarian, forms, checklists, and data processing
resources), project individuals who are to participate in the
inspection process must be identified. Project technical people
are the key to the program since they are the readers, inspectors,
and the ones who have to use the inspection results to improve the
product. Once participants have been identified, they should be
trained. JPL has developed a formal inspection training class for
NASA that is workshop-oriented and very effective. Alternatively,
outside organizations have inspection training available.

Projects introducing inspections must plan to accommodate them.
In addition to identifying inspectors for training, managers
should plan time in schedules for inspections, analysis, and
rework. Experience shows that the resources used for inspections
are more than made up for in shortened test time and the costs of

finding and repairing defects that are imbedded in the system, but
resources are needed at different points in the life cycle.
Project or other management must also provide sufficient and
appropriate space in which the inspection process can take place.

Once resources are available and the moderator and an adequate
number of inspectors have been trained, the inspection program can
begin. One important factor to have in operation from the
beginning is a data collection program. Formal inspection data is
easy to collect because the process is very structured. The data
can also be used to improve the processes that produce the
products that are inspected. The subject of data collection and
evaluation and improvement of the inspection process is discussed
in Section VII.

Once the inspection program is underway and there are several
moderators, moderators should meet regularly to discuss problems
and successes with the inspection program and suggest ways to
improve it. This meeting should be chaired by the chief moderator
who is responsible for carrying out or recommending improvements
and evaluating whether the level of training and experience is
being maintained.

VII. PROCESS EVALUATION AND IMPROVEMENT

Formal inspections have been demonstrated by many organizations
to be an effective method for finding and removing defects in
software products. However, just putting a formal inspections
program in place does not guarantee that the program will operate
at maximum efficiency. It is important to evaluate the
implementation of the formal inspections process and to improve
it by fine tuning the procedures that are followed. The items
that most need to be tailored are the inspection rates and the
checklists. If too large an amount of a software product is to
be inspected at a meeting, the meeting will have to rush along
too rapidly to be effective, or meetings will routinely have to
be continued with resultant inefficiencies and schedule delays.
If too little of the product is allocated to one inspection, the
program will also not work at peak efficiency. The inspection
rates must be tailored to the complexity of the product and the
ability of the inspectors. Checklists should be tailored to
ensure that inspectors pay attention to the types of errors that
actually occur in the products being inspected. Fine tuning of
the checklists will make more efficient use of preparation time
and meeting time, and should help ensure that more of the defects
are found.

In order to evaluate the effectiveness of the inspection program,
the data collected from inspections should be routinely analyzed
in order to reveal trends. The trends that should be evaluated
are the amount of product inspected at a meeting, the time taken
in preparation and in the inspection meeting, total defects found
per inspection, the types of defects found, and the phases in the
development life cycle where defects were found. The data for
trending is normally collected by the moderator, using forms
provided for this purpose (see appendix B).

In the case where a trend points to a decline in efficiency in,
for example, the time spent preparing for and conducting
inspections, action can be taken to analyze the procedures and
correct the problem. The analysis might lead to changes in the
amount of product scheduled for each meeting, or to the
checklists provided to the participants, or to the training for
the participants. If the trend data shows fewer defects are
being found in inspections late in the life cycle, such as code
inspections, an analysis might show that the inspectors were not
adequately preparing, or it might show that the organization has
becomes so effective in performing requirements and design
inspections that there are few code defects to be found. In this
case, steps may be taken to modify procedures to inspect only
critical code.

The data from inspections may also be used in another manner.
If, for example, the inspection data show that during code
inspections a high percentage of code defects are due to defects
introduced during the design phase of the life cycle, then steps
could be taken to attempt to improve the effectiveness of both

the design process and the design inspections. This ability to
point out the life cycle step in which defects were introduced is
dependent on careful data gathering, but could pay high
dividends. Any attempt to change the life cycle processes used
in an organization should be done with great care, and
information from other sources than just inspections should be
used, but the inspection data could be of great assistance.

The evaluation process should be continuous, that is, the trend
data should be kept up to date, it should be examined regularly,
and the trends should be available to all participants in the
inspections program. Only continuous monitoring can ensure the
maximum cost effectiveness in the resources used for inspections.

The data gathered could be used to modify the inspection process
itself. The third hour is one such modification, introduced by
JPL to the process defined by Michael Fagan based on their
analysis of their inspection program. Modification of the
inspection process should be done only after very careful
analysis and testing of the proposed changes. The formal
inspection process is effective because it is well defined, well
tested, and done in exactly the same manner time after time.

VIII. SUMMARY

The following summarizes the essentials of the formal inspection
process and provides a quick reference:

1. Inspections are carried out on products that have been
completed by their author but not yet tested, reviewed, or
otherwise approved or baselined.

2. The objective of the inspection process is to detect and
remove defects. Typical defects are errors of documentation,
logic, and function.

3. Inspections are carried out by peers of the author.
Participants in the inspection process should represent
organizations that will use or will be affected by the
material being inspected.

4. Inspections should not be used as a tool to evaluate workers.
Management is not to be present during inspections. When a
management official has technical expertise which is not
available from other sources, that individual may be brought
into the third hour.

5. A trained moderator leads inspections, and all participants
should have training in the process.

6. Inspectors are assigned to and prepare for specific roles
(e.g., reader, recorder, author).

7. Inspections are carried out in a prescribed series of steps
from planning through follow-up.

8. Inspection meetings are limited to two hours.

9. Checklists of questions and typical defects are used to
stimulate defect finding. Project-tailored entrance and exit
criteria should be developed for each type of product to be
inspected.

10. The product being inspected should be of an appropriate size
that it can be inspected during a two hour meeting.

11. Correction of defects is the responsibility of the author,
and is verified by the moderator. The inspection team must
refrain from suggesting methods for correction during the
inspection meeting.

12. Data and trends on the number of defects, the types of
defects, and the time expended on inspections should be
maintained. This information should be used to evaluate and
improve the effectiveness of the inspection program.

APPENDIX A

SAMPLE CHECKLISTS

This appendix provides sample checklists for typical inspections:
Architecture Design, Detailed Design, and Code Inspection. In
addition, sample checklists used by JPL Software Product
Assurance are provided including Architecture Design, Detailed
Design, Code Inspection - "C" and Code Inspection - FORTRAN, Test
Plan, Test Procedures and Function, Functional Design, Software
Requirements, and Functional Requirements. These checklists are
provided for illustration and for sample guidance for the
moderator in preparing a tailored checklist for each type of
inspection to be done for a project.

Checklists should be viewed as a starting point for
investigation. An inspector should assure those items on the
list are correct, but also should use judgment and experience to
look for other possible faults. Also, some questions from an
earlier phase of inspections may apply. As a Center or project
gains experience in performing formal inspections, checklists
should expand and change; revisions and additions should be
created.

SAMPLE CHECKLISTS

Architecture Design Checklist

FUNCTIONALITY
1. Does the design implement the specifications and

requirements?
2. Are the specifications and requirements complete?
3. Is the abstract algorithm specified for each sublevel

unit/subunit?
4. Is the design functionally cohesive?

TRADE STUDIES
1. Have design trades been performed and documented?
2. Have the assumptions been documented?

a. Are the goals defined?
b. Are the trade criteria defined?

3. Will the selected design or algorithm meet all of its
requirements?

PERFORMANCE
1. Are the primary performance parameters specified (real time,

memory size, speed requirements, amount of disk I/O, etc.)?
2. Are synchronization requirements met (phasing, time-outs,

etc.)?
3. Does the design embody the actual operating environment?
4. Is the impact of failure defined?

LOGIC
1. Is there missing or incomplete logic?
2. Are all possible states or cases defined?
3. Are actions taken correct in all cases?

DATA USAGE
1. Is the conceptual view documented for all objects,

relationships, and parameters?
2. Is there any data structure needed that has not been defined

or vice versa?

INTERFACES
1. Is the operator interface designed with the user in mind

(i.e., vocabulary, useful messages)?
2. Will the interface facilitate troubleshooting?
3. Are all interfaces consistent with each other, other CSCs,

and requirements?
4. Do all interfaces provide the required types and amounts of

information?

TESTABILITY
1. Can the module that this design describes be tested or

inspected to demonstrate that it satisfies requirements?
2. Can the program set be integrated and tested in an

incremental manner?

Architecture Design Checklist (Continued)

RELIABILITY
1. Does the design provide for error detection and recovery

(e.g., is input checking performed)?
2. Are abnormal conditions considered?
3. Does the design satisfy all systems integrity commitments

for this product?
4. Are all error conditions/codes/messages specified completely

and meaningfully?

MAINTAINABILITY
1. Is information hiding used? Is the design modular?
2. Do the CSCs have high cohesion and low coupling?
3. Does the documentation follow project or NASA standards?
4. Is there traceability between maintenance documents and the

design?

CLARITY
1. Is the architecture, including the data flow and interfaces,

clearly represented?
2. Are there multiple, consistent representations of the

design?
3. Are all of the decisions, dependencies, and assumptions for

this design documented?

TRACEABILITY
1. Are all parts of the design traced back to requirements?
2. Can all design decisions be traced backed to trade studies?

CONSISTENCY
1. Are data elements, procedures, and functions named and used

consistently throughout the program set?
2. Are data elements, procedures, and functions consistent with

external interfaces?

LEVEL OF DETAIL
1. Does the design have sufficient detail to proceed to the

next phase?
2. Have all possible "To Be Determined (TBD)" statements been

resolved?

Detailed Design Checklist

FUNCTIONALITY
1. Does the design implement the specified algorithm?
2. Will this design fulfill specified requirements?
3. Does it conform to the architecture?

LOGIC
1. Are all variables and constants defined and initialized?

(Don't forget pointers.)
2. Is there logic missing?
3. Are literals used where a constant data name should be used?
4. Are greater-than, equal to, less-than-zero, or other (for

switch case) conditions each handled?
5. Are branches correctly stated (the logic is not reversed)?
6. Are actions for each case correct?

DATA USAGE
1. Are all data blocks specified (for structure and usage) and

used?
2. Are all routines that modify a data block aware of the data

block's usage by any other routine?
3. Are all logical units, events, and synchronization flags

defined?

PERFORMANCE
1. Are synchronization mechanisms correct and will they perform

as required?

LINKAGES
1. Do argument lists match in number, type, and order?
2. Are all linkages input and output properly defined and

checked?
3. Is the data area mapped as the receiving unit expects it to

be?
4. Are messages issued for all error conditions?
5. Do return codes for particular situations match the global

definition of the return code as documented?

TESTABILITY
1. Is the design described in a testable, measurable, or

demonstrable form?
2. Does the design contain checkpoints to aid in testing?
3. Can all logic be tested?

Detailed Design Checklist (Continued)

RELIABILITY
1. Are defaults used and are they correct?
2. Are boundary checks performed on memory accesses (arrays,

data structures, pointers, etc.) to ensure program memory is
not being altered?

3. Have linkages been checked for inadvertent destruction of
data (e.g., in Fortran, passing a constant to a subroutine
and altering it within the subroutine)?

4. Is error checking on inputs, outputs, linkages, interfaces,
and results performed?

5. Are undesired events considered (e.g., in spacecraft,
single-event upset alters a key data location, are there
backups, verification tests on the data, restart
procedures)?

LEVEL OF DETAIL
1. Is the intent of all units or processes documented?
2. Is the expansion ratio of code to design documentation less

than 10:1?
3. Are all required module attributes defined?
4. Are all assumptions made about this module (as seen by the

remaining program set) documented?

MAINTAINABILITY
1. Does this unit have high internal cohesion and low external

coupling (i.e., changes to this unit do not have any
unforseen effects within the unit and have minimal effect on
other units)?

2. Are any programming standards for the project in jeopardy of
compromise because of the design (e.g., Does the header meet
project standards? Does it include the purpose, author or
developer, environment, nonstandard feature used,
development history, input and output parameters, file used,
data structures used, units invoking this one, and
explanatory notes?)?

TRACEABILITY
1. Are all parts of the design traced back to the requirements?
2. Can all design decisions be tracked back to trade studies?

CONSISTENCY
1. Are data elements named and used consistently throughout the

unit and unit interfaces?
2. Is the design of all unit interfaces consistent among

themselves and with the system interface specification?

CLARITY
1. Is the unit design including the data flow, control flow,

and interfaces, clearly represented?

Code Inspection Checklist
C

FUNCTIONALITY
1. Does each unit have a single purpose?
2. Is there code that should be in separate functions?
3. Is the code consistent with performance requirements?

TRACEABILITY
1. Does the code track the Detailed Design?

DATA USAGE
1. Data and Variables

a. Are declarations of variables grouped into externals
and internals?

b. Do all but the most obvious declarations have comments?
c. Is each name used for only a single purpose?

2. Constants
a. Are all constant names uppercase?
b. Are constants defined via "# define"?
c. Are constants that are used in multiple files defined

in an INCLUDE header file?

3. Pointers Typing
a. Are variables declared as pointers used as pointers

(not integers)?
b. Are pointers initialized?

LINKAGE
1. Are "INCLUDE" files used according to project standards?
2. Are nested "INCLUDE" files avoided (even if permitted by the

compiler)?
3. Are all data local in scope (internal static or external

static) unless global linkage is specifically necessary and
commented?

4. Are the names of macros all uppercase?

LOGIC
1. Lexical Rules for Operators

a. Are unary operators adjacent to their operands?
b. Are primary operators("->" "." "()" etc.) adjacent to

their operands?
c. Do assignment and conditional operators always have

space around them?
d. Are commas and semicolons followed by a space?
e. Are key words followed by a blank?
f. Is the use of " (" following function name adjacent to

the identifier?
g. Are spaces used to show precedence? If precedence is

at all complicated, are parentheses used (especially
with bitwise operations)?

Code Inspection Checklist (Continued)
C (Continued)

2. Evaluation Order
a. Are parentheses used properly for precedence?
b. Does the code depend on evaluation order, except in the

following cases?
1. expr1, expr2
2. expr1 ? expr2 : exp2
3. expr1 || expr2

c. Are shifts used properly?
d. Does the code depend on order of effects (e.g., i =

i++; vs. i = i--)?

3. Control
a. Are "if...else" trees and "switch" used clearly?
b. Are "goto" and "labels" used only when justifiable, and

always with well-commented code?
c. Is the block of code that follows an "if" statement

surrounded by { } brackets?

MAINTENANCE
1. Are nonstandard usages isolated in subroutines and well

documented?
2. Does each unit have one exit point?
3. Is the unit easy to change?
4. Is the unit independent of specific devices where possible?
5. Is the system standard defined types header used if possible

(otherwise, use project standard header, by "include")?
6. Is there traceability between maintenance documents and the

code?

CLARITY
1. Comments

a. Is the unit header informative and complete?
b. Are there sufficient comments to understand the code?
c. Are the comments in the units informative?
d. Are comment lines used to group logically-related

statements?
e. Are the functions of arrays and variables described?
f. Are changes made to a unit after its releases noted in

the development history section of the header?

2. Layout
a. Is the layout of the code such that the logic is

apparent?
b. Are loops indented and visually separated from the

surrounding code?
c. Are "ifs" indented?

Code Inspection Checklist (Continued)
C (Continued)

MISCELLANEOUS

1. If different "memory models" are supported by the compiler,
does the code reflect the agreed-upon model with respect to
declarations of pointers and functions? Typically, memory
models go together with a notion of "near" and "far"
pointers and function calls.

2. Are values returned from functions calls (that indicate
success or failure of a request) checked before proceeding
to the following code?

3. Are requests to dynamically allocate memory checked for
success before attempting to write to that memory?

4. Are pointers immediately set to NULL (or 0) following the
deallocation of memory? (Most compilers do not "zero"
pointers on deallocation.)

5. Does code that writes to dynamically allocated memory via a
pointer first check for a valid (non-zero) pointer?

6. Does code that passes a pointer to another function first
check for a valid (non-zero) pointer?

7. Are functions declared to be "static" (hidden from other
modules) if they are only to be called by other functions in
the same module?

8. Are module level variables declared to be "static"
(information hiding) if they are only used by functions
within the same module?

9. Are recursive function calls used in mission critical
software only if absolutely necessary and well documented?
Recursive calls can produce unpredictable run time results
due to the demands on the dynamically allocated "stack"
space that is normally used to implement recursion.

10. Is dynamic allocation of memory minimized in mission
critical software? If dynamic allocation is used, is there
a means of estimating exhaustion of available memory and
recovering from an inability to allocate additional memory?

JPL SOFTWARE PRODUCT ASSURANCE CHECKLISTS

I0 - Architecture Design Checklist (JPL)

CLARITY
1. Is the architecture, including the data flows, control

flows, and interfaces, clearly represented?

COMPLETENESS
1. Are the goals defined?
2. Have all TBDs been resolved in requirements and

specifications?
3. Can the design support any anticipated changes in the TBD

requirements?
4. Have the impacts of the TBDs been assessed?
5. Has a risk plan been made for the parts of the design which

may not be feasible?
6. Have design tradeoffs been documented? Does the

documentation include the definition of the trade space and
the criteria for choosing between tradeoffs?

7. Has design modeling been performed and documented?
8. Are all of the assumptions, constraints, decisions, and

dependencies for this design documented?

COMPLIANCE
1. Does the documentation follow project and/or JPL standards?

CONSISTENCY
1. Are data elements, procedures, and functions named and used

consistently throughout the program set and with external
interfaces?

2. Does the design reflect the actual operating environment?
Hardware? Software?

3. When appropriate, are there multiple, consistent,
representations of the design (i.e., static vs. dynamic)?

CORRECTNESS
1. Is the design feasible from schedule, budget, and technology

standpoints?
2. Is the logic correct and complete?

DATA USAGE
1. Is the conceptual view for all composite data elements,

parameters, and objects documented?
2. Is there any data structure needed that has not been

defined, and vice versa?
3. Have data elements been described to a sufficiently low

level of detail? Have valid value ranges been specified?
4. Has the management and use of shared and stored data been

clearly described?

I0 - Architecture Design Checklist (JPL) (Continued)

FUNCTIONALITY
1. Are the specifications for the modules consistent with the

full functionality required for the module in the Software
Requirements Document (SRD) and Software Interface
Specifications (SIS-1)?

2. Is an abstract algorithm specified for each sublevel module?
3. Will the selected design or algorithm meet all of the

requirements for the module?

INTERFACES
1. Are the functional characteristics of the interfaces

described?
2. Will the interface facilitate troubleshooting?
3. Are all interfaces consistent with each other, other

modules, and requirements in SRD, SIS-1/2?
4. Do all interfaces provide the required types, amounts, and

quality of information?
5. Have the number and complexity of interfaces been

effectively balanced against one another to result in a
small number of total interfaces, each of which is of
acceptable complexity?

6. Is the operator interface designed with the user in mind
(i.e., precise and non-jargon vocabulary, useful messages)?

LEVEL OF DETAIL
1. Has the size of each sublevel module been estimated (lines

of code)? Is it reasonable?
2. Is a reasonably large and representative set of the possible

states or cases considered?
3. Is the design of sufficient detail to proceed to the

detailed design phase?

MAINTAINABILITY
1. Is the design modular?
2. Do the modules have high cohesion and low coupling?

PERFORMANCE
1. Has performance modeling been performed when appropriate and

has it been documented?
2. Are all performance parameters specified (e.g., real time

constraints, memory size, speed requirements, amount of disk
I/O)?

3. Do processes have time windows (e.g., flags may be needed to
"lock" structures, semaphores, some code may need to be
non-interruptible)?

4. Have all critical paths of execution been identified and
analyzed?

I0 - Architecture Design Checklist (JPL) (Continued)

RELIABILITY
1. Does the design provide for error detection and recovery

(e.g., input checking)?
2. Are abnormal conditions considered?
3. Are all error conditions specified completely and

accurately?
4. Does the design satisfy all systems integrity commitments

for this product?

TESTABILITY
1. Can the program set be tested, demonstrated, analyzed, or

inspected to show that it satisfies requirements?
2. Can the program set be integrated with previously tested

code and can it be tested incrementally?

TRACEABILITY
1. Are all parts of the design traced back to requirements in

SRD, SIS-1, other project documents?
2. Can all design decisions be traced back to trade studies?
3. Has the impact of special or unusual features of inherited

designs on the current design been addressed?
4. Are all known risks from inherited designs identified and

analyzed?

I1 - Detailed Design Checklist (JPL)

CLARITY
1. Is the intent of all units or processes documented?
2. Is the unit design, including the data flow, control flow,

and interfaces, clearly represented?
3. Has the overall function of the unit been described?

COMPLETENESS
1. Have the specifications for all units in the program set

been provided?
2. Have all the acceptance criteria been described?
3. Have the algorithms (e.g., in PDL) used to implement this

unit been specified?
4. Have all the calls made by this unit been listed?
5. Has the history of inherited designs been documented along

with known risks?

COMPLIANCE
1. Does the documentation follow project and/or JPL standards?
2. Has the unit design been created using the required

methodology and tools?

CONSISTENCY
1. Are data elements named and used consistently throughout the

unit and unit interfaces?
2. Are the designs of all interfaces consistent with each other

and with the SIS-2 and SSD-1?
3. Does the detailed design, together with the architectural

design, fully describe the "as-built" system?

CORRECTNESS
1. Is there logic missing?
2. Are literals used where a constant data name should be used?
3. Are all conditions handled (greater-than, equal-to,

less-than-zero, switch/case)?
4. Are branches correctly stated (the logic is not reversed)?

DATA USAGE
1. Are all the declared data blocks actually used?
2. Have all the data structures local to the unit been

specified?
3. Do all routines that modify data (or files) shared with

other routines access that shared data (or files) according
to a correct data sharing protocol (e.g., mutual exclusion
via semaphores)?

4. Are all logical units, event flags, and synchronization
flags defined and initialized?

5. Are all variables, pointers, and constants defined and
initialized?

I1 - Detailed Design Checklist (JPL) (Continued)

FUNCTIONALITY
1. Does this design implement the specified algorithm?
2. Will this design fulfill its specified requirement and

purpose?

INTERFACE
1. Do argument lists match in number, type, and order?
2. Are all inputs and outputs properly defined and checked?
3. Has the order of passed parameters been clearly described?
4. Has the mechanism for passing parameters been identified?
5. Are constants and variables passed across an interface

treated as such in the unit's design (e.g., a constant
should not be altered within a subroutine)?

6. Have all the parameters and control flags passed to and
returned by the unit been described?

7. Have the parameters been specified in terms of unit of
measure, range of values, accuracy, and precision?

8. Is the shared data areas mapped consistently by all routines
that access them?

LEVEL OF DETAIL
1. Is the expansion ratio of code to design documentation less

than 10:1?
2. Are all required module attributes defined?
3. Has sufficient detail been included to develop and maintain

the code?

MAINTAINABILITY
1. Does this unit have high internal cohesion and low external

coupling (i.e., changes to this unit do not have any
unforeseen effects within the unit and have minimal effect
on other units)?

2. Has the complexity of this design been minimized?
3. Does the header meet project standards (e.g., purpose,

author, environment, nonstandard features used, development
history, input and output parameters, files used, data
structures used, units invoking this one, units invoked by
this one, and explanatory notes)?

4. Does the unit exhibit clarity, readability, and
modifiability to meet maintenance requirements?

PERFORMANCE
1. Do processes have time windows?
2. Have all the constraints, such as processing time and size,

for this unit been specified?

I1 - Detailed Design Checklist (JPL) (Continued)

RELIABILITY
1. Are default values used for initialization and are they

correct?
2. Are boundary checks performed on memory accesses (i.e.,

arrays, data structures, pointers, etc.) to insure that only
the intended memory locations are being altered?

3. Is error checking on inputs, outputs, interfaces, and
results performed?

4. Are meaningful messages issued for all error conditions?
5. Do return codes for particular situations match the global

definition of the return code as documented?
6. Are undesired events considered?

TESTABILITY
1. Can each unit be tested, demonstrated, analyzed, or

inspected to show that they satisfy requirements?
2. Does the design contain checkpoints to aid in testing (e.g.,

conditionally compiled code, data assertion tests)?
3. Can all logic be tested?
4. Have test drivers, test data sets, and test results for this

unit been described?

TRACEABILITY
1. Are all parts of the design traced back to the requirements?
2. Can all design decisions be traced back to trade studies?
3. Have all the detailed requirements for each unit been

specified?
4. Have the unit requirements been traced to the Software

Specification Document (SSD-1)? Have the SSD-1
specifications been traced to the unit requirements?

5. Has a reference to the code or the code itself been
included?

I2 - Code Inspection Checklist (JPL)

C

FUNCTIONALITY
1. Does each module have a single function?
2. Is there code which should be in a separate function?
3. Is the code consistent with performance requirements?
4. Does the code match the Detailed Design? (The problem may

be in either the code or the design.)

DATA USAGE
A. Data and Variables

1. Are all variable names lower case?
2. Are names of all internals distinct in 8 characters?
3. Are names of all externals distinct in 6 characters?
4. Do all initializers use "="? (v.7 and later; in all

cases should be consistent).
5. Are declarations grouped into externals and internals?
6. Do all but the most obvious declarations have comments?
7. Is each name used for only a single function (except

single character variables "c", "i", "j", "k", "n",
"p", "q", "s")?

B. Constants
1. Are all constant names upper case?
2. Are constants defined via "# define"?
3. Are constants that are used in multiple files defined

in an INCLUDE header file?

C. Pointers Typing
1. Are pointers declared and used as pointers (not

integers)?
2. Are pointers not typecast (except assignment of NULL)?

CONTROL
1. Are "else__if" and "switch" used clearly? (generally

"else__if" is clearer, but "switch" may be used for
not-mutually-exclusive cases, and may also be faster).

2. Are "goto" and "labels" used only when absolutely necessary,
and always with well-commented code?

3. Is "while" rather than "do-while" used wherever possible?

LINKAGE
1. ARE "INCLUDE" files used according to project standards?
2. Are nested "INCLUDE" files avoided?
3. Is all data local in scope (internal static or external

static) unless global linkage is specifically necessary and
commented?

4. Are the names of macros all upper case?

I2 - Code Inspection Checklist (JPL) (Continued)

C (Continued)

COMPUTATION
A. Lexical Rules for Operators

1. Are unary operators adjacent to their operands?
2. Do primary operators "->" "." "()" have a space around

them? (should have none.)
3. Do assignment and conditional operators always have

space around them?
4. Are commas and semicolons followed by a space?
5. Are keywords followed by a blank?
6. Is the use of "(" following function name adjacent to

the identifier?
7. Are spaces used to show precedence? If precedence is

at all complicated, are parentheses used (especially
with bitwise ops)?

B. Evaluation Order
1. Are parentheses used properly for precedence?
2. Does the code depend on evaluation order, except in the

following cases?
a. exprl, expr2
b. exprl? expr2 : exp2
c. exprl & & expr2
d. exprl || expr2

3. Are shifts used properly?
4. Does the code depend on order of effects? (e.g., i =

i++;)?

MAINTENANCE
1. Are library routines used?
2. Are non-standard usages isolated in subroutines and well

documented?
3. Does each module have one exit point?
4. Is the module easy to change?
5. Is the module independent of specific devices where

possible?
6. Is the system standard defined types header used if possible

(otherwise use project standard header, by "include")?
7. Is use of "int" avoided (use standard defined type instead)?

CLARITY
A. Comments

1. Is the module header informative and complete?
2. Are there sufficient comments to understand the code?
3. Are the comments in the modules informative?
4. Are comment lines used to group logically-related

statements?
5. Are the functions of arrays and variables described?
6. Are changes made to a module after its release noted in

the development history section of the header?

I2 - Code Inspection Checklist (JPL) (Continued)
C (Continued)

B. Layout
1. Is the layout of the code such that the logic is

apparent?
2. Are loops indented and visually separated from the

surrounding code?

C. Lexical Control Structures
Is a standard project-wide (or at least consistent) lexical
control structure pattern used:

e.g.
 while (expr)
 {
 stmts;
 }

or
 while (expr) {
 stmts;
 } ETC.

I2 - Code Inspection Checklist (JPL) (Continued)

FORTRAN

FUNCTIONALITY
1. Do the modules meet the design requirements?
2. Does each module have a single purpose?
3. Is there some code in the module which should be a function

or a subroutine?
4. Are utility modules used correctly?
5. Does the code match the Detailed Design specifications? If

not, the design specifications may be in error.
6. Does the code impair the performance of the module (or

program) to any significant degree?

DATA USAGE
A. General

1. Is the data defined?
2. Are there undefined or unused variables?
3. Are there typos, particularly "O" for zero, and "l" for

one?
4. Are there misspelled names which are compiled as

function or subroutine references?
5. Are declarations in the correct sequence? (DIMENSION,

EQUIVALENCE, DATA).

B. Common/Equivalence
1. Are there local variables which are in fact

misspellings of a COMMON element?
2. Are the elements in the COMMON in the right sequence?
3. Do EQUIVALENCE statements force any unintended shared

data storage?
4. Is each EQUIVALENCE commented?

C. Arrays
1. Are all arrays DIMENSIONed?
2. Are array subscript references in column, row order?

(Check all indices in multi-dimensioned arrays.)
3. Are array subscript references within the bounds of the

array?
4. Are array subscript references checked in critical

cases?
5. Is each array used for only one purpose?

I2 - Code Inspection Checklist (JPL) (Continued)

FORTRAN (Continued)

D. Variables
1. Are the variables initialized in DATA statements, BLOCK

DATA, or previously defined by assignments or COMMON
usage?

2. Should variables initialized in DATA statements
actually be initialized by an assignment statement;
that is, should the variable be initialized each time
the module is invoked?

3. Are variables used for only one purpose?
4. Are variables used for logical unit assignments?
5. Are the correct types (REAL, INTEGER, LOGICAL, COMPLEX)

used?

E. Input and Output
1. Do FORMATs correspond with the READ and WRITE lists?
2. Is the intended conversion of data specified in the

FORMAT?
3. Are there redundant or unused FORMAT statements?
4. Should this module be doing any I/O? Should it be

using a message facility?
5. Are messages understandable?
6. Are messages phrased with the correct grammar? Do

messages read like a robot or person talking? Robot:
"Mount tape on drive. Turn on." Person: "Mount the
tape on the tape drive. Then turn the tape drive on."

7. Does each line of a message fit on all of the expected
output devices?

F. Data
1. Are all logical unit numbers and flags assigned

correctly?
2. Is the DATA statement used and not the PARAMETER

statement?
3. Are constant values constant?

CONTROL
A. Loops

1. Are the loop parameters expressed as variables?
2. Is the initial parameter tested before the loop in

those cases where the initial parameter may be greater
than the terminal parameter?

3. Is the loop index within the range of any array it is
subscripting? Is there a check in critical cases such
as COMMONs?

4. Is the index variable only used within the DO loop?
5. If the value of the index variable is required outside

the loop, is it stored in another location?
6. Does the loop handle all the conditions required?
7. Does the loop handle error conditions?

8. Does the loop handle cases which may "fall through"?

I2 - Code Inspection Checklist (JPL) (Continued)

FORTRAN (Continued)

9. Is loop nesting in the correct order?
10. Can loops be combined?
11. If possible, do nested loops process arrays as they are

stored, with the innermost loop processing the first
index (column index) and outer loops processing the row
index?

B. Branches
1. Are branches handled correctly?
2. Are branches commented?
3. When using computed GO TOs, is the fall-through case

tested, checked, and handled correctly?
4. Are floating point comparisons done with tolerances and

never made to an exact value?
LINKAGE
1. Does the CALLing program have the same number of parameters

as each routine?
2. Are the passed parameters in the correct order?
3. Are the passed parameters the correct type? If not, are

mismatches proper?
4. Are constant values passed via a symbol (variable) rather

than being passed directly?
5. Is an unused parameter named DUMMY, or some name which

reflects its inactive status?
6. Is an array passed to a subroutine only when an array is

defined in the subroutine?
7. Are the input parameters listed before the output

parameters?
8. Does the subroutine return an error status output parameter?
9. Do the return codes follow conventions?
10. Are arrays used as intended?
11. If array dimensions are passed (dynamic dimensioning) are

they greater than 0?
12. If a subroutine modifies an array, are the indices checked,

or are the dimensions passed as parameters?
13. Does a subroutine modify any input parameter? If so, is

this fact clearly stated?
14. Do subroutines end with a RETURN statement and not a STOP or

a CALL EXIT?
15. Does a FUNCTION routine have only one output value?

COMPUTATION
1. Are arithmetic expressions evaluated as specified?
2. Are parentheses used correctly?
3. Is the use of mixed-mode expressions avoided?
4. Are intermediate results stored instead of recomputed?
5. Is all integer arithmetic involving multiplication and

division performed correctly?

I2 - Code Inspection Checklist (JPL) (Continued)

FORTRAN (Continued)

6. Do integer comparisons account for truncation?
7. Are complex numbers used correctly?
8. Is the precision length selected adequate?
9. Is arithmetic performed efficiently?
10. Can a multiplication be used instead of a division? If so,

is it commented so as not to obscure the process?

MAINTENANCE
1. Are library routines used?
2. Is non-standard FORTRAN isolated in subroutines and well

documented?
3. Is the use of EQUIVALENCE limited so that it does not impede

understanding the module?
4. Is the use of GO TOs limited so that it does not impede

understanding the module?
5. Does each module have one exit point?
6. Is there no self-modifying code? (No ASSIGN statements, or

PARAMETER statements.)
7. Is the module easy to change?
8. Is the module independent of specific devices where

possible?
9. Where possible, are the CALLing routine parameter names the

same as the subroutine parameter names?
10. Are type declarations implicit rather than explicit when

possible?

CLARITY
1. Is the module header informative and complete?
2. Are there sufficient comments to understand the code?
3. Are the comments in the modules informative?
4. Are comment lines used to group logically-related

statements?
5. Are the functions of arrays and variables described?

IT1 - Test Plan Checklist (JPL)

CLARITY
1. Does the Test Plan clearly specify the order of the steps of

all integration testing?

COMPLETENESS
1. Does the Test Plan specify the overall approach and policy

for acceptance test?
2. Does the Test Plan include a description of the type of

hardware and software system environment to be used?
3. Does the Test Plan define success criteria for all tests?
4. Does the Test Plan adequately describe the functions being

tested?
5. Does the Test Plan explicitly describe those functions that

will not be tested during integration test?
6. Does the Test Plan describe conditions under which testing

will be halted and resumed during integration test?
7. Does the test case set adequately exercise all significant

code changes, particularly interface modifications?
8. Does the Test Plan adequately describe integration test

baselines?
9. For a phased delivery, does the Test Plan establish test

baselines in each phase for use in the next phase?
10. Does the Test Plan define sufficient and proper regression

testing?

COMPLIANCE
1. Does the Test Plan list all the specifications, standards,

and documents necessary for its development?

CONSISTENCY
1. Has the order of integration tests been defined to match the

order of integration specified in higher level documents?
2. Is the Test Plan consistent with higher level test plan

documents?

CORRECTNESS
1. Are the Test Plan entrance and exit criteria realistic?
2. Are all necessary drivers and stubs identified and available

to test the function as specified?
3. Are all dependencies between the input simulator and the

hardware addressed?

DATA USAGE
1. Does the test case set include adequate coverage of illegal

and conflicting input combinations?
2. Does the test case set include adequate usage of default

input values?
3. Does the test case set exercise an adequate number of

program error paths?

FUNCTIONALITY

1. Is the Test Plan adequate to meet acceptance criteria?
IT1 - Test Plan Checklist (JPL) (Continued)

INTERFACES
1. Does the test case set adequately exercise the handling of

information flow across external interfaces?

LEVEL OF DETAIL
1. Is the coverage of the test case set sufficiently complete to

provide confidence that the functions being tested operate
correctly within their intended environment?

MAINTAINABILITY
1. Are control and incorporation of changes to the specifications,

design, or coding that may occur during test contained in the
Test Plan?

PERFORMANCE
1. Are performance goals for the test procedures explicitly

stated?

RELIABILITY
1. Is sufficient test data collected and documented to support

estimation of the software's reliability?

TESTABILITY
1. Is the testing approach feasible?
2. Are all those requirements considered untestable and unable

to be tested identified, and is it explained why they are
untestable or unable to be tested?

3. Have development and procurement of test facilities (input
simulators and output analyzers), methods, and tools been
scheduled with adequate lead time?

4. Are the testing schedules described to a sufficient level of
detail (testing schedules are described for each individual
function to be tested)?

5. Is the method of estimating resource usage required for
testing identified?

6. For multiple builds, have all requirements been identified
on a per-build basis?

7. Have the roles and responsibilities for all personnel
involved in the test activity been identified?

8. Is the specification of test facilities consistent with the
test success criteria?

9. Are there any scheduling conflicts among the testing
personnel schedules?

10. Does the Test Plan call for the participation of independent
quality assurance personnel to verify test activity?

11. Does the Test Plan call for independent testing?

IT1 - Test Plan Checklist (JPL) (Continued)

TRACEABILITY
1. Do the acceptance tests exercise each requirement specified

in higher level documents such as Functional Requirements
Documents (FRD), Functional Design Document (FDD), and SRD?

2. Are the test acceptance criteria traceable to higher level
requirements documents such as the SIS, User's
Guide/Software Operator's Manual (UG/SOM), FRD, SRD, and
FDD?

3. Does the test case set for integration test exercise each
interface described in higher level documents (SIS and SSD)?

IT2 - Test Procedure and Function Checklist (JPL)

CLARITY
1. Are the operator instructions explicit and clear for ease of

execution of the test procedure?
2. Are the steps of the set-up and test procedures precise,

unambiguous, and listed as individual items?
3. Are there "progress" messages that will notify the operator

when significant parts of the test are being executed?
4. Are the criteria for success and failure clear and

unambiguous?

COMPLETENESS
1. Is the expected response to each step of the test procedure

described with the operator instructions for that step?
2. Does the test procedure list the precedence of tests?
3. Does the test procedure indicate the significance of proper

evaluation of test results?
4. Do the test procedures lead to the determination of success

or failure?

COMPLIANCE
1. Does the Test Plan list all the specifications, standards,

and documents necessary for its development?

CONSISTENCY
1. Are all dependencies of the test procedure identified?

CORRECTNESS
1. Do the observed results of performing the procedure agree

with the expected program behavior?
2. Are the interfaces between the code being tested and the

test equipment and software correct?
3. Are the formats of the input data correct?
4. Are the operator instructions presented step-by-step and in

the order in which they must be performed?
5. Is the function being tested accurately described?
6. Is the function being tested the latest revision?
7. Is the description of the purpose of this test procedure

complete and accurate?
8. Are there criteria for test success and failure?

DATA USAGE
1. Are an adequate number of control paths in the tested

function exercised?
2. Are an adequate number of logical condition expressions in

the tested function exercised?

IT2 - Test Procedure and Function Checklist (JPL) (Continued)

3. Do the test cases demonstrate the program's response to
illegal and conflicting input data?

FUNCTIONALITY
1. Is each requirement associated with this function exercised

by this test procedure?
2. Does the procedure state whether or not it is possible to

continue in the event of a program stop or indicated error?
If so, does it indicate the method for restarting or other
recovery action?

INTERFACES
1. Does the test case set adequately exercise the handling of

information flow across external interfaces?

LEVEL OF DETAIL
1. Are all normal and abnormal completion messages identified?

MAINTAINABILITY
1. Are control and incorporation of changes to the

specifications, design, or coding that may occur during test
contained in the Test Plan?

PERFORMANCE
1. If a performance criterion is associated with any step of

the test procedure, is that criterion explicitly stated
along with the operator instructions for that step?

RELIABILITY
1. Has the test equipment been validated and calibrated?
2. Has the test software been validated?
3. Have all input data been verified?
4. Is sufficient test data collected and documented to support

estimation of the software's reliability?

TESTABILITY
1. Does the test procedure identify all of the equipment,

software, and personnel required for testing?
2. Can the test procedure be performed with minimal support

from the development team?
3. Is the test procedure consistent with the capabilities of

the test facilities?
4. Is the testing schedule described to a sufficient level of

detail?
5. Does the test procedure call for the participation of

independent quality assurance personnel to very testing
activity?

6. Does the test procedure call for independent testing?

IT2 - Test Procedure and Function Checklist (JPL) (Continued)

TRACEABILITY
1. Does the test procedure list all specifications, procedures,

handbooks, or manuals required for operation?
2. Is the traceability shown between the requirements and the

acceptance test combinations?
3. Are the criteria for success traced to requirements?
4. Is the creator of each test case dataset identified?

R0 - Functional Design Checklist (JPL)

CLARITY
1. Have the hardware and software environments been described?

Have all external systems been included?
2. Has the high level architecture been described, illustrated

and made consistent with the lower level descriptions?
3. Has the primary purpose for the software been defined?
4. Has the overall functional design been described?

COMPLETENESS
1. Have feasibility analyses been performed and documented

(e.g., prototyping, simulations, analogies to current
system)?

2. Have all design and implementation goals and constraints
been defined?

3. Have the capabilities of each component for each stage or
phased delivery been identified?

4. If assumptions have been made due to missing information,
have they been documented?

5. Have all TBD requirements from the FRD been analyzed?
6. Have trade studies been performed and documented?
7. Have all tradeoffs and decisions been described and

justified? Are selection criteria and alternatives
included?

8. Has the subsystem been sized (using lines of code or an
alternate method)?

9. Have initialization, synchronization, and control
requirements been described?

COMPLIANCE
1. Does the documentation follow project and/or JPL standards?

CONSISTENCY
1. Are the requirements in this document consistent with each

other?
2. Are the requirements consistent with the FRD, external

interfaces, and any other related documents?

CORRECTNESS
1. Does the design seem feasible with respect to cost,

schedule, and technology?
2. Do state diagrams clearly represent the timing?
3. Have assumptions about intended sequences of functions been

stated? Are these sequences required?
4. Is the design consistent with the actual operating

environment (e.g., hardware timing, precision, event
sequencing, data rates, bandwidth)?

R0 - Functional Design Checklist (JPL) (Continued)

DATA USAGE
1. Are data elements named and used consistently?
2. Has all shared data between subsystems been identified?
3. Have the means for shared data management been described?

Are the subsystems which set and/or use the shared data
indicated?

4. Has the dataflow among hardware, software, personnel, and
procedures been described?

FUNCTIONALITY
1. Are all described functions necessary and sufficient to meet

the mission/system objectives?
2. Are all inputs to a function necessary and sufficient to

perform the required operation?
3. Are all the outputs produced by a function used by another

function or transferred across an external interface?
4. Do all functions clearly state how the output is derived

from input or shared data?
5. Are all functional states defined?

INTERFACE
1. Are the internal and external interfaces clearly defined?
2. Have all interfaces between systems, hardware, software,

personnel, and procedures been functionally described?
3. Have the requirements for data transfer across each

interface been stated?
4. Have the number and complexity of the interfaces been

minimized and are they consistent?
5. Are the inputs and outputs for all the interfaces sufficient

and necessary?

LEVEL OF DETAIL
1. Are the requirements free of unwarranted design?
2. Does each requirement in the FRD trace to one or more

requirements in the FDD?
3. Is there enough detail to proceed to the next phase of the

life cycle?
4. Have all "TBDs" been resolved?

MAINTAINABILITY
1. Have the requirements for software maintainability been

specified?
2. Have risk areas of the design been identified and isolated?

Does the design complexity agree with development risk,
cost, and schedule?

R0 - Functional Design Checklist (JPL) (Continued)

3. Have all inherited or procured subsystems been documented?
Has a cost/benefit analysis been identified?

4. Are reusable parts of other designs being used? Has their
effect on design and integration been stated?

5. Are the requirements weakly coupled? Have the number of
requirements that are affected when one requirement is
changed been minimized?

6. Have analyses been done for cohesion, coupling, traffic
statistics, etc.?

7. Do the design features enable the system to meet
maintainability requirements?

PERFORMANCE
1. Are all performance attributes, assumptions, and constraints

clearly defined?
2. Do all explicit and implicit performance requirements have

metrics expressed (e.g., timing, throughput, memory size,
accuracy, precision)?

3. For each performance requirement identified (explicit or
implicit):
a. Have the performance estimates been documented?
b. Do rough estimates indicate that they can be met? Is

the impact of failure defined?
c. Do experiments, prototypes, or analyses verify that the

requirements can be met?

RELIABILITY
1. Has an explicit reliability goal been stated?
2. Do the design features enable the system to meet reliability

requirements?
3. Are normal operating conditions/errors taken into account?

Are special states considered (e.g., cold starts, abnormal
termination, recovery)?

4. Have fault tolerance features been identified or analyzed?
5. Have the subsystem level error detection, reporting, and

recovery features for internal and external errors been
described?

TESTABILITY
1. Can the program sets be tested, demonstrated, analyzed, or

inspected to show that they satisfy requirements?
2. Can the subsystem components be developed and tested

independently? Incrementally?
3. Have any special integration or integration testing

constraints been levied?

TRACEABILITY
1. Are the priorities of the requirements documented? Is the

impact of not achieving the requirements defined?
2. Are requirement traceability exceptions justified?

3. Have all of the requirements been allocated to hardware,
software, personnel, or procedures?

R0 - Functional Design Checklist (JPL) (Continued)

4. Are all functions, structures, and constraints traced to
requirements and vice versa?

5. Are requirements stated in a manner so that they can be
uniquely referenced in subordinate documents?

6. Are the architectural components for each stage of
implementation identified for reference in subordinate
documents?

R1 - Software Requirements Checklist (JPL)

CLARITY
1. Are the goals of the subsystem defined?
2. Is the terminology consistent with the users' and/or

sponsors' terminology?
3. Are the requirements clear and unambiguous?
4. Is a functional overview of the program set provided?
5. Is an overview of the operational modes, states, and concept

described?
6. Have the software environment (co-resident program sets) and

hardware environment (specific configurations) been
specified?

7. If assumptions that affect implementation have been made,
are they stated?

8. Have the requirements been stated in terms of inputs,
outputs, and processing for each function?

COMPLETENESS
1. Are required attributes, assumptions, and constraints of the

program set completely listed?
2. Have all requirements and constraints been assigned a

priority?
3. Have the criteria for assigning requirement priority levels

been defined?
4. Have the requirements been stated for each delivery or

staged implementation?
5. Have requirements for installation (packaging, site

preparation, operator training) been specified?
6. Have the target language, development environment, and

run-time environment been chosen?

COMPLIANCE
1. Does the documentation follow project and/or JPL standards?

CONSISTENCY
1. Are the requirements mutually consistent?
2. Are the requirements in this document consistent with the

requirements in related documents?
3. Are the requirements consistent with the actual operating

environment (e.g., check hardware timing, precision, event
sequencing, data rates, bandwidth)?

4. Do the requirements stay within the capability of the
requirements allocated by the FDD?

CORRECTNESS
1. Do the requirements seem feasible with respect to cost,

schedule, and technology?
2. Are the requirements consistent with the actual operating

environment (e.g., hardware timing, precision, event
sequencing, data rates, bandwidth)?

R1 - Software Requirements Checklist (JPL) (Continued)

DATA USAGE
1. Have the data type, rate, units, accuracy, resolution,

limits, range, and critical values for all internal data
items been specified?

2. Have the data objects and their component parts been
specified?

3. Has the mapping between local views of data and global data
been shown?

4. Has the management of stored and shared data been described?
5. Has a list of functions that set and/or use stored and

shared data been provided?
6. Are there any special integrity requirements on the stored

data?
7. Have the types and frequency of occurrence of operations on

stored data (e.g., retrieve, store, modify, delete) been
specified?

8. Have the modes of access (e.g., random, sequential) for the
shared data been specified?

FUNCTIONALITY
1. Are all described functions necessary and sufficient to meet

the mission/system objectives?
2. Are all inputs to a function necessary and sufficient to

perform the required operation?
3. Does each function clearly describe how outputs (and shared

data) are generated from inputs (and shared data)?
4. Are all function states defined?

INTERFACE
1. Are the inputs and outputs for all the interfaces sufficient

and necessary?
2. Are all the outputs produced by a function used by another

function or transferred across an external interface?
3. Are the interface requirements between hardware, software,

personnel, and procedures included?
4. Have the contents, formats, and constraints of all the

displays been described in the SRD or Software Operator's
Manual (SOM-1)?

5. Are all data elements crossing program set boundaries
identified?

6. Are all data elements described here or in the SIS-1?
7. Has the data flow between internal software functions been

represented?

R1 - Software Requirements Checklist (JPL) (Continued)

LEVEL OF DETAIL
1. Are the requirements free of design?
2. Have all "TBDs" been resolved?
3. Have the interfaces been described to enough detail for

design work to begin?
4. Have the accuracy, precision, range, type, rate, units,

frequency, and volume of inputs and outputs been specified
for each function?

5. Have the functional requirements been described to enough
detail for design work to begin?

6. Have the performance requirements been described to enough
detail for design work to begin?

MAINTAINABILITY
1. Are the requirements weakly coupled (i.e., changing a

function will not have adverse and unexpected effects
throughout the subsystem)?

2. Will the requirements minimize the complexity of the design?
3. Have FRD and FDD maintainability requirements been levied to

functions?
4. Have FRD and FDD portability requirements been levied to

functions?
5. Has the use of inherited design or code or pre-selected

tools been specified?

PERFORMANCE
1. Have the FRD and FDD performance requirements been allocated

to each function?
2. Have the resource and performance margin requirements been

stated along with the means for managing them?

RELIABILITY
1. Have quality factors been specified as measurable

requirements or prioritized design goals?
2. Have FRD and FDD reliability requirements been levied to

functions?
3. Have FRD and FDD availability requirements been levied to

functions?
4. Have FRD and FDD security/safety requirements been levied to

functions?
5. Are error checking and recovery required?
6. Are undesired events considered and their required responses

specified?
7. Are initial or special states considered (e.g., cold starts,

abnormal termination)?
8. Have assumptions about intended sequences of functions been

stated? Are these sequences required?

R1 - Software Requirements Checklist (JPL) (Continued)

TESTABILITY
1. Can the program set be tested, demonstrated, analyzed, or

inspected to show that it satisfies the requirements?
2. Are the individual requirements stated so that they are

discrete, unambiguous, and testable?
3. Have the overall program set acceptance criteria been

established?
4. Have clear pass/fail criteria for the acceptance tests been

established?
5. Have the test methods (test, demonstration, analysis, or

inspection) been stated for each requirement?

TRACEABILITY
1. Are all functions, structures, and constraints traced to

requirements, and vice versa?
2. Have the FDD and Integrated Software Functional Diagram

(ISFD) requirements been allocated to functions of the
program set?

3. Do the requirements (or traceability matrix) indicate
whether they are imposed by the FDD or whether they are
derived to support specific FDD requirements?

4. Have the FRD, FDD, and any derived design goals and
implementation constraints been specified and prioritized?

5. Is each requirement stated in a manner that it can be
uniquely referenced in subordinate documents?

SY - Functional Requirements Checklist (JPL)

CLARITY
1. Are requirements specified in an implementation free way so

as not to obscure the original requirements?
2. Are implementation and method and technique requirements

kept separate from functional requirements?
3. Are the requirements clear and unambiguous (i.e, are there

aspects of the requirements that you do not understand; can
they be misinterpreted)?

COMPLETENESS
1. Are requirements stated as completely as possible? Have all

incomplete requirements been captured as TBDs?
2. Has a feasibility analysis been performed and documented?
3. Is the impact of not achieving the requirements documented?
4. Have trade studies been performed and documented?
5. Have the security issues of hardware, software, operations

personnel and procedures been addressed?
6. Has the impact of the project on users, other systems, and

the environment been assessed?
7. Are the required functions, external interfaces and

performance specifications prioritized by need date? Are
they prioritized by their significance to the system?

COMPLIANCE
1. Does this document follow the project's system documentation

standards? Does it follow JPL's standards? Does the
appropriate standard prevail in the event of
inconsistencies?

CONSISTENCY
1. Are the requirements stated consistently without

contradicting themselves or the requirements of related
systems?

2. Is the terminology consistent with the user and/or sponsor's
terminology?

CORRECTNESS
1. Are the goals of the system defined?

DATA USAGE
1. Are "don't care" condition values truly "don't care"?

("Don't care" values identify cases when the value of a
condition or flag is irrelevant, even though the value may
be important for other cases.) Are "don't care" condition
values explicitly stated? (Correct identification of "don't
care" values may improve a design's portability.)

SY - Functional Requirements Checklist (JPL) (Continued)

FUNCTIONALITY
1. Are all functions clearly and unambiguously described?
2. Are all described functions necessary and together

sufficient to meet mission and system objectives?

INTERFACES
1. Are all external interfaces clearly defined?
2. Are all internal interfaces clearly defined?
3. Are all interfaces necessary, together sufficient, and

consistent with each other?

MAINTAINABILITY
1. Have the requirements for system maintainability been

specified in a measurable, verifiable manner?
2. Are requirements written to be as weakly coupled as possible

so that rippling effects from changes are minimized?

PERFORMANCE
1. Are all required performance specifications and the amount

of performance degradation that can be tolerated explicitly
stated (e.g., consider timing, throughput, memory size,
accuracy and precision)?

2. For each performance requirement defined:
a. Do rough estimates indicate that they can be met?
b. Is the impact of failure to meet the requirement

defined?

RELIABILITY
1. Are clearly defined, measurable, and verifiable reliability

requirements specified?
2. Are there error detection, reporting, and recovery

requirements?
3. Are undesired events (e.g., single event upset, data loss or

scrambling, operator error) considered and their required
responses specified?

4. Have assumptions about the intended sequence of functions
been stated? Are these sequences required?

5. Do these requirements adequately address the survivability
after a software or hardware fault of the system from the
point of view of hardware, software, operations personnel
and procedures?

TESTABILITY
1. Can the system be tested, demonstrated, inspected or

analyzed to show that it satisfies requirements?
2. Are requirements stated precisely to facilitate

specification of system test success criteria and
requirements?

SY - Functional Requirements Checklist (JPL) (Continued)

TRACEABILITY
1. Are all functions, structures and constraints traced to

mission/system objectives?
2. Is each requirement stated in such a manner that it can be

uniquely referenced in subordinate documents?

APPENDIX B

Appendix B consists of graphics that were inserted into the text.
Machine readable copies are not available, thus Appendix B has
been deleted from this version

APPENDIX C

REFERENCES

Ackerman et. al., "Software Inspections: An Effective
Verification Process," IEEE Software, May 1989.

Fagan, Michael E., "Design and Code Inspections to Reduce
Errors in Program Development," IBM Systems Journal, Vol.
15, No. 3, 1976.

Fagan, Michael E., "Advances in Software Inspections," IEEE
Transactions on Software Engineering, Vol. SE-12, No. 7,
July 1986.

Freedman, Daniel P. and Weinberg, Gerald M., "Handbook of
Walkthroughs, Inspections, and Technical Reviews, Evaluating
Programs and Projects," 1982.

Jet Propulsion Laboratory, Formal Inspections for Software
Development, Rev. E (Training Course), 1990.

Kelly, John C. and Hops, Jonathan, "Software Inspections: An
Experience Report" (Draft), January 26, 1990.

Kelly, John C., "Original Working Draft of Inspections and
Walkthroughs Guidebook," January 1990.

