
11
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

One of the simplest and most general ways to check a work product* is to manually
inspect it. Inspections are common practice in many engineering disciplines. For
example, a building must be inspected and approved at several stages of design and
construction.

Several inspection techniques have been developed and applied to software
development, ranging from relatively unstructured discussions to inspections with
detailed, strictly prescribed procedures. Among the most influential and widely
used are the formal inspection techniques developed by Michael Fagan at IBM.

Inspections can be applied to any work product, from requirements to test plans to
user documentation; this is one of their main strengths. Some organizations inspect
almost every work product except code, which is tested instead. However, much of
the research literature is based on code inspection. There are several reasons for this.
For one thing, while other work products (e.g., requirements specifications) vary
widely among organizations, coding tends to be constrained to perhaps a half-dozen
popular programming languages and a few dominant styles, so code inspections can
be described with examples that make sense to most readers. For another thing, it is
easier to perform empirical studies of the effectiveness of code inspections (e.g., by
by showing their effect on the number of faults found in testing or reported by users)
than to devise valid empirical studies of the effectiveness of other kinds of
inspection.

We will look first at Fagan code inspections, and then at some related inspection
techniques; then we will try to draw some general lessons that are applicable not only
to inspection techniques but also to other analysis and testing techniques.

*A “work product” is anything produced as the output of some work activity,
including intermediate products (like test plans) as well the delivered product.

MSE 525 / M Young 9/30/99 1

Software Inspections

Fagan code inspections
Related formal review techniques

Lessons

22
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

There are many review and “walk-through” techniques for software development.
The inspection process developed and publicized by Fagan is distinguished from
earlier approaches in that it is a very detailed, formalized process. (Fagan called
them “software inspections;” others call them “Fagan inspections” to distinguish
them from other software inspection techniques).

Fagan inspections can be applied to any work product that takes the form of a
document, but like many inspection techniques, most of the available research
literature describes inspections of source code, and that is what we will review.

As described by Fagan, software inspections are a completely manual technique for
detecting and removing defects. A “defect” may be a fault (“bug”) that would result
in a user-observable behavior that deviates from the software specification, but it can
also be a deviation from a specification that is completely invisible to the user. For
example, if there is a coding standard that requires every variable declaration to be
followed by an explanatory comment, then omission of the comment is a “defect”
even though it has no effect on program behavior. Thus inspections can find classes
of defects for which dynamic testing is not applicable. If the standard required the
comment to be meaningful, a comment that was present but not meaningful would
also be a defect. This illustrates that, being a manual process, inspection can rely on
human judgment to an extent that more automated testing and analysis techniques
cannot.

It is interesting to consider inspection, among other things, as a “base case” for
judging the effectiveness of automated analysis and testing techniques. If I propose
a new automated analysis for locating a particular kind of fault, then a minimum
standard of effectiveness is that the automated analysis alone, or in combination with
some inspection, ought to be more cost-effective than inspection alone. This is a
surprisingly difficult criterion to satisfy, although many of the comparison studies
have used only very primitive testing techniques.

MSE 525 / M Young 9/30/99 2

Software Inspection:
Low tech but effective

• Fagan Code Inspections
– One of many “walk-through” and inspection

techniques; among the most successful
• More formal and well-defined than “structured

walk-throughs” etc.

– Has been extended to designs, requirements,
etc. with similar organizing principles

– A completely manual technique for finding and
correcting errors

33
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

The argument for inspections often involves an assertion that time invested
earlier is repaid later in lower testing and rework costs. This “snail curve”
(which has no scale and is not drawn from any particular data) argues that the
coding and testing phases of a project will be started later, but finished earlier if
inspections are used in each prior stage. Coding is shown as taking the same
amount of time; testing is shortened because there are fewer errors to be found
and repaired.

Note that this curve is based on a waterfall model (e.g., testing takes after design
and coding are finished). Similar argument might be made for other models of
development, but iteration (developing several versions of the same component)
might cause problems.

MSE 525 / M Young 9/30/99 3

Fagan’s Schedule Argument

From: “Advances in Software
Inspections,” M. Fagan, IEEE
TSE 12(7), July 1986, pp. 744-
751. Copyr ight IEEE,

44
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

The software inspection process is carried out by a group of people, typically 3
to 5, with well-defined roles. These are the moderator, the readers and testers,
the author, and (sometimes) a recorder or scribe. The readers and testers both
read the code, but testers are supposed to look at it as if they were testing it.

The moderator is in charge of the process. A moderator is typically a fairly
senior technical member of another team (to avoid bias). Fagan and others stress
that the moderator role is critical, and moderators must receive training to carry
out their responsibilities. Among these responsibilities are:

 * Determine whether the entry criteria (see next slide) have been met;
otherwise the inspection is canceled.

 * Choose the other inspection participants.

 * Chair and manage the meeting, and keep it on track. Given the potential for
personal conflict, this requires some skill.

 * Review re-work and determine whether the product should be re-inspected.

The main task of readers and testers is to systematically read the code, looking
for defects.

The author is a passive participant in the inspection process. He may answer
questions when asked, but he is not permitted to offer explanation or defend the
code. Another way of putting this is: It is not enough for the code to be correct,
it must be written and documented in a way that makes its correctness obvious
to the readers.

MSE 525 / M Young 9/30/99 4

Software Inspection Roles

• Moderator:
– Typically borrowed from another project.

Chairs meeting, chooses participants, controls
process

• Readers, Testers:
– Read code to group, look for flaws

• Author:
– Passive participant; answer questions when

asked

55
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

The software inspection process is repeated once for each document to be
inspected, e.g., for each individual code unit assigned to a particular
programmer. An inspection for a particular kind of document has entry criteria
that must be satisfied before an inspection can be scheduled. For example, it is
typical to require that code be in the “first clean compile” stage, that is, it must
already have been compiled without syntactic errors. A particular organization
might impose additional entry criteria, such as completion of certain kinds of
documentation for maintainers and the inspection team. The moderator is
responsible for checking the entry criteria and, if they are satisfied, beginning the
remainder of the process by selecting participants (readers and a scribe) and
scheduling the meeting.

Participants receive an general background presentation on the material to be
inspected in an overview phase; roles for the inspection meeting may also be
assigned at that time. They are provided with any reference materials that they
may need for the inspection, such as design documents. They are then required
to study the material in preparation for the inspection meeting.

The inspection meeting itself is described on the next slide.

After the meeting, the author receives a list of defects to be corrected. After
these are (purportedly) corrected, the author asks the moderator to check them
individually. The moderator may either conclude that the defects have been
satisfactorily repaired, or she may determine that the changes are extensive
enough that the inspection process should be repeated for the modified code.

MSE 525 / M Young 9/30/99 5

Software Inspection Process

• Planning
• Moderator checks entry criteria, choose

participants, schedule meeting

• Overview
• Provide background education, assign roles

• Preparation
• Inspection (see ahead)
• Rework
• Follow-up (& possible re-inspection)

66
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

The purpose of the inspection meeting is to find as many defects as possible in a
given amount of time. Because an inspection meeting is fatiguing, and a tired
inspector is less effective, the time for an inspection meeting is limited to two
hours, and a person may participate in at most two such meetings in a given
day.

In addition, the rate of inspection is limited. An inspection rate of 150 lines per
hour is generally recommended. The defect detection rate reported by Russel is
approximately 1 defect per person-hour (4 defects per hour for a 4-person team)
independent of reading rate.*

The main approach used during the meeting is line-by-line reading and
paraphrasing of the code. In other words, the readers should be able to roughly
reconstruct detailed pseudocode and detailed design from the actual code.
Additionally, inspectors may “hand test” the code by simulated execution, and
at the same time they may be checking for several potential problems from a
check-list.

A key rule for the inspection meeting is that defects are logged, but not
corrected. No participant is permitted to suggest how a defect might be
corrected, and a key responsibility of the moderator is to prevent the inspectors
to be diverted from finding defects to discussing fixes and improvements. One
reason for this is that a correction arrived at in the meeting is likely to inferior to
one found later, with more time for consideration of alternatives.

* It is interesting to note that similar “fixed rate” phenomena seem to occur in
software development. For example, programmer productivity as measured by
lines of code per hour or day seems to be independent of whether those are lines
of assembly code, conventional programming language code (Java, C++, etc.),
or very-high-level code for an application “generator” system.]

MSE 525 / M Young 9/30/99 6

In the Meeting

• Goal: Find as many faults as possible
– max 2 x 2 hour sessions per day
– approx. 150 source lines/hour

• Approach: Line-by-line paraphrasing
– Reconstruct intent of code from source
– May also “hand test”

• Find and log defects, but don’t fix them
– Moderator responsible for staying on track

77
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

Here are some example items from a checklist published by The National
Aeronautics and Space Administration (NASA). The guidebook includes
checklists for a variety of artifacts (design documents, requirements, etc.).
Checklists for source code are given separately for each source language.

Some of the checklist items are general and require a good deal of human
judgment. One could not very well determine whether each module has a single
function by testing, and certainly inspection is the only technique that can answer
the question about the sufficiency of comments for understanding the code. On
the other hand, checks for naming standards, pointer typecasting, and nested
#include files require little or no judgment, and could be either augmented or
replaced by mechanical checks.

Some of the items are checks for particular faults that tend to occur in a
particular language. The NASA checklist for C has mostly general trouble-
avoidance standards for C (like not typecasting pointers or over-using the int
type), while the FORTRAN checklist contains more particular faults to check
for, like use of the letter O in place of the digit 0.

These checklists are a good example of a characteristic of Fagan inspections that
Knight and Myers [93] consider a problem: They try to uncover many different
kinds of defects at once, and use the same (expensive) set of people for all kinds
of defects. Knight and Myers’ “Phase Inspection” technique (later in this
lecture) is a variation designed to address this problem.

MSE 525 / M Young 9/30/99 7

Checklists — NASA example

• About 2.5 pages for C code, 4 for FORTRAN
• Divided into: Functionality, Data Usage, Control, Linkage,

Computation, Maintenance, Clarity

• Examples:
– Does each module have a single function?
– Does the code match the Detailed Design?
– Are all constant names upper case?
– Are pointers not typecast (except assignment of NULL)?
– Are nested “INCLUDE” files avoided?
– Are non-standard usages isolated in subroutines and well

documented?
– Are there sufficient comments to understand the code?

From “Software Formal Inspections Guidebook,”
Office of Safety and Mission Assurance, NASA-
GB-A302 approved August 1993

88
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

In any defect-detection technique, we must be careful to avoid perverse
incentives, and if possible to introduce positive incentives. An example of a
perverse incentive would be to reward developers for finding more faults during
testing, because one way to find more faults is to make sure there are more
faults to find. A more subtle variation of the perverse incentive problem occurs
when the main pressure on developers is to meet a deadline, and the developers
themselves are responsible for determining whether quality is sufficient to
declare part of a project “done.”

Fagan describes the following measures to avoid problems in the incentive
structure:

 * Faults found in the inspection are not used in evaluating the author of the
code. Programmers are neither (directly) rewarded nor punished for reviews
that find more faults. We have already remarked on the perverse incentive that
would occur if programmers were rewarded when inspections found more
faults. If, on the other hand, programmers were rewarded when inspections
found fewer faults (or punished when they found more), there would be an
incentive to be uncooperative in the review.

 * Faults found after inspection, in testing, are used in personnel evaluation.
This way, the programmer has an incentive to remove as many faults as
possible before testing begins, and therefore to make inspections as effective as
possible. (Of course, there is a danger of perverse incentive in the testing phase,
if the programmer tests his own code or can reduce the effectiveness of an
independent tester by being uncooperative.)

MSE 525 / M Young 9/30/99 8

Incentive Structure
from [Fagan 86]

• Faults found in inspection are not used in
personnel evaluation
– Programmer has no incentive to hide faults

• Faults found in testing (after inspection) are
used in personnel evaluation
– Programmer has incentive to find faults in

inspection, but not by inserting more

99
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

In their article “Active Design Reviews: Principles and Practice,” Parnas and
Weiss describe several problems with conventional reviews (some of which do not
apply to Fagan inspections) and then describe a review process designed to avoid
those problems. The characteristics of this process are (quoting from the abstract
of the paper):

 (1) The efforts of each reviewer should be focused on those aspects of the design
that suit his experience and expertise.

 (2) The characteristics of the reviewers needed should be explicitly specified before
reviewers are selected.

 (3) Reviewers should be asked to make positive assertions about the design rather
than simply allowed to point out defects.

 (4) The designers pose questions to the reviewers, rather than vice versa. These
questions are posed on a set of questionnaires that requires careful study of some
aspect of the design.

(5) Interaction between designers and reviewers occurs in small meetings involving
2-4 people rather than meetings of large groups.

Note that (5) was already the case for Fagan inspections, but not for some earlier
and less structured review techniques; to some extent (3) is also a feature of Fagan
inspections, depending on the form of checklist questions. (1) and (2), in addition
to (4), are definitely not characteristics of Fagan code inspections.

The most striking characteristic of active design reviews is, obviously, reversing
the customary question/answer roles between the author and the reviewers. The
inspector cannot get away with skimming the document and then just keeping quiet
in the meeting; he is forced to read the document closely enough to answer the
questions that have been posed by the author. An example question is: “Under
what conditions may this function be applied? Which assumptions describe those
conditions?”

MSE 525 / M Young 9/30/99 9

Variation: Active Design Reviews

• Observation:
– An unprepared reviewer can sit quietly and say

nothing.

• Variant process:
– Choose reviewers with appropriate expertise

• Several reviewers to look at different aspects

– Author asks questions of the reviewer
– Reviewer’s job is to answer the questions

D. Parnas & D. Weiss, “Active design reviews:
Principles and practices.” Proc. ICSE , Aug.
1985, pp. 132-136.

1010
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

Knight and Myers [93] observed that software inspections try to find many
different kinds of defect at once. This has at least two disadvantages:

 * It is difficult to look for everything at once. In practice, inspectors tend to
concentrate on functional correctness and to pay too little attention to qualities
like maintainability, portability, etc.

 * The same (expensive) team of people is used for trivial checks like
formatting conventions as for the difficult checks that really require their
judgment and training, which is not a good use of highly trained people.

The “phased inspection” process that Knight and Myers proposed divides
defect detection into a number of smaller phases, each concentrating on just one
property or closely related set of properties. The phases are ordered so that each
inspection can assume completion of prior phases.

[Reference: J.C. Knight & E.A. Myers, “An Improved Inspection Technique,”
Communications of the ACM 36(11), Nov 1993, pp 51-61. Knight and Myers
also discuss other problems, such as consistency across different people
performing reviews, which are not discussed in these slides. Likewise, some
features of active design reviews are adapted in phased reviews, but not
discussed here.]

MSE 525 / M Young 9/30/99 10

Variation: Phased Inspections

• Divide inspection into a series of smaller,
focused “phases” in a definite order

Inspection
check list

Phase 1 list

Phase 2 list

Phase 3 list

Phase 4 list

J.C. Knight & E.A. Myers, “An Improved
Inspection Technique,” CACM 36(11), Nov.
1993, pp. 51-61

1111
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

In the phased inspection process, some phases are carried out by a single
person, and others are carried out by a team.

When a property is simple and can be carried out more-or-less mechanically
without much judgment, it is checked in a single inspector phase. One person,
who may be a junior programmer or even a non-programmer (e.g., a technical
writer) is assigned to perform the check individually. An example from the
NASA checklist of a property which could be checked in this way is “are all
constant names upper case?.” As Knight and Myers also point out, some of
these can be automated so that they don’t require a manual check at all, but there
are likely to be some conceptually simple checks for which no automatic
checking tool is available.

Properties that are more complex, including checks for functional correctness as
well as the “ilities” (portability, maintainability, etc.) typically require a multiple
inspector phase, and these inspections must be carried out by more skilled and
knowledgeable developers. Unlike the Fagan inspection technique, the actual
inspection is carried out by each inspector individually; then the inspectors meet
to compare and “reconcile” their results. In theory, no new problems should
appear in the reconciliation meeting. In practice, Knight and Myers report that
some problems are noticed only during the reconciliation, for example because a
discrepancy between the results of two inspectors leads to further consideration
of something.

An example list of phases and inspectors given by Knight and Myers is:
 Phase 1: Internal documentation standards, single technical writer
 Phase 2: Layout (formatting) standards, single technical writer
 Phase 3: Readability, meaningful identifiers, etc; single junior programmer
 Phase 4: Good programming practices; single software engineer
 Phase 5: Check for common bugs; single software engineer
 Phase 6: Check for correctness; multiple senior software engineers

MSE 525 / M Young 9/30/99 11

Phased Inspection Process

• Single inspector for simple, unambiguous
checks (e.g., standards conformance)
– may be technical writer or junior programmer

• Multiple inspectors for complex checks
(e.g., correctness)
– Skilled, knowledgeable engineers
– Independent inspections in private
– Reconciliation meeting to compare results

1212
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

Although inspection is basically a manual technique, there are many ways in
which computer support can make it more efficient.

Some checks really should not be manual if proper tool support is available. For
example, the NASA checklists include proper indentation of C code. There are
many tools that will perform this indentation automatically, as well as
capitalization, etc. Other properties cannot be imposed by a tool, but can be
checked. The NASA checklists also include checks for undeclared variables in
FORTRAN, which are treated by the compiler as references to external
functions (C has a similar problem). Automated tools (e.g., Lint for C) can
easily check for these.

Other checks must be manual, but computer support can help. Knight and
Myers provide several kinds of support through their InspeQ tool:

 * They provide display of checklists and standards, in a form suitable for use
during inspection (remember that their inspections are always carried out by
individuals, not in a meeting, even when multiple inspectors are involved).

 * Source code navigation and display tools can focus on parts of the code
relevant to a specific checklist item, e.g., showing all “while” loops if the
inspector is checking for loop termination.

 * The inspector can log defects and notes in the form of annotations on the
document being inspected.

 * The inspection process (e.g., phase ordering) is partly enforced; although the
tools must believe the inspector, they can at least force some things to be
checked off before others are attempted.

Some other work on inspection addresses collaboration aspects. Computer
support for collaborative work, also known as groupware, is an active research
area now, and inspection is a classic example of the kind of work it is designed
to support.

MSE 525 / M Young 9/30/99 12

Inspection Automation

• Although a manual technique, many kinds
of automated support are possible:
– Automate trivial checks (e.g., formatting)
– Reference: Checklists, standards w/ examples
– Focus (highlight, selection) on relevant parts
– Annotation & Communication
– Process guidance and (partial) enforcement

• e.g., InspeQ will not allow check-off until all
relevant parts of a document have been observed

1313
© 1996-1998 Michal Young; portions © 1998 Mauro Pezzè
For reprint permissions contact michal@cs.uoregon.edu

Of all analysis and testing techniques for software, the empirical evidence for the
cost-effectiveness of formal inspections is strongest. In one sense, that is
depressing; surely we ought to be able to do better than this labor-intensive,
manual review process. A more constructive reaction is to look carefully at why
inspection seems to work so well, and see what we might be able to apply to
other analysis and testing techniques.

Features of software inspections that seem to contribute to its effectiveness
include:

 * A detailed, formal process. Detailed instructions for carrying out a process
seem to have inherent value because they promote consistency and rigor, almost
independent of the particular process.

 * Process feedback, in the form of check-lists that are based at least partly on
defects that have been detected in the past.

 * Social pressure on the author to produce documents that will not be
embarrassing in the inspection. There is evidence that programmers produce
better code when they know it will be inspected. The peer review process also
serves as a kind of mutual education, in which developers learn from both the
good and bad features of each other’s code.

 * Code inspection (like some other static analysis techniques) considers the
whole input space of the program, not a set of particular sample inputs.

 * Inspections can be applied to code before there is any running system; it can
be applied to modules and subsystems without “stubs” and “drivers.”

On the other hand, the limited speed of inspection makes it essentially a unit-
level technique. Perhaps more important is that it is not incremental. Most code
is not written from scratch, but is rather a series of small changes to a large
system. The cost of inspection is proportional to the size of the document being
inspected, rather than the size of the change.

MSE 525 / M Young 9/30/99 13

Why does inspection work?

• The evidence says it is cost-effective.
Why?
– Detailed, formal process, with record keeping
– Check-lists; self-improving process
– Social aspects of process, esp. for author
– Consideration of whole input space
– Applies to incomplete programs

• Limitations
– Scale: Inherently a unit-level technique
– Non-incremental; what about evolution?

