
1CIS 160 SQA / F99 / © Michal Young

OMSE 525/ CIS 610
Software Qualities

Software is characterized by many properties, that are measured and studied
with different techniques. This tutorial focuses on techniques for assessing
dependability properties, i.e., correctness, robustness, safety, and reliability.

2CIS 160 SQA / F99 / © Michal Young

Software Qualities

Dependability
properties

safety

robustness
correctness

reliability

Process oriented
(internal) properties

....

maintainability reusability

External properties
(that can be validated)

....

usability

user-friendliness

External properties
(that can be verified)

....timeliness

interoperability

modularity

....

We use the term verification to describe a check for consistency between two
formal representations. We will use this term in a wide sense: for example,
testing is verification when it is used to check program behavior against a
specification.

While we cannot conclusively show correspondence between an informal
representation and a formal representation, there are several things we can do
to check either a specification or an actual system against even the most
informal requirements. These activities are called validation, as versus
verification. In the terms introduced by Boehm, verification is Òbuilding the
system rightÓ while validation is Òbuilding the right system.Ó Both are important,
but they require quite different measures.

Validation is largely subjective (although it may also include objective measures,
such as usability testing with objective performance measures). Verification is
objective, in the sense that a program behavior is unambiguously permitted or
not permitted by the specification (this is what we mean by the specification
being precise.) Verification of an implementation against a specification is
valuable only to the extent that we have done a good job of validating the
specification against intentions. In practice these are usually not sequential
steps, but are intertwined.

3CIS 160 SQA / F99 / © Michal Young

Validation vs. Verification

Actual
Requirements

Formal descriptions

System

Validation Verification
Includes usability
testing, user
feedback

Includes testing,
inspections, static
analysis

Verification and validation depend on the way the properties are defined.
Qualitative specifications often require the validation of an external user, while
quantitative properties can often be verified independently.

4CIS 160 SQA / F99 / © Michal Young

Verification or validation depend on
the specification

... if a user press a request button
at floor i, an available elevator
must arrive at floor i soon... ⇒ this
property can be validated,NOT
verified (SOON depends on the
feeling of the user)

1 2 3 4 5 6 7 8

Example: elevator response

... if a user press a request button at floor i, an
available elevator must arrive at floor i within 30
seconds... ⇒ this property can be verified (30
seconds is a precise quantity)

A program is reliable but not correct when failures occur rarely. (A ÒfailureÓ is
any behavior that is not permitted by the specification.) As discussed on the
previous page, ÒrarelyÓ may depend on factors other than the program, including
the way a program is used and even its environment. These factors are often
not described explicitly, in which case they implicitly mean Òunder normal
conditionsÓ or Òin typical usageÓ (whether or not such a thing makes sense).

A program may be correct without being safe or robust if the specification is
inadequate, in the sense that the specification does not rule out some
undesirable behaviors. The phrase ÒthatÕs not a bugÓ is sometimes associated
with inadequate specifications (the behavior in question is not a bug because
the specification doesnÕt prohibit it, but it ought to be a bug.)

A particularly common way in which a program can be correct (or at least
reliable) without being safe or robust is when the specification is only partly
defined. For example, a specification could describe what the program should
do when an existing file is opened for reading, but not say what the program
should do if the file doesnÕt exist. In principle, the program can be correct
regardless of what it does in this case Ñ even if it opens a completely different
file Ñ but this would not be a very robust (and possibly not a safe) behavior.

5CIS 160 SQA / F99 / © Michal Young

Dependability Properties

Robust

Safe

Robust but not safe: catastrophic failures
can occur

Correct but not safe or robust: the specification is inadequate

Reliable

Reliable but not correct:
failures occur rarely

Correct

Safe but not correct:
annoying failures can
occur

A program is correct if it obeys its specification. (There are many alternative
ways of formalizing this, e.g., we can consider a specification to denote a set of
acceptable implementations and say that a program is correct if it belongs to
that set, called the Òspecific and set.Ó)

It is meaningless to talk about correctness of a program without reference to a
specification. And yet we seem to do this all the time ... If a program crashes,
or corrupts a file, or just creates garbage, I say that it is unreliable (and therefore
incorrect), although we have never seen a specification for the program in
question. How can we reconcile this common usage with the definition of
correctness as a consistency relation? When we talk of bugs and reliability in
this manner, we are appealing to implicit and usually informal specifications.
Later weÕll make a distinction between verification of explicit, formally specified
properties and validation of other properties.

Establishing correctness Ñ i.e., ÒprovingÓ that a program is correct Ñ is almost
never a practical, cost-effective goal. Algorithms can be proved correct, as can
protocols, and sometimes small but crucial bits of code can be proved correct;
all these are useful, but they are not the same as proving correctness of a whole
system. So, can we get an Òengineering approximationÓ of correctness, e.g.,
Òthis program has fewer than 1 bug per 1000 lines of code?Ó Such
approximations are sometimes used, but they are difficult to define
unambiguously or measure precisely.

6CIS 160 SQA / F99 / © Michal Young

Correctness

¥ Correctness is a consistency relation
Ð Meaningless without a specification

¥ Absolute correctness is nearly impossible to
establish
Ð seldom a cost-effective goal for a non-trivial

software product

¥ Approximations are difficult to define and
measure
Ð e.g., faults per 1000 lines of code

Demonstrating correctness depends as much on our ability to specify intended
behavior as on our ability to verify consistency with actual behavior. Our ability
to specify, in turn, depends a great deal on how well we have built up a Òdomain
theory.Ó

Language interpreters are a good example of the relation between verification
and the existence of a mature domain theory. There is a mature theory of
syntactic structure, and formal notations (regular expressions and BNF) for
specifying exactly the texts that a language interpreter should accept.
Moreover, this specification method is associated with a well-developed theory
of parsing, which makes it easy to verify that a parser accepts the language
specified by a grammar. The same theory allows us to (mostly) use Òproof by
construction,Ó automatically deriving a parser from the grammar.

The theory of programming language semantics, in contrast to syntax, is not
nearly adequate for specifying the intended meaning of programming
languages. A formal semantic specification for a typical programming language
(say, Java) would be much larger than the corresponding syntactic specification.
In practice, it is a book Ñ semi-formal, and despite a lot of work, almost
certainly ambiguous and incomplete. Since the only available specification is
informal, there is no way to obtain a formal demonstration of correctness.

Mature domain theories exist for several domains, but far more application
domains lack the kind of formalization that would be required to produce
concise formal specifications.

7CIS 160 SQA / F99 / © Michal Young

Correctness and Specification

¥ Example: for a ÒcorrectÓ language interpreter,
we require
Ð Precise grammar (e.g., BNF)

Ð Precise semantics
¥ Hoare-style proof rules, or denotational semantics, or ...

¥ or operational semantics from model implementation
(bugs and all)

¥ Few application domains are well enough
understood for full specifications

So we canÕt (usually) achieve correctness ... who cares? Our cars, televisions, and even
our airplanes donÕt work correctly 100% of the time. What we really care about is
reliability, right? (Well, not quite ... more on that later.)

Reliability is a way of statistically approximating correctness. Reliability can be stated in
different ways. Classical reliability is often stated in terms of time, e.g., mean time
between failures (MTBF) or availability (likelihood of correct functioning at any given
time). Time-based reliability measures are often used for continuously functioning
software (e.g., an operating system or network interface), but for other software ÒtimeÓ is
often replaced by a usage-based measure (e.g., number of executions).

For example, mean time between failures (MTBF) is a statement about the likelihood of
failing before a given point in time (but ÒtimeÓ may be measured in number of uses or
some other way). Availability is the likelihood of correct functioning at any particular point
in time.

Reliability describes the behavior of a program, which may not be correlated to structural
measures of quality. For example, a program with 1 fault (bug) per 1000 lines of code
may be less reliable than another program with 5 faults per 1000 lines of code, depending
on how often those faults result in program failures. How often a fault causes a failure
depends, in turn, on how a program is used. Therefore, reliability is relative to a usage
profile; in fact, a program may be highly reliable when used by one group of users in one
way, and very unreliable when used by another group of users in another way. Accurate
usage profiles can be obtained for some kinds of embedded software, or when one
program replaces another in an existing domain (e.g., we have good usage profiles for
telephone switching systems). For novel applications, it is difficult to obtain accurate
usage profiles in advance. In some cases, reliability may not even be well-defined.
Consider: What is the reliability of a payroll program that runs correctly 100% of the time
until Jan 1, 2000, and then crashes on every use?

8CIS 160 SQA / F99 / © Michal Young

¥ Quantifiable: Mean time between failures,
availability, etc.
Ð describes behavior, not the product itself, e.g.,

fewer bugs ¡ higher reliability

¥ Still relative to a specification
Ð but perhaps a simple one

¥ Relative to a usage profile
Ð often difficult to obtain in advance

Ð may not be static, or even well-defined
¥ how reliable are programs with the year 2000 bug?

A system is robust if it acts reasonably in severe or unusual conditions. It is not
possible to give a precise definition of robustness, but one characteristic of
robust systems is that their specifications include Òdesired reactions to
undesirable situationsÓ [see. Henninger & Parnas].

Robustness is often (but not always) concerned with partial functionality, also
called Ògraceful degradation.Ó An example of this is a phone system, which
distinguishes Òplain old telephone serviceÓ (abbreviated POTS) from advanced
services like call waiting, call forwarding, etc. The phone system is designed to
keep POTS operational even when advanced services cannot be maintained.

9CIS 160 SQA / F99 / © Michal Young

Robustness

¥ Beyond correctness: A property of both
specifications and implementations
Ð A robust system has specified behavior in

unexpected and severe conditions

¥ Orthogonal to reliability
Ð concerned with unusual conditions

¥ Often concerned with partial functionality:
Ð graceful degradation

We will illustrate the relation between correctness and reliability on the one
hand, and robustness and safety on the other, using the example of a traffic
light at a four-way intersection with pedestrian crossings. WeÕll imagine a
sophisticated traffic light system with timing partly controlled by a central
system, which sets the pattern differently according to traffic patterns at different
times of day. For purposes of the example, weÕll consider only the lights at a
single intersection (i.e., weÕll treat the central scheduling facility as an external
entity).

A goal of the traffic light system is to let traffic pass as efficiently as possible,
according to the timing pattern set by the central scheduler. To be robust, it
should also provide some minimal function even when full functionality is not
possible. Above all, it must avoid the hazard of collisions between cars or
between cars and pedestrians.

10CIS 160 SQA / F99 / © Michal Young

Example: Traffic light (USA version)

Control

Correctness, reliability:
let traffic pass according
to correct pattern and
central scheduling

Robustness, safety:
Provide degraded
function when possible;
never signal conflicting
greens.

There is an established field of system safety engineering concerned with
preventing unsafe behavior; software safety is an extension and adaptation of
system safety principles and techniques to software engineering. System
safety begins with hazard analysis; hazards are the unsafe situations or
behaviors that we must avoid. The parts of a specification concerned with
safety are not concerned at all with maintaining functionality, only with
avoiding these hazards.

Safety specifications are typically

¥ Simple: Even if the system as a whole is very complex, the safety properties
should be very simple so that they are easy to establish and verify.

¥ Incomplete: They donÕt specify all the behavior of a system, which is how
simplicity can be achieved.

¥ Redundant: Even if a safety property should follow logically from correct
functional behavior, safety properties are specified independently (just to be
sure!).

11CIS 160 SQA / F99 / © Michal Young

Software Safety

¥ Not concerned with maintaining function
Ð Simple, incomplete, often redundant specifications

of hazard prevention

¥ Adaptation of system safety
Ð An established engineering field

¥ May depend on reliability, or conflict with it

Preventing bad things from happening
(robustness/ negative specifications)

In some cases, safety will depend at least partly on reliability. For example, a
fly-by-wire aircraft such as the Airbus A320 or the Boeing 777 is safe only if the
avionics software provides at least some level of functionality. In many cases,
though, safety can conflict with reliability, because the Òsafe stateÓ of a system is
a non-functional state. For example, a nuclear plant control system is safest
(but not very reliable) if it shuts down at the least hint of irregularity. An
automobile that tests its turn signal lights and refuses to start if any are burnt out
would be safer, but we would probably not accept the reduction in reliability.

Nancy Leveson, a pioneer in software safety research, often tells a story of her
experience as a consultant to a company developing a torpedo. The intended
behavior of a torpedo is to reach an enemy ship and explode; the relevant
hazard is to return to the firing ship and explode. After many measures were
taken to avoid the hazard, the torpedo was tested in a lake. It consistently
floated to the bottom and disarmed itself. It was a very safe torpedo Ñ but very
unreliable.

12CIS 160 SQA / F99 / © Michal Young

Safety vs. Reliability

¥ Interdependent when safety depends on
continued (perhaps degraded) function
Ð example: flight control of fly-by-wire aircraft

¥ Conflicting when function does not contribute
to safety
Ð example: an automobile that does not start is

safe, but unreliable

Ð example: the safest torpedo never explodes

Why do we explicitly state negative properties (what the software should not
do), rather than depending on a statement of the positive properties (what the
software should do) and showing that they imply the safety conditions? In a
word, fallibility. We make mistakes. Formal descriptions of the intended
behavior of software systems are complex, and we make mistakes. We may
think they positive properties rule out the hazardous behavior, but we may be
wrong. A simple, redundant statement of behavior to be avoided reduces the
likelihood that we fail to adequately specify it.

Implementations, too, are complex and imperfect. Where there is complexity,
there will be errors. We want to have much higher assurance of critical safety
properties than of overall correct functioning, and the only way we can achieve
this is to keep safety properties extremely simple. There should be equally
simple measures in the system (software and/or hardware) to ensure these
properties.

13CIS 160 SQA / F99 / © Michal Young

Why negative properties?

¥ Formal descriptions are incomplete
Ð positive specifications may not rule out dangerous

behaviors

¥ Implementations are imperfect
Ð and more complexity => more errors

Ð a redundant, simple specification may facilitate
stronger assurance of critical properties

