
Alloy: A Lightweight Object Modelling Notation

Daniel Jackson
Laboratory for Computer Science

Massachusetts Institute of Technology
July 28, 2000

Abstract

Alloy is a little language for describing structural properties. It offers a declaration syntax compatible
with graphical object models, and a set-based formula syntax powerful enough to express complex
constraints and yet amenable to a fully automatic semantic analysis. Its meaning is given by transla-
tion to an even smaller (formally defined) kernel. To make Alloy easy to use, a number of complica-
tions have been avoided: there are no tuples, no set or relation constants, and no undefined
expressions or special null values. This paper presents the language in its entirety, and explains its
motivation, contributions and deficiencies.

1 Introduction

What is the smallest modelling notation that can express a useful range of structural properties, is
easy to read and write, and can be analyzed automatically? This paper describes an attempt to answer
this question. Alloy is an experimental language with a small syntax, built on an even smaller kernel.
The kernel has a precise semantics, and is expressive enough to capture complex properties, while
remaining amenable to efficient analysis.

Almost all recent development methods factor out the structural aspect of a software system for
separate description, usually called the ‘object model’. Alloy supports the description of basic struc-
ture (graphically, or as textual declarations), as well as more intricate constraints and operations
describing how structures change dynamically (both expressed as logical formulas). It thus incorpo-
rates not only the object model, but also the ‘operation model’ of Fusion [8], or the ‘behaviour
model’ of Catalysis [13], and is comparable to the Object Constraint Language [63] of UML [53].
Alloy is not for describing dynamic interactions between objects, nor for describing syntactic struc-
ture in an implementation, such as the class hierarchy and packaging.

Alloy is amenable to a fully automatic semantic analysis that can provide checking of conse-
quences and consistency, and simulated execution [33,41]. To gain ‘executability’, Alloy does not
sacrifice abstraction: it can generate sample transitions of an operation described implicitly, using
negation and conjunction [35].

Alloy and its predecessor NP [31,36] have been used to model and analyze a variety of artifacts,
including architectural frameworks [32,12,38], a mobile internet protocol [40], a naming scheme
[44], the UML core metamodel [61], and a message filtering device [65].

Alloy’s starting point is Z [58], an elegant and powerful language with a particularly simple math-
ematical foundation. It selects from Z those features that are essential for object modelling, and
incorporates a few constructs that are ubiquitous in more recent (but less formal) notations. The
semantics of Alloy thus bridges the gap between Z and object models, and shows how to give simple
1

and robust meaning to widely used forms, such as navigation expressions and object model dia-
grams.

Semantics has been a vital design tool in this project, ensuring that the language elements are
clear and well defined, and can be composed flexibly without unexpected interactions. In most other
attempts to combine the benefits of formal and informal notations, semantics has been used instead
to explain and make sense of existing elements. Although this explanatory approach can remedy the
imprecision and ambiguity of an informal notation, it does not make it simpler, and may even sanc-
tion its complexity. Alloy recognizes value in current informal notations not in their popularity per
se, but in the particular features that appear repeatedly because of their elegance and utility.

The paper starts with an example: an Alloy model of file system structure (Section 2). The fea-
tures of Alloy are explained informally, and the kinds of analysis that can be performed are illus-
trated. It presents the kernel, with its semantics, and explains informally how the full language is
translated to it (3). The graphical sublanguage is explained as a variant of the textual language (4).
The rationale for Alloy is then given in some detail: why Alloy is based on Z, in preference to UML in
particular, but why Z alone was not deemed adequate (5). Experiences with Alloy, and its known
deficiences, are summarized (6). The paper closes with related work (7) and a brief summary (8). A
full grammar of Alloy appears in the appendix.

Proposals for new languages are inevitably greeted with skepticism. To some extent, it is futile to
make a reasoned case, especially for syntax: the proof of the pudding is in the eating. Furthermore, it
may be that whatever benefits Alloy offers, investment in existing notations, as well as entrenched
interests, make its adoption unlikely. Cultural factors can play a more decisive role than technical
ones; after all, it took applets to bring static types and garbage collection to industrial application,
thirty years after their invention.

In some circles, it has even become axiomatic that new notations are a bad idea. But perhaps the
question that motivates this work is worth posing whatever the politics of language innovation, and
will stimulate a discussion of what object modelling is about, which language features are essential,
and how concerns of analysis impact language design.

2 Example

The Alloy model of Figure 1 is a partial description of a file system (adapted from a model given in
[47]). Our discussion will focus on the textual version; the syntax for the diagram, which corre-
sponds to the domain and state paragraphs of the text, is explained later (in Section 4).

2.1 Specification

The model is divided into paragraphs. The domain paragraph declares sets that represent the coars-
est classification of atoms, in this case into file system objects, directory entries and names. Because
objects and directory entries can be created and deleted, these sets may change, and are viewed as
components of the state. We will not be concerned with the creation and deletion of names, though,
preferring to think of them being drawn from a fixed pool. So the set of names is declared to be fixed.
Each domain implicitly introduces a primitive type. It will therefore be a type error, for example, to
form the union of two distinct domains, or of their subsets.
2

model FileSystem {

domain {Object, DirEntry, fixed Name}

state {
partition File, Dir : static Object
Root: fixed Dir!
entries: Dir! -> DirEntry
name: DirEntry -> static Name!
contents: DirEntry -> static Object!
parent (~children) : Object -> Dir
}

def parent { all o | o.parent = o.~contents.~entries }

inv UniqueNames {all d | all e1, e2: d.entries | e1.name = e2.name -> e1 = e2}

inv Parents {
no Root.parent
all d: Dir - Root | one d.parent }

inv Acyclic {no d | d in d.+parent}

inv Reachable {Object in Root.*children}

cond TwoDeep {some Root.children.children}

assert FileHasEntry {all f: File | some d | f in d.entries.contents}

assert AtMostOneParent {all o | sole o.parent}

op NewDirEntries (d: Dir, es: DirEntry’) {
no es & DirEntry
d.entries’ = d.entries + es
all x: Dir - d | x.entries’ = x.entries }

op Create (d: Dir!, o: Object’!, n: Name) {
n !in d.entries.name
some e: DirEntry’ | NewDirEntries (d, e) && e.contents’ = o && e.name’ = n }

assert EntriesCreated {all d: Dir, e: DirEntry’ | NewDirEntries (d,e) -> DirEntry’ = DirEntry + e}

assert CreateWorks {all d, o, n | Create (d,o,n) -> o in d.children’}

}

Object

File Dir

DirEntry Name

entries

contents

nameparent
(~children)

Root!

!

!

!

3

The state paragraph declares the remaining state components. File and Dir are sets that at any
time partition the set Object of file system objects. These sets are static, which means that they repre-
sent fixed classifications of objects. Although files and directories may be created and destroyed, a
file may not become a directory or vice versa. Root is a particular fixed directory, the exclamation
mark indicating that it represents a set of exactly one element. The relation entries maps directories
to their directory entries; the exclamation mark again means exactly one, in this case that each entry
is in one directory. The relations name and contents map directory entries to their names and con-
tents, and are static, meaning that during the lifetime of an entry its name and contents may not
change. Lastly, parent is a relation that maps an object to the directories it belongs to, and children is
defined to be its transpose.

The definition paragraph defines parent in terms of other state components. The formula is read:
for all objects o, to find the parents of o, follow the contents relation backwards (thus obtaining the set
of directory entries for which this object is the contents), and then follow the entries relation back-
wards too (obtaining the set of directories that contain these entries). Note that the quantification
has an implicit bound: the type of the variable o is inferred to be that of the domain Object, and o is
constrained to be drawn from that domain.

A series of invariants follow. UniqueNames says that any two distinct entries e1 and e2 of the same
directory d must have different names. Parents says, in two formulas implicitly conjoined, that the
root has no parent but all other directories have one parent. Acyclic says that no directory is an ances-
tor of itself. Reachable says that every object is reachable from the root: Root.*children is the set of
objects obtained by following the children relation zero or more times from Root, and is required to
contain the set of all objects.

There is no special notion of scalars in Alloy. A scalar is declared as a set with one element; the
operator in, whose semantics is that if subset, may sometimes be read ‘is an element of ’ (as in Acy-
clic), and sometimes ‘is a subset of ’ (as in Reachable). Quantifier keywords are applied to expressions
to denote their cardinality: no X, some X, one X and sole X mean respectively that the set X has no ele-
ments, some elements, one element and at most one element.

The condition that appears next, TwoDeep, says that there are some children of the children of the
root. Unlike an invariant, it is not expected always to hold; it was included for simulation, to check
that the invariants did not rule out structures more than one level deep.

Two assertions follow. FileHasEntry says that each file is the contents of an entry in some direc-
tory. AtMostOneParent says that each object has at most one parent. These assertions are intended to
be redundant; analysis will check that they follow from the invariants.

Only two operations are included here. NewDirEntries adds a set of entries es to a directory d. The
appearance of DirEntry in the argument list is primed because the entries es are created and will
therefore belong to the domain DirEntry after but not before execution. The three constraints in the
body of the operation say that: (1) the sets es and DirEntry have no intersection; (2) the entries of
d are extended by es; and (3) the set of entries associated with other directories is unchanged. The
Create operation takes a directory, an object and a name. It creates a fresh entry in that directory with
the given name and with the object as contents. The name is required to be distinct from all names of
entries already in the directory. This operation is defined in terms of the other.

The last two assertions record intended properties of the operations. EntriesCreated says that exe-
cuting NewDirEntries for a given entry adds just that entry to the set of entries (and removes none).
4

CreateWorks says that executing Create makes the given object a child of the given directory.

2.2 Analysis

Alloy supports two kinds of analysis: simulation, in which the consistency of an invariant or opera-
tion is demonstrated by generating a state or transition, and checking, in which a consequence of the
specification is tested by attempting to generate a counterexample.

The power of declarative specification, in which negation and conjunction are used freely, comes
with two risks: over- and under-constraint. Simulation helps catch errors of overconstraint, by
reporting, contrary to the user’s intent, that no instance exists within the finite bounds of a given
‘scope’, or by showing instances sharing an unintended structural property. Checking helps catch
errors of underconstraint, by showing instances that are acceptable to the specification but which
violate an intended property.

Together, the two analyses enable an incremental process of specification. One starts with a mini-
mal model, and performs a variety of simulations to detect overconstraint. Intended consequences
are formulated, with counterexamples suggesting additional constraints to be added to the specifica-
tion. This process helps produce a specification that has the desired properties and no more.

Alloy’s analyses have been used in other ways too. One can formulate as checks the equivalence of
two formulations of a property, thus evaluating a purported simplification. This strategy was used to
simplify a model of the query interface mechanism of Microsoft COM [38]. One can also use the
analysis in the style of traditional model checking, in an attempt to find subtle errors in existing
designs. This strategy was used to expose flaws in the design of an intentional naming system [44].

Analysis of the file system model (Figure 1) might start with an attempt to simulate the state
invariants (probably before any operations have been written). Alloy’s tool [41] lets the user select a
schema; to find a state satisfying all invariants, one selects the state schema. The tool displays the
state in which the only object is the root directory. All sets and relations are empty, except for the
domain Object and the sets Dir and Root which all contain the single atom O1. To make the results
more readable, the tool will actually the use the name Root in place of O1:

Analyzing state ...
Scopes: DirEntry(3), Name(3), Object(3)
Conversion time: 0 seconds
Solver time: 0 seconds
Instance found:
Domains:
 DirEntry = {}
 Name = {}
 Object = {Root}
Sets:
 Dir = {Root}
 File = {}
Relations:
 children = {}
 contents = {}
 entries = {}
 name = {}
 parent = {}
5

Suppose we had erroneously declared contents as

contents: DirEntry+ -> static Object!

saying that each object is the contents of at least one entry. The simulation would now report that no
instances are found, exposing the overconstraint. The default scope assigns 3 elements to each prim-
itive type, so this does not imply that no instance exists, but rather that none can be constructed with
at most most 3 objects, 3 entries and 3 names.

Not all overconstraint eliminates all instances, of course. Perhaps the specification rules out any
file system except the empty one. To guard against partial overconstraint, one simulates a variety of
conditions. TwoDeep illustrates that the specification allows a system that is two levels deep:

Analyzing TwoDeep ...
Scopes: DirEntry(3), Name(3), Object(3)
Conversion time: 0 seconds
Solver time: 0 seconds
Instance found:
Domains:
 DirEntry = {D0,D1}
 Name = {N0}
 Object = {Root,O0,O1}
Sets:
 Dir = {Root,O0,O1}
 File = {}
Relations:
 children = {Root -> {O1}, O1 -> {O0}}
 contents = {D0 -> O1, D1 -> O0}
 entries = {Root -> {D0}, O1 -> {D1}}
 name = {D0 -> N0, D1 -> N0}
 parent = {O0 -> {O1}, O1 -> {Root}}

Simulation sometimes exposes underconstraint also. With the Acyclic invariant omitted,
TwoDeep gives an instance in which the root directory is the contents of a directory entry.

Checking the assertion FileHasEntry gives no counterexample. Because of the finite scope, we
cannot conclude that the assertion holds. But by increasing the scope, we can gain greater confi-
dence. Although only small scopes are feasible, it is usually possible to complete an analysis for a
scope sufficient to find most problems that arise in practice. A scope of 6, for example, is exhausted
in about 10 seconds on a modestly equipped PC, and it seems unlikely that there are properties of the
file system that can only be illustrated in larger scopes.

Analysis tends to terminate much sooner when a counterexample is found. AtMostOneParent is
invalid, and gives a counterexample in a scope of 3:

Analyzing AtMostOneParent ...
Scopes: DirEntry(3), Name(3), Object(3)
Conversion time: 0 seconds
Solver time: 0 seconds
Counterexample found:
Domains:
 DirEntry = {D0,D1,D2}
 Name = {N0,N2}
 Object = {Root,O0,O1}
6

Sets:
 Dir = {Root,O0,O1}
 File = {}
Relations:
 children = {Root -> {O0,O1}, O1 -> {O0}}
 contents = {D0 -> O1, D1 -> O0, D2 -> O0}
 entries = {Root -> {D0,D2}, O1 -> {D1}}
 name = {D0 -> N2, D1 -> N2, D2 -> N0}
 parent = {O0 -> {Root,O1}, O1 -> {Root}}

Operations are simulated in the same way as invariants. Create, as expected, shows an object
being added as a child of the root in the empty file system. The assertion CreateWorks is valid, but
EntriesCreated is invalid, sincethe set Dir may change. A directory in Dir’ but not Dir is not con-
strained by the last line of NewDirEntries; to remedy this, one might change it to

all x: Dir + Dir’ - d | x.entries’ = x.entries

Alloy’s current tool generates at most one instance of a formula. For checking assertions, one
counterexample is good enough. For simulation, it may be useful to generate several instances,
although a strategy in which conditions are formulated to induce the generation of instances with
particular features one at a time seems to work well.

3 Language Definition

Alloy is based on a tiny kernel language. The language as a whole is defined by translation to the ker-
nel. Here the translation is given informally, but the kernel itself is presented with a formal seman-
tics. Figure 2 gives an abstract syntax (on the left), a type system (in the middle) and a semantics (on
the right). Most features of the kernel are standard, so we focus here on its novelties: the treatment of
scalars as singleton sets, the encoding of sets as degenerate relations, and the dot operator used to
form ‘navigation expressions’.

3.1 Kernel Syntax

The kernel is strongly typed, and a formula is accompanied by declarations of the set and relation
variables; we call the combination of a formula and its declarations a problem. Each declaration asso-
ciates a type with a variable. There are three kinds of type:
· the set type T, denoting sets of atoms drawn from T;
· the relation type S → T, denoting relations from S to T;
· the function type T ⇒ t, denoting functions from atoms of T to values of type t.
Types are constructed from primitive types that denote disjoint sets of atoms. We use upper case
names for primitive types and lower case names for arbitrary types. So in the type T ⇒ t, the index
type T must be primitive, but t may be a set type, relation type or another function type.

Functions correspond to predicates of arity greater than two, and generalize the OMT notion of
‘qualified associations’ [52]. The predicate Rides (r,j,h) that holds when jockey j rides horse h in race
r, for example, might be declared as a function

rides : Race ⇒ Jockey → Horse
7

prob
decl
type
 typ
 | ty
 | ty

form
 exp
 | ! f
 | fo
 | fo
 | a

 | s

expr
 | ex
 | ex
 | ex
 | ex
 | ~
 | +
 | {v
 | Va

Var

 | v
 | V

)}

 r
and, for a given race r, the expression rides[r] would then denote a relation mapping jockeys to their
horses in that race. The current version of Alloy does not support arbitrary functions, but just func-
tions to relations; the above declaration would actually be written

rides [Race] : Jockey -> Horse

A function can be viewed as a curried form of a relation from a tuple; this function, for example,
might have been declared as Race × Jockey → Horse. Functions, however, give a simpler expression
syntax, since there are no tuples to construct and deconstruct. Of course, one can always introduce
tuples explicitly in Alloy (eg, a type Run with projections to Race and Jockey) although they have no
special syntactic support. In the file system example, DirEntry is such a tuple; instead, we might have
declared a function

contents [Object] : Name -> Object

so that contents[d] gives a mapping for a directory d from names to objects it contains.
Functions retain the binary flavour of the logic: they fit naturally into diagrams, and can accom-

modate multiplicity markings. In the full language, the question marks in

rides [Race] : Jockey? -> Horse?

lem ::= decl* formula
 ::= var : typexpr
xpr ::=
e
pe -> type
pe => typexpr

ula ::=
r in expr subset

ormula negation
rmula && formula conjunction
rmula || formula disjunction

ll v : type | formula universal

ome v : type | formula existential

 ::=
pr + expr union
pr & expr intersection
pr - expr difference
pr . expr navigation

 expr transpose
 expr closure
 : t | formula} set former
r

::=

ar variable
ar [var] application

E � a: S , E � b: S

E � a in b

E, v: T � F

E � all v : T | F

E ��a: S → T, E ��b: S → T

E ��a + b : S → T

E � a: S → T, E � b: S → U

E � a . b : U → T

E � a: S → T

E � ~a : T → S

E � a: T → T

E � +a : T → T

E, v: T � F

E � {v: T | F} : T

E � a: T ⇒ t, E � v: T

E � a[v]: t

M : formula → env → boolean
X : expr → env → value
env = (var + type) → value
value = P (atom × atom) + (atom → value)

M [a in b] e = X[a] e ⊆ X[b] e
M [! F] e = ¬ M [F] e

M [F && G] e = M [F] e ∧ M [G] e

M [F || G] e = M [F] e ∨ M [G] e

M [all v: t | F] e = � {M [F](e� v � x) | (x,unit) ∈ e(t)}

M [some v: t | F] e = � {M [F](e� v � x) | (x, unit) ∈ e(t

X [a + b] e = X [a] e ∪ X [b] e

X [a & b] e = X [a] e ∩ X [b] e

X [a - b] e = X [a] e \ X [b] e

X [a . b] e = {(x,z) | ∃ y. (y,z) ∈ X [a] e ∧ (y,x) ∈ X [b] e}

X [~a] e = {(x,y) | (y,x) ∈ X [a] e}

X [+a] e = the smallest r such that r ; r ⊆ r ∧ X [a] e ⊆
X [{v: t | F}] e = {(x,unit) ∈ e(t) | M [F](e� v � x)}
X [v] e = e(v)

X [a[v]] e = (e(a)) (e(v))

Figure 2: Kernel syntax, type rules and semantics
8

for example, indicate that, in each race, a jockey rides at most one horse and vice versa. Finally, func-
tions have an advantage over the introduction of tuples for tool implementation also, since they can
be used to represent skolem functions introduced to replace existential quantifiers.

There are no separate scalar types. To declare a scalar variable, we declare it to be a set

v : T

and add a constraint that makes the set a singleton:

some x: T | x = v

(exploiting the fact that, by definition, x is bound to a singleton). This allows navigation expressions
to be written uniformly, without the need to convert back and forth between scalars and sets, side-
steps the partial function problem, and simplifies the semantics (and its implementation).

Formulas have a conventional syntax. There is only one elementary formula, stating that one
expression is a subset of another. In quantified formulas, the variable is declared to have primitive
type, and is interpreted as being bound to singleton subsets of the type.

Expressions are formed using the standard set operators (union, intersection and difference), the
unary relational operators (transpose and transitive closure), and the dot operator, used to form
navigation expressions. The unary operators are prefixes, to make parsing easy.

Set comprehension has the standard form. Set and relation variables are expressions, but function
variables, and functions in general, are not. Ensuring that functions can only be applied to variables
guarantees that an expression involving a function is always well defined, since the function’s argu-
ment will denote a singleton set.

3.2 Kernel Type System

We treat sets semantically as degenerate relations, viewing the set {e1, e2, …} as the relation
{(e1,unit), (e2,unit), …} where unit is a special atom that is the sole member of a special type Unit.
Unlike our treatment of scalars as singleton sets, this is just a trick that makes the semantics more
uniform; users of Alloy will prefer to view sets in the traditional way. The type of a variable declared
as v: T is thus represented as T→ Unit, although we shall write this type as T for short.

The typing rules determine which problems are well-formed. The judgment E � a: t says that in
the type environment E, expression a has type t; the judgment E � F says that in environment E, the
formula F is well-typed. Obvious rules (eg, for conjunction) are omitted, as well as those (eg, for
intersection) identical to rules given.

A problem is type checked in an initial environment that binds each variable to the type as
declared. The environment is extended in the checking of quantified formulas and set comprehen-
sions. For example, the rule for universal quantification says that the quantified formula is well-
typed when its body is well-typed in the environment extended with the binding of the bound vari-
able to its declared type.

The set operators can be applied to sets or relations; when + is applied to two sets, for example,
the type T will be Unit. Likewise, the dot operator can be applied to sets or relations, in any combina-
tion that the typing allows. Note that the typing rules make clear where sets alone are legal: for bound
variables, and the arguments of function applications.
9

3.3 Kernel Semantics

The meaning of the logic is defined by a standard denotational semantics. There are two meaning
functions: M, which interprets a formula as true or false, and X, which interprets an expression as a
value. Values are either binary relations over atoms, or functions from atoms to values. Interpretation
is always in the context of an environment that binds variables and primitive types to values, so each
meaning function takes both a syntactic object and an environment as arguments.

Each definition defines the meaning of an expression or formula in terms of its constituents. For
example, the elementary formula a in b is true in the environment e when X[a]e, the relation denoted
by a in e, is a subset of X[b]e, the relation denoted by b in e. The quantified formula all v: t | F is true
in e when F is true in every environment e ��v � x obtained by adding to e a binding of v to x, where
x is a member of the set denoted by the type t in e. The membership condition is written

 (x,unit) ∈ e(t)

since the set e(t) is, like all other sets, encoded as a relation. We assume that bound variables have
been systematically renamed where necessary to avoid shadowing.

All operators have their standard interpretation, except the dot operator, which does double duty.
Its semantic definition is like relational composition, but with one argument transposed and the
arguments reversed. When s is a set and r is a relation, s.r denotes the image of s under r. The dot
operator associates to the left, so s.p.q is (s.p).q.

By treating sets as degenerate relations, and by typing the dot operator loosely, we get as an added
bonus that ~q.p is the composition of two relations p and q, and ~t.~s is the cross product of sets s
and t. The full Alloy language does not currently exploit this, and uses the dot operator for naviga-
tion expressions in which it always means relational image. We can retrieve the simpler definition by
noting that, in the semantic equation for X[a.b], the variable z will be unit when a is a set, so the
result will be a set also.

The meaning of a problem is the collection of well-formed environments in which its formula
evaluates to true. An environment is well-formed if: (1) it assigns values to the variables and basic
types appearing in the problem’s declarations, and (2) it is well-typed—namely that it assigns to each
variable an appropriate value given the variable’s type. For example, if a variable v has type S → T in
an environment e, then e(v), the value assigned to v in e, must be a relation from the set denoted by S
to the set denoted by T.

The environments for which the formula is true are the models of the formula. To avoid that term’s
many overloadings, we shall call them instances instead. If a formula has at least one model, it is said
to be consistent; when every well-formed environment is a model, the formula is valid. The negation
of a valid formula is inconsistent, so to check an assertion, we look for a model of its negation; if one
is found, it is a counterexample.

Since the kernel is undecidable, it is impossible to determine automatically whether a formula is
valid or consistent. Alloy’s analysis is limited to a finite scope that bounds the sizes of the carrier sets
of the basic types. A model is within a scope of k if it assigns to each type a set consisting of no more
than k elements. Clearly, if the analysis succeeds in finding a model to a formula, consistency is dem-
onstrated. Failure to find a model within a given scope, however, does not prove that the formula is
inconsistent (although in practice, for a large enough scope, it often strongly suggests it).
10

3.4 Full Language

The full Alloy language differs from the kernel in three respects: a more elaborate syntax for declara-
tions, the addition of a variety of shorthands, and paragraph structuring.

3.5 Declarations: Mutability & Multiplicity

In contrast to the kernel, the full language does not allow explicit mention of types. A primitive type
is generated for each domain (namely each set variable declared in the domain paragraph). This type
has no name and thus cannot appear in the specification. Other set and relation variables are
declared in terms of the domains, and from these declarations, types are inferred. For example,

domain {A, B}

declares two domains A and B, with types TA and TB say. A subsequent declaration

S : A
r : S -> B

introduces a set variable S of type TA, and a relation variable r of type TA → TB. The declarations
express in addition the constraints

S in A
all x: TA | x.r in B
all y: TB | y.~r in A

bounding the set S and the domain and range of r. Each declaration also introduces a primed version
of the variable (with corresponding constraints), unless the variable is marked as fixed. Static mark-
ings express constraints on transitions. The declarations

S : static A
r : A -> static B
r : static A -> B

for example, give

all x: A & A’ | x & S = x & S’
all x: A & A’ | x.r = x.r’
all y: B & B’ | y.~r = y.~r’

A relation declaration with static on both sides would induce both the second and third constraint.
Note that, even in this case, r’s value may still change.

Multiplicities are translated into constraints in the obvious way. The declaration

r : A -> B?

for example, gives the constraint that r is a partial function

all x: TA | sole x.r

where sole e is a formula (defined below) that is true when the expression e denotes a set of at most
one element.

Whereas the kernel allows ‘function’ variables with any number of index types, the Alloy lan-
guage currently only supports a single index. One can declare an indexed relation

r [I] : A -> B

whose type will be TI ⇒ TA�→ TB. Mutability and multiplicity constraints are generated as for reg-
ular relations, with an additional quantification over the index variable. For example,
11

r [I] : A -> B?

would give

all i: TI | all x: TA | sole x.r[i]

saying that each relation r[i] is a partial function.

3.6 Formula Shorthands

A few operators missing from the kernel are trivially derived: implication, in terms of negation and
disjunction, for example, and equality of expressions in terms of in. The symbol ! can be used to
negate operators; a !in b, for example, is short for !(a in b). The additional quantifiers are defined as
follows:

no x | F ��all x | !F
sole x | F ��some y | {x | F} in y
one x | F ��sole x | F && some x | F

Conventional shorthands for quantified formulas are included: one can quantify over several vari-
ables with the same quantifier, and bound the variable with an expression: all x: e | F, for example, is
short for all x | x !in e || F. The type of the bound variable, required in the kernel syntax, is inferred
from the body formula. When an explicit bound is not given, a bound is added, constraining the
variable by the domain associated with the type: all x | F is short for all x: A | F if x is inferred to have
type TA associated with domain A. This ensures the property of scope monotonicity (see Section
5.2).

Quantifiers can be applied to expressions: the formula Q e, for a quantifier Q and an expression e
is short for Q v | v in e. Thus no e, some e, one e, and sole e say that e has no elements, some elements,
exactly one, and at most one.

The uniform treatment of scalars as sets, and the use of the navigation operator in place of func-
tion application, tends to make specifications shorter and easier to understand. It is not a panacea,
however. Sometimes, when interpreting in as membership rather than subset, it comes as a surprise
that the formula will be true when the left hand side denotes an empty set. To say that nobody’s wife
is his sibling, for example, we might write

no p | p.wife in p.siblings

but unfortunately this implies that every person has a wife. What we mean instead is

no p | some p.wife && p.wife in p.siblings

To make such formulas more succinct, Alloy includes the ‘strong’ subset and equality operators /in
and /=, so this formula can be written

no p | p.wife /in p.siblings

3.7 Paragraph Structure

Formulas in Alloy are organized into paragraphs. The meaning of a paragraph includes not only the
formula given explicitly, but also formulas imported from invariant and definition paragraphs, and
the implicit formulas associated with declarations. The difference between a condition and an invari-
ant is simply that an invariant is implicitly imported into all other paragraphs, but a condition is not.
12

The Alloy tool has a switch to turn this importation on or off, and can check that operations preserve
invariants without requiring explicit assertions.

Invariants and definitions do not differ semantically, but they are treated differently by the tool. A
definition is expected to constrain only the defined variable, and to give it exactly one value for given
values of the other variables. This not only allows additional checks to be performed, but can also be
used to simplify the analysis. If a paragraph does not mention a particular variable, one might omit
the definition of that variable, even though it mentions other variables that appear in the paragraph.
This is sound so long as the definition is well formed. The current Alloy tool does not check well-
formedness, but allows the user to indicate that definitions are to be ‘believed’ so that such omissions
are enabled.

Condition and operation paragraphs can be explicitly ‘invoked’. Following Z, the invocation C’ is
an invocation of the condition C with its variables primed. Unlike Z, Alloy allows conditions and
operations to have arguments. Invocations with arguments are handled simply by replacing occur-
rences of the formal variable with the corresponding actual expression. Arguments, like state vari-
ables, can be declared in terms of sets; for operations, these may include sets in the post-state. The
declaration o: Object’! from the Create operation (Figure 1), for example, adds a constraint one o &&
o in Object’, namely that o is a scalar drawn from the set of objects after execution.

4 Graphical Syntax

An example of Alloy’s graphical syntax at the top of Figure 1. A diagram can only express state, and
not operations, and only those constraints that are expressible in the domain and state paragraphs.
The graphical elements correspond directly to the elements of the domain and state paragraphs.

Each set component is represented as a box. The set declaration S : T m, where S and T are sets
and m is a multiplicity symbol, is represented as an arrow with a triangular head from a box marked
S m to a box marked T. Domains are not specially marked; they are simply the sets with no outgoing
triangular arrows. If a set is static, it has a vertical stripe down the left-hand side of the box; if it is
fixed, it has a stripe on the right too. Domains are by definition static, so no special marking is
needed to indicate this, graphically or textually. Several sets may be connected to a single set with
arrows that meet in a single arrowhead; this declares the sets to be disjoint. If the arrowhead is filled,
the collection additionally forms a partition.

A relation r from S to T is represented as an arrow, with a smaller, open head, and labelled r, from
the box labelled S to the box labelled T. Multiplicity symbols are written at the ends of the arrow. If
the relation is source-static, the tail of the arrow is marked with a small hatch; if it is target-static, the
head is marked.

Relations with identical declarations may share a single arrow, labelled with a comma-separated
list of relation names. An indexed relation declared textually as

r [X] : S -> T

is represented by a relation arrow from S to T labelled r[X]. Similarly,

p (~q) : S -> T

is represented by a relation arrow from S to T labelled p(~q).
13

4.1 Comparison to UML

This syntax is largely compatible with UML [53]. A comparison is tricky, since UML’s meaning is
defined in mostly implementation-oriented terms. UML diagrams do not have a corresponding tex-
tual syntax in OCL, so every UML model must include a diagram, in addition to any textual con-
straints.

Nevertheless, the basic notational differences are as follows:
· Alloy uses regular expression operators as multiplicity symbols instead of integer ranges. Aside

from looking neater, the Alloy symbols sit more comfortably in text. Using UML symbols would
change r: A+ -> B? to r: A [1..] -> B [0..1], more than doubling the number of keystrokes.

· Alloy’s treatment of scalars as singleton sets allows important ‘singletons’ [18] such as the root of
a file system to be shown in the diagram.

· In Alloy’s graphical syntax, a set may have at most one superset; UML has ‘multiple inheritance’.
· Alloy’s syntax for disjointness and exhaustiveness requires no textual annotations. InUML, since

exhaustiveness is represented as a property of the superset, it is not possible to show more than
one classification of a set. One cannot, for example, declare a set Person, with classifications into
Adult and Child, and Employed and Unemployed. Oddly, UML makes no use of the visual distinc-
tion between sets that share a subtree and sets that do not. Catalysis [13], another UML variant
influenced by Z, takes the same approach as Alloy.

· In place of a relation label p(~q), UML would show the labels p and q at the arc ends. This seems
to make diagrams harder to lay out, since it clutters the space around nodes.

· Mutability is indicated in UML with textual markings at the ends of associations. There does not
appear to be a notational distinction between static and dynamic classifications.

· Qualifiers in UML take the place of Alloy’s indexed relations. Alloy does not have association
classes.

· UML includes a variety of additional notions, mostly implementation oriented (such as naviga-
bility). Associations can be described as aggregations or compositions (discussed in Section 6.4
below).

5 Rationale

This section explains why Z was chosen as the basis for Alloy, but why Z alone is not sufficient. Z has
a simpler semantics than other formal specification languages, and, because of its relational nature,
is well matched to object modelling. In addition to its technical superiority over UML’s constraint
language, it has also been far more widely used, and its power and limitations are better understood.
Despite these benefits, though, Z has not been adopted in industry, and there is a widespread con-
sensus that something different is needed. Alloy addresses three perceived deficiencies of Z: a lack of
automatic tool support, incompatibility with object modelling idioms, and dependence on LaTeX.

5.1 Basing Alloy on Z

Z [58] was chosen as Alloy’s starting point primarily because it has a simple and intuitive semantics
that is well suited to object modelling. Its ‘model-oriented’ approach to specification, in which data
structures are built from concrete mathematical structures, scales better than the ‘algebraic’
14

approach typified by Larch [22] and OBJ [20], in which data structures are characterized implicitly
by their properties. It is also a more natural fit for data modelling, since relations are basic to Z but
not easily described algebraically. Z has roots in the database work of Abrial [2], so its compatibility
with the object modeling notations of OMT [52] and its successors, which are themselves based on
semantic data models, is hardly surprising.

The underlying semantics of Z is almost trivially simple. Every data structure is represented using
sets and tuples. A relation is a set of pairs; a function is a relation in which no two pairs share the
same first element; a sequence is a function from natural numbers to the element type. A specifica-
tion is constructed from logical formulas, and its meaning is given as sets of structures that satisfy
formulas. An operation, for example, is a formula whose meaning is a set of transitions; each transi-
tion is a tuple consisting of components that represent the pre- and post-states.

VDM [43], although model-oriented, builds data structures from a library of algebraically-
defined datatypes. Its semantics requires more than set theory: in particular, the notion of domains
from denotational semantics, and a three-valued logic. Alloy’s tool development has exploited the
ability to reduce the language to a tiny kernel (Section 3.1); it is not clear this could be done so easily
for a language such as VDM.

Given the current popularity of UML [53], one might ask why its constraint language, OCL [63],
was not selected as the basis of Alloy. Most importantly, it seemed prudent to start with a language
that was tried and tested, and would be a solid foundation for further development. Z has been used
in large-scale industrial developments and widely taught; tools are available; and several collections
of specifications have been published. There are, in contrast, no publicly available examples of OCL
models beyond the metamodel of UML itself, and few tools.

OCL was designed with much the same motivations as Alloy. It has its origins in Syntropy [9],
whose authors acknowledge the influence of Z. Like Alloy, OCL aims to be a formal language that is
more easily used by non-mathematicians than Z. But while Alloy has simplified the underlying
semantics of Z even further, OCL has complicated it, in order to accommodate a variety of notions
from object-oriented programming. Articulating the essence of a system is for many practitioners
much harder than writing code, but is not made easier by giving a code-like semantics to models.
OCL’s language features include parametric and subtype polymorphism, operator overloading,
introspection, type casing and multiple inheritance – a challenging combination for a programming
language, let alone a modelling notation (which one expects to be much smaller and simpler). A
semantics for OCL has yet to be worked out, and a variety of inconsistencies in its definition have
been noted [5].

UML, whatever its defects, is at least an industry standard. On pragmatic grounds alone, perhaps
it would make a better target for analysis than a new language. Although appealing, I believe this
argument to be mistaken. First, although UML has been codified, in its use the language is still in
flux. Notations and methods that are described as UML-compliant often deviate markedly from the
standard; the Catalysis approach to UML [13], for example, uses a constraint language that has more
in common with Alloy than OCL. Second, as mentioned above, OCL is not currently widely used,
and is certainly less well known than Z. Third, this argument underestimates the difficulty of putting
OCL into analyzable form, whether by translation, subsetting or by defining the semantics of the lan-
guage as it is. The project of formalizing UML currently occupies a raft of researchers, and is likely to
take several years. It seemed better to build tools now and apply them to real problems than to tackle
15

(or wait for others to overcome) this formidable obstacle. Finally, in time, it may be that UML comes
to be viewed unfavorably as a premature attempt at standardization, and that the cause of software
development is better served by working on far simpler notations with more powerful tool support.

The relationship between Alloy and OCL is discussed further in Section 7.1.

5.2 Automatic Analysis

Z was not designed with automatic, semantic analysis in mind. To make the language more amenable
to analysis, Alloy eliminates features that make analysis hard, provides syntactic support to allow the
user to communicate analysis with an analysis tool, and adjusts both the syntax and semantics to
ease implementation of the analysis.

Analyses can be classified according to their semantic depth and degree of automation. Type
checking is shallow but fully automatic; theorem proving is deep but typically requires guidance
from the user. Alloy is designed for an analysis that is both deep and automatic.

Ideally, the language would be decidable. Unfortunately, the most elementary calculus that
involves relations is undecidable – even Tarski’s relational calculus, which has no quantifiers and is
strictly less expressive than first order logic. Some compromise is thus inevitable. Alloy’s analysis
finds models of formulas: that is, assignments of values to variables for which the formula is true.
When the formula is the negation of a theorem, its models are counterexamples; when the formula is
a state invariant or operation, the models are samples (either instances of the state or transitions).
The analysis is guaranteed to be sound, in the sense that a model returned will indeed be a model.
There are therefore no false alarms, and samples are always legitimate (and demonstrate consistency
of the invariant or operation). On the other hand, when the analysis does not return a model, one
cannot conclude that none exists. The validity of a theorem cannot be guaranteed, and an invariant
or operation that appears to be inconsistent may in fact be consistent.

The analysis works by considering all potential models up to a given size, specified by a scope that
limits the number of atoms in each primitive type. In practice, it seems that most interesting proper-
ties, whether samples or counterexamples, can be illustrated within a small scope. So the absence of a
model within a scope gives some empirical evidence that none exists, becoming more credible as the
scope is increased.

The analysis is explained elsewhere [33]. In short, the values of a relation are viewed as adjacency
matrices. Each relational variable is encoded as a matrix of boolean variables whose dimensions are
determined by the scope, and a boolean formula is constructed whose models correspond to models
of the original formula. An off-the-shelf SAT solver is used to find solutions to the boolean formula.

This analysis method imposes certain restrictions on the language. Several of these might be
lifted with progress in analysis technology, but it seems unlikely that the features omitted will not
always incur some additional cost. There are three fundamental restrictions:
· All datatypes are first order, since a higher order value cannot be represented as an adjacency

matrix. There are no relations that map relations, for example. Alloy does support functions from
atoms to relations, but these are simply first-order relations in curried form, and can be repre-
sented by a multidimensional adjacency matrix.

· All quantifiers are first order. The analysis eliminates scalar quantifiers by forming explicit con-
junctions and disjunctions over all possible values of the bound variable. Higher-order quantifi-
16

ers cannot be eliminated in this way, because a relation or set has too many values. Skolemization
can eliminate some higher-order quantifiers, but Alloy’s design is based on the premise that all
specifications should be analyzable.

· All types are uninterpreted; in Z jargon, all primitive types are ‘given’. Interpreted types and their
operators are not easy to encode in a boolean formula. A future release of Alloy will include inte-
gers with at least addition, subtraction and less than, but it seems unlikely that division and mul-
tiplication can be handled. The interchangeability of the atoms of an uninterpreted type can be
exploited [37]; Alloy’s tool adds symmetry-breaking predicates that can improve performance
dramatically.
A second influence of analysis on the language arises from the user’s need to communicate with

the analysis tool. In Z, only convention distinguishes the role played by different schemas. The syn-
tax does not indicate, for example, whether a schema represents an invariant or an operation. Z does
not even separate theorems about the specification from the specification proper. Alloy takes from
Larch [22] the idea of explicit assertions, formulas that are added purely for checkable redundancy. It
also distinguishes invariants from definitions [42], exposing additional opportunities for checking: a
definition, unlike an invariant, is expected to constrain a variable to have exactly one value (and is
expected not to constrain the remaining variables).

A third influence arises from the architecture of the analysis tool itself. The semantics and transla-
tion scheme are simplified by ensuring that every expression and formula has a denotation (that is, a
formal meaning). Alloy has this property, because of the omission of function application and the
semantics of navigation, but Z does not, since a partial function may be applied outside its domain.
A more subtle issue is scope monotonicity. Alloy is designed so that whenever a formula has a model
within a given scope, that model belongs also to any larger scope. This allows the tool to fix the size of
the primitive types for a particular run, rather than considering all sizes smaller than the scope per-
mits. To enable this, Alloy does not allow explicit reference to the sets that denote primitive types, so
one cannot, for example, write a formula constraining a type to have exactly two atoms; in fact, types
are implicit and are never named at all. Fortunately, both of these issues also make the language eas-
ier to read and write.

5.3 Set-Based Syntax

Z, although semantically founded on sets, gives better syntactic support to relations. Alloy includes
some syntactic features (adapted from the syntax of informal notations) that make it easier to write
models in terms of sets.

Relational operators are powerful and allow some constraints to be written far more succinctly
than with quantifiers and set operators. The formula

no (parent & Id)

for example, says that no file system object is its own parent, by declaring to be empty the intersec-
tion of the parent relation and the identity relation that maps an object to itself. But formulas based
on sets tend to be easier to read and write, and many would prefer

no p | p.parent = p

perhaps because its structure is closer to natural language.
Relational operators are rarely found in the informal notations. Some graphical notations allow a
17

relation to be constrained to be a subset of another, or disjoint from it, but none of the textual con-
straint languages provides a union operator on relations. Two features of these informal notations
support a style of specification in which sets rather than relations predominate, and have been incor-
porated into Alloy.

The first is the ability to give the domain and range of a relation as part of its declaration. In Alloy,
the declarations

partition File, Dir : Object
parent : Object -> Dir?

introduce files and directories as disjoint subsets of the set of file system objects, and a relation that
maps objects to their parent directories. The question mark in the second declaration indicates that
each object has at most one parent.

Z does not allow a set to be declared and then used in the declaration of a relation in this way. One
would have to add explicit constraints: that File and Dir partition Object, and that the range of parent
is a subset of Dir (or that parent is an element of the set of partial functions from Dir to Object, which
looks like an additional declaration). The most serious consequence of this limitation of Z’s scoping
rules is that it is not possible to transcribe an object model diagram directly into a sequence of decla-
rations. It is especially unfortunate that properties of a relation that could otherwise have been
expressed ‘above the line’ must be expressed below it. For example, the declaration

name : Dir -> Name!

says that every directory has exactly one name; in Z, one could declare the relation as functional, but
not as total (since it is not total over Object).

The second feature is the ‘navigation’ syntax for relational image. Assume three additional decla-
rations

Current : Dir!
Superuser: User!
owner : Object -> User!

which introduce a current directory, a superuser, and a relation that maps each object to the user that
owns it. The navigation expression Current.owner denotes the owner of the current directory; Supe-
ruser.~owner denotes the objects owned by the superuser; Current.parent.owner denotes the owner
of the parent directory of the current directory; Current.*parent denotes the objects obtained by fol-
lowing parent zero or more times from the current directory, namely all its ancestors; Current.*par-
ent - Superuser.~owner denotes the ancestors of the current directory not owned by the superuser;
(Current.*parent - Superuser.~owner).owner denotes the owners of these objects; and so on.

A navigation operator could easily be added to Z: it is merely relational image with the arguments
reversed. What makes navigation convenient in Alloy, however, is the type system, which treats sca-
lars as singleton sets. No set braces are needed to lift a scalar to a set; the owner of the current direc-
tory is written Current.owner and not {Current}.owner . This is not a type coercion; there is no scalar
type in Alloy. By providing only the navigation operator, and no function application, Alloy side-
steps the partial function problem: every expression denotes some set, there is no need for a notion
of undefinedness or a null value, and formulas need not be guarded. Informal notation suffer from
the same problems: in UML’s constraint language, for example, navigation cannot generally be
applied to sets.

The ‘multiplicity’ syntax in Alloy is the same scheme used in all informal notations. There is a col-
18

lection of multiplicity symbols; in Alloy, * (zero or more), + (for one or more), ! (exactly one), and ?
(zero or one). Each relation may be marked with a symbol on each end; omission is equivalent to *.
For symbols m and n, a relation declared as S m -> T n maps each atom in the set S to n atoms in the
set T, and maps m atoms in S to each atom in T. This is more systematic than the scheme used in Z,
and works well in diagrams too. Alloy goes a step further than current informal notations, and uses
the same symbols to qualify sets: S! denotes a scalar, S? an ‘option’, and S+ a non-empty set.

5.4 Mutability

Z provides no explicit syntactic support for mutability constraints, beyond the delta/xi conventions.
Alloy incorporates mutability notions from informal notations, and gives them a precise and
abstract semantics.

In some informal object model notations, one can declare a classification of objects to be static
(meaning that a given object cannot be reclassified during its lifetime), and can specify in what ways
a relation can change. Formal notations such as Z tend not to support such notions explicitly. Alloy
uses a single keyword – static – to mark a set as a static classification, and to mark a relation as immu-
table in one direction or another. This concept of relation mutability has a simple abstract semantics,
but can also be used to describe an implementation. In a file system model, for example, the relation
link from an alias to the object it points to might be declared to be static (in the direction from alias
to object):

link: Alias -> static Object

This would imply that which object an alias points to cannot be changed, although aliases can be cre-
ated and destroyed:

all a: Alias & Alias’ | a.link = a.link’

In an implementation, one might exploit this by making aliases immutable. But the declaration of
link makes no such commitment; there is no requirement even that the relation be implemented as a
field of an alias object.

In Z, every component declared in a state schema will have a primed counterpart in an operation.
If the component is fixed, and one wants to use the same name in the pre- and post-state, the compo-
nent must be given a global scope, compromising the modularity of the specification. Alloy therefore
allows a set component to be declared as fixed, and the name of such a set cannot be primed.

5.5 Lexical Issues

A criticism of Z’s dependence on LaTeX [46], and its use of special symbols and Greek letters, risks
sounding philistine and mundane (and mean-spirited, since Z specifications are so visually attrac-
tive). But the issue is important in practice, and it is tricker to design a neat ASCII notation than one
might imagine.

Standard formatting of Z requires typographic symbols not found even in commercial mathe-
matical faces (such as Adobe’s Mathematical Pi). Although a ‘horizontal form’ has been defined that
does not need boxes, it is rarely used for an entire specification. Consequently, it is a burden to pro-
duce a Z specification that does not look amateurish without the aid of LaTeX. Many Z tools, includ-
ing the indispensable FuZZ type checker, take only LaTeX source code as input.
19

The negative consequences of tying Z to LaTeX have not been sufficiently appreciated. Perhaps
more than any other factor, this has limited the adoption of Z beyond circles in which LaTeX is the
formatting tool of choice. A Z specifier who uses industry-standard tools (such as Word and Power-
Point) cannot easily include Z in documents. Specifications cannot be easily communicated by
email, and they cannot be incorporated as annotations in code. Even in academia there is a serious
problem: Z cannot be taught without also teaching the use of LaTeX, which can present bigger hur-
dles to novices than Z itself.

Alloy is a plain ASCII notation. Many operators use only a single keystroke: + and &, for example,
stand for union and intersection. The rest use at most two, and are familiar from programming lan-
guages: &&, for example, stands for conjunction, and -> is used to construct relation types. There
are only 18 reserved words.

6 Experience & Evaluation

Alloy has been in use for about two years. It has been applied in the Software Design Group at MIT in
a variety of small projects, including: the analysis of an intentional naming system [44]; the design of
an air-traffic control system component [65]; and (with Kevin Sullivan) the reformulation of some
essential properties of Microsoft COM’s query interface mechanism [38]. To allow a direct compari-
son of Alloy to UML, the core metamodel of UML [62] itself was translated from OCL to Alloy; the
resulting Alloy specification [61] is shorter and simpler, and was shown to be consistent using Alloy’s
automatic analysis. Alloy is currently being evaluated in a variety of other applications: to security
(describing the organization of domains and trust relationships); to software architecture (describ-
ing legal configurations); and to the analysis of code [39].

Alloy has been taught in courses at 6 universities, usually along with two or three other notations
and their analysis tools. Its graphical notation and a slight variant of the textual notation has been
adopted in the undergraduate software engineering class at MIT [47].

No formal evaluation has been performed. Novices appear to have had little difficulty in learning
the notation; a week generally suffices for an undergraduate with a basic grounding in discrete math-
ematics. The availability of an interactive tool, especially with visualization of instances (only
recently added), seems to make a big difference. It gives immediate, concrete feedback, and lends to
specification some of the emotional appeal of programming.

6.1 Language Design Faults

A number of deficiencies of the language have become apparent, a few from the comments of users,
but mostly from the experience of the author and his research group in constructing the analysis tool
and in developing Alloy models. Some are faults of language design that can be easily remedied: the
omission of a let construct, for example, and minor differences in syntax between state declarations
and bound variable declarations (the latter not supporting the disjoint keyword, for example).

Some deficiencies are omissions that were motivated by simplicity but appear to have been mis-
guided. The two most significant are the requirement that indexed relations appearing in expressions
be indexed by variables (which often calls for an additional spurious quantifier), which can be reme-
died with a slight change of semantics, and the omission of relational operators. When an expression
20

of the form e.*(p+q) is needed, the lack of relational union forces definition of an additional rela-
tional variable. Although the set-based style works well for writing state invariants, it is less well
suited to operations. In Z, the last two constraints of the NewDirEntries operation (Figure 1) would
be written more succinctly as a single relational formula:

entries’ = entries + {d -> e}

The notion of domains, and the inability to quantify over primitive types, creates problems
despite its advantages. It exacerbates the frame problem. In the same operation, the formula

all x: Dir - d | x.entries’ = x.entries

does not constrain the value of entries’ outside the domain Dir, and one must therefore add the frame
condition

Dir’ = Dir

(whose omission was detected by checking the assertion EntriesCreated). It also forces mention of
post-state sets in argument declarations, which is uncomfortable (although quite logical). One can
always introduce a fixed domain representing the set, but it would be nice to retain the benefit of
implicit typing. One plausible solution is to infer types and not domains as bounds in quantified for-
mulas, and mitigate the loss of scope monotonicity with a static analysis that would signal its poten-
tial violation.

The need for frame conditions in operations is a constant annoyance. A future version of Alloy
may include a keyword that indicates that all unmentioned state components are to be regarded as
unchanged. The design of such a feature is fraught with difficulties, however; it also exposes further
distinctions between definitions and invariants (since one often wants to describe an operation in
terms of defined components, or to leave the defined components to take on the value determined by
the definition). The Catalysis syntax new*D for D’ - D would be a nice addition. It may also make
sense to treat an expression of the form a.r, where a is a newly created atom and r is a right-static rela-
tion, as short for a.r’; in the Create operation of the file system example, e.contents would then refer
to the contents of the new entry e after execution.

6.2 Extending Expressiveness

As progress is made in the analysis underlying Alloy, it should be possible to extend the notation
with some desirable features. The most commonly requested are: integers (with at least addition,
subtraction, comparison and set cardinality); sequence components (which can usually be simulated
with an explicit ordering relation); recursively defined constraints; and sequencing of operations.

Sequencing of operations present more of a language design challenge than a tractability prob-
lem. Following Z, one could take the formula op1 ; op2 to be short for

some s: State | op1(pre,s) && op2(s,post)

but this calls for a higher-order quantifier. In most cases, such as checking an assertion of the form

op1 ; op2 -> property(pre,post)

the quantifier can be skolemized away. It might therefore be best to allow higher-order quantifiers in
the language, but to regard specifications in which they cannot be eliminated as ill-formed.
21

6.3 Structuring

Alloy’s paragraph structuring has proven to be easy for novices to grasp and a good basis for tool
support. But it has serious deficiencies, from the point of view of both user and tool developer. First,
despite the ability to separate constraints into distinct paragraphs (and to have multiple state sche-
mas, a syntactic convenience permitted by the Alloy tool), the incremental construction of a model
is not adequately reflected in its structure. Second, it is not possible to reuse specification fragments
in different contexts: one cannot, for example, define a tree generically. Some of the most basic struc-
tures are the trickiest to describe (try to define an acyclic, undirected graph, for example), and a bur-
den that could be lifted from the specifier with an appropriate library mechanism.

Adopting Z’s schema calculus would address these concerns, but not the third: the detrimental
effect of lack of structure on tool implementation. Handling primed variables adds a surprising
amount of complexity to Alloy’s tool. Partly this is due to the automatic importation of invariants,
and the provision of fixed components; the tool determines, for example, whether an assertion men-
tions post-state variables, and if so, introduces the appropriate invariants. (Incidentally, one motiva-
tion for this mechanism was to eliminate a complication of explicit imports: the need to resolve
multiple declarations of the same component.) But it arises also in the need to apply renamings,
when obtaining an invariant in primed form, and in the ad hoc nature of any code that organizes the
results of an analysis into pre- and post-state components.

The notion of decoration, inherent in the schema calculus, lies at the root of these problems. It
would be more intuitive to regard an operation as a constraint over two structures, pre and post say,
of the same type. Flattening these into a single structure, with elements of the latter marked by
primes, brings succinctness and a certain simplicity, but it makes it harder to organize a tool system-
atically.

6.4 Attributes and Aggregation

Like Z and most other formal notations, Alloy makes no distinction between attributes and relations.
Most informal notations, such as UML, use a different syntax for attributes, and sometimes even a
different semantics; OCL, for example, uses null values for attributes but not for relations that map
an object to zero or one objects.

Whether attributes deserve some special treatment is unclear. Certainly they matter when
describing the details of a data model, but for the kind of structural modelling to which Alloy has
been applied, where the focus on global structural properties, it is usually better either to omit
attributes (because they are not significant), or promote them to the same level as other relations. In
the file system example (Figure 1), it seems unnatural to treat the name relation as any less significan
than the others; most complications in such a system are about naming, after all. For the same rea-
son, the lack of integers in Alloy is not as serious as one might expect, since constraints involving
integers are usually of secondary importance.

Aggregation is a thorny issue, and a subject of endless debate (and confusion). It may be useful at
the implementation level, but it has no clear application in abstract models (and is therefore shunned
by many authors, eg [13, 15]). Moreover, most attempts to give a semantics to aggregation result in a
notion of immutability or lack of sharing which are easily expressed directly.
22

7 Related Work

7.1 UML’s Object Constraint Language

The Object Constraint Language [63] of UML was designed with many of the same goals as Alloy. In
some respects it is more expressive than Alloy: it has integer and string datatypes, and sequences. It
does not have transitive closure, however, and the attempt to form closures using operations (as used
repeatedly in the UML metamodel [62]) is not well founded. Indeed, the reason for including closure
is that it is known not to be expressible in first-order logic.

Giving OCL a semantics is likely to be challenging, because of its rather elaborate type system
(which has been shown to admit Russell’s paradox [5]), implicit coercions, inheritance, and iteration
construct. Progress has been made for a subset [24], but it remains to be seen whether the entire lan-
guage can be defined cleanly without significant change.

The syntax of OCL has been criticized – eg, by the authors of Catalysis [13], who propose a vari-
ant similar to Alloy – for being hard to read and write. OCL’s expressions are stacked in the style of
Smalltalk, which makes it hard to see the scope of quantified variables. Navigations are applied to
atoms and not sets of atoms, although there is a collect operation that maps a function over a set.
Attributes, which are treated no differently from relations in Alloy, are partial functions in OCL, and
result in expressions with undefined value.

As an example of an OCL constraint, suppose we want to say that nobody gives a dog the name of
a child or friend. In Alloy, we might write

all p: Person | all d: p.pets & Dog | d.name !in (p.children + p.friends).name

which can be read ‘for all persons p, and for all d that are pets of p and dogs, d’s name is not in the set
of names of p’s children and friends’, or, making even more use of the ability to navigate from sets,

all p: Person | no (p.pets & Dog).name & (p.children + p.friends).name

In OCL, this statement might be written:

Person
self.pets->select (d | d.oclKindOf(Dog))

->forall(d | not (self.children->union(self.friends)->collect(q | q.name))->includes(d.name)

What makes this harder to read is the use of unary rather than binary operators, thus breaking the
symmetry of terms such as p.children + p.friends; the distinction between types and sets, which
forces the use of the special oclKindOf operator, and prevents use of the type Dog as an expression;
and the definition of navigation in terms of scalars rather than sets, which adds two unnecessary
quantifiers, forall and collect.

(This example is taken from a constraint in the metamodel of UML [62, Foundation Package:
Core, Classifier, Rule 4] that reads: ‘The name of an attribute [of a Classifier] may not be the same as
the name of an opposite AssociationEnd or a ModelElement contained in the Classifier’. Further
comparisons of OCL and Alloy formulations of UML metamodel constraints are given in [61]).

Alloy’s notion of static relations formalizes the ‘frozen’ annotation of UML (which like many dia-
grammatic features in UML, seems to be available only in graphical form and not in OCL). Attention
to mutability properties during modelling is well rewarded; not only does it often expose subtle
problems, but it also provides a grounding for investigating where immutable datatypes may be used
in the implementation. This is why mutability is treated as vital in Alloy, and not as a refinement.
23

7.2 Z Variants

Developers of several tools for Z, such as ZTC [64], have found the need for an ASCII version of the
syntax. These tend to follow the layout of Z closely, which makes them sit more comfortably in an
environment that also supports standard typeset Z, obtained from LaTeX input. A bijection from A
to B, for example, might be denoted A >->> B, compared to A! -> B! in Alloy. In my experience (with
NP, a predecessor of Alloy [31,36]), the desire to show the more attractive, typeset version of the
notation in publications undermines the ASCII form. Typing even a few extra keystrokes is also sur-
prisingly annoying; this is why, for example, the relation type constructor is -> in Alloy, and not <->
(as in NP), which is more compatible with Z.

Richard Botting has invented an ASCII syntax for mathematics, and has transcribed into it a vari-
ety of mathematical theories relevant to software [6].

Most theorem provers for Z (such as Z/EVES [11]) extend the language to distinguish theorems
from the specification proper. The idea of including redundant assertions to a specification goes
back at least to Larch [22]. Many specification languages impose more structure than Z: VDM, for
example, distinguishes invariants (and splits operations into pre- and post-conditions). The differ-
ence between definitions and invariants (discussed at length in [42]) is recognized by fewer lan-
guages. Oddly, the notion is present in UML’s graphical notation (in derived relations), but not in
OCL.

7.3 Semantic Data Models

The fundamental idea of object modelling—namely constructing models of state in which object
identity plays a central role—originates in the semantic data models developed in the context of
databases [30,50]. One of the earliest and best known is Chen’s entity-relationship model [10]; it was
followed by more elaborate and sophisticated models, such as SDM [26] and DAPLEX [56]. Abite-
boul and Hull formalized many of the notions present in these models in their IFO model [1]. These
models do not include a full first-order logic, so they are not as expressive as Alloy or OCL.

The insight that a semantic data model is a better starting point for object-oriented development
than a model in which objects have methods and fields is due to OMT [52]. Alloy’s attempt to give an
entirely abstract, implementation-free semantics to object models is in line with OMT’s advocacy of
‘analysis models’ that capture problem properties without preempting later development decisions.

7.4 Formalizing Object Models

Several recent object-oriented methods have used ideas from formal specification, most often Z, to
bring rigour to and extend the expressiveness of object models. Like Alloy, Fusion [8] views the
object model as an invariant on the state, and allows transitions to be expressed as global operations.
It does not have a formal constraint language. Syntropy [9] introduced the notion of navigation
expressions, adopted later by UML, and although not formal, addresses carefully many issues treated
superficially in UML (such as the meaning of aggregation). Catalysis [13] embodies a variant of
UML, with a cleaner syntax and a semantics based on sets, similar to Alloy.

Several schemes have been devised to translate object models to formal specifications, both as an
exercise to expose semantic issues, and as a means of obtaining an analyzable model. Larch is a pop-
24

ular target because its Shared Language provides a mathematical foundation that is not biased
towards any style of specification structuring [4,5, 24]. Bickford and Guaspari’s translation [5]
addresses many of the complexities of UML, including subtyping and contexts. Their work also
exposes a number of serious flaws in the definition of UML.

Z is another popular target, because its built-in datatypes – sets and relations – are a closer fit
than the operators of an algebraic language, and allow a more direct translation. UML classes are
usually represented in Z with schema types [16, 17], following the object-oriented style of [23]. More
recently, work has begun on a formalization of UML in which semantic functions are defined in Z
[14].

7.5 Visual Logic

Visual formalisms for set theory and logic have a long history. Most well known are Venn diagrams
and Euler circles. In a Venn diagram, a set is shown as a closed contour, the region inside the contour
representing the contents of the set. All set terms are shown by overlapping the contours in every
combination; one then indicates which regions are empty and which are non-empty. When there are
than a few sets, a Venn diagram is too hard to draw. Euler’s scheme overcomes this problem by allow-
ing overlappings to be omitted, and interpreting missing regions as empty sets. Harel’s higraphs are
Euler circles superimposed with arrows between sets to indicate binary relations [27]; his statecharts
are higraphs in which the arrows represent transitions. The mathematician Charles Pierce developed
a scheme for expressing logic diagrammatically. This work has been brought to the attention of com-
puter scientists by Sowa, whose conceptual graphs [57] are based on Pierce’s diagrams. (Hammer
describes many of these diagrams with their semantics in [25].)

Given the advantages of graphical notations, it makes sense to try and express object model con-
straints visually. An extension of Pierce’s diagrams have been developed for this purpose [19]. How
well these approaches scale remains to be seen. Even drawing non-trivial object models as higraphs
is difficult, and it may be that the ‘classification hierarchy plus relations’ style that has become almost
universal represents the most that can be expressed conveniently in diagrammatic form.

7.6 Scalars and Partial Functions

The idea of treating a scalar as a singleton set appears in Quine’s set theory [51] and in Tarski and
Givant’s relational reconstruction of set theory [59]. Hehner proposed the idea of a bunch, a data
structure just like a set but of the same type as its elements, as a practical device for simplifying nota-
tion [29]. In bunch theory, however, a bunch is used to represent non-deterministic choice of a scalar
value; functions take scalars as arguments, and the meaning of application to a bunch is obtained by
applying the function pointwise over the bunch elements [7]. A set that is actually used as a value in
the computation would not be represented by a bunch.

Different specification languages have addressed the problem of partial functions in different
ways. Roughly speaking, the common approaches are: to extend types with special values (such as
‘null’) to record the result of an out-of-domain application ; to assign a third logical value to the
smallest subformula containing the bad application, and compute the value of the formula as a whole
in an extended, three-valued logic [43]; to regard all functions as total, and represent a partial func-
25

tion with an explicit domain outside of which the value of the function is unknown [22,21]; to treat
the result of a bad application as well defined, but of unknown value [3,60]; and to give the value false
to the smallest subformula containing the bad application [55,49,45].

Each approach has its merits, and none is ideal. Alloy’s approach likewise is no panacea, but
works well for the task at hand. Its context differs from most of the existing approaches in two ways.
First, Alloy has limited expressiveness; the lack of function values, in particular, makes the elimina-
tion of scalars viable. Second, where most languages have been designed for syntactic proof, and the
choice of partial-function scheme has been based on which axioms and proof rules hold, Alloy is
designed for semantic analysis. For this, it helps if every expression and formula has a known deno-
tation (for a given binding of free variables) that ideally can be computed compositionally.

Alloy’s scheme, in addition to this property, requires no special values or non-standard logic. It
also minimizes the need for guards [54]. The statement that some object has the root object as its
parent

some o: Object | o.parent = Root

would require a guard in Z

some o: Object | o in dom parent && o.parent = Root

since the subformula o.parent = Root may be true for some value of o outside the domain of parent.
The last scheme mentioned above (assigning false to elementary formulas containing bad appli-

cations), used in Alloy’s predecessor NP, has all these advantages too, but it has a nasty consequence.
Because elementary formulas are given special treatment, e1 != e2 is not in general equivalent to (!e1
= e2). The 3-valued logic approach does not have this problem, since the negation of the third logical
value is itself.

8 Conclusions

Why yet another modelling language? A series of observations motivated the development of Alloy.
First, that first-order logic with sets and relations goes a long way – a large class of structural models
can be described in Z without higher-order features, and can thus be analyzed efficiently. Second,
that the object models advocated for problem modelling and analysis (by OMT, Syntropy, Fusion,
Catalysis, UML, etc) are at heart semantic data models, and are best given a relational semantics.
Third, that these models and their associated textual annotation languages offer some convenient
syntactic features missing from Z.

In its details, Alloy is not novel; indeed its aim is to combine familiar and well-tested ideas from
existing notations. Alloy’s contribution is to show how a practical modelling notation can be assem-
bled from only a handful of features. A few auxiliary notions allow these features to be fitted together
smoothly. The implicit typing of domains, for example, allows the hierarchies of object models to be
given a straightforward Z-style semantics, without the need to declare given types. The treatment of
scalars as singleton sets makes navigation expressions uniform, and avoids the complications of
undefinedness or special null values. Alloy’s kernel can be viewed as an attempt to capture the
essence of object modelling, and gives a precise semantics to the full notation in a simple and
straightforward way.

Concrete syntax has been given more attention in Alloy’s design than is currently fashionable (at
26

least in academic circles). No unfamiliar-looking operators are used; punctuation is minimal; and
keywords are used sparingly. When in doubt, a construct has been omitted: Alloy has no attributes,
no scalars, no set constants, and no tuples.

Despite its minimality – or perhaps because of it – Alloy has turned out to be a useful notation.
Small notations are often easier to read and write, and always easier to implement. Much of Alloy’s
benefit, however, comes from its tool. The ability to experiment with a model, generate samples, and
check properties, changes the very nature of modelling. It gives a sense of concrete progress, and
exposes errors more rapidly and ruthlessly than an expert reader. Fortunately, in Alloy’s design, the
the demands of tool developer and specifier have been not only compatible but symbiotic.

Acknowledgments

This paper benefited greatly from discussions about Alloy with Anthony Hall, Peter Henderson,
Tony Hoare, Michael Jackson, and Barbara Liskov. Ian Schechter, Ilya Shlyakhter and Manu Sridha-
ran helped implement the current Alloy tool. Many other members of the Software Design Group at
MIT also contributed to my understanding of Alloy, as its first users.

This research was funded by the National Science Foundation (under grant CCR-9523972), by
the MIT Center for Innovation in Product Development (under NSF Cooperative Agreement Num-
ber EEC-9529140), and by an endowment from Douglas T. Ross.

The diagrams in this paper were drawn with Visio (now Microsoft Visual 2000), using a template
available from the author. Student copies of Visio for the author’s undergraduate class were gener-
ously donated by Visio Corporation.

References

[1] Serge Abiteboul and Richard Hull. IFO: A Formal Semantic Database Model. ACM Transac-
tions on Database Systems,Vol. 12, No. 4, December 1987, pp. 525–565.

[2] J.R. Abrial. Data Semantics. In J.W. Klimbie and K.L. Koffeman (eds.), Data Base Manage-
ment. North Holland, 1974.

[3] R. Arthan. Undefinedness in Z: Issues for specification and proof. CADE-13 Workshop on
Mechanization of Partial Functions, Rutgers University, New Brunswick, NJ, July 1996.

[4] Robert H. Bourdeau and Betty H.C. Cheng. A Formal Semantics for Object Model Diagrams.
IEEE Transactions on Software Engineering, October 1995.

[5] Mark Bickford and David Guaspari. Lightweight Analysis of UML. TM-98-0036, Odyssey
Research Associates, Ithaca, NY, November 1998.

[6] Richard Botting. Maths in Ascii. Poster. Joint Meeting of Southern California Chapter of
Mathematical Association of America and Society for Industrial and Applied Mathematics
(SIAM). Spring 1992. Text available at: http://www.csci.csusb.edu/dick/papers/rjb92b.dis-
crete.

[7] A. Bunkenburg and J. M. Morris, A Theory of Bunches, Acta Informatica, to appear.
[8] Derek Coleman, Patrick Arnold, Stephanie Bodoff, Chris Dollin, Helena Gilchrist, Fiona

Hayes and Paul Jeremaes. Object-Oriented Development: The Fusion Method. Prentice Hall,
1994.
27

[9] Steve Cook and John Daniels. Designing Object Systems: Object-Oriented Modelling with Syn-
tropy. Prentice Hall, 1994.

[10] Peter P. Chen. The Entity-Relationship Model—Toward a Unified View of Data. ACM Trans-
actions on Database Systems, Vol. 1, No. 1, (1976), pp. 9–36.

[11] Dan Craigen, Irwin Meisels, and Mark Saaltink. Analysing Z Specifications with Z/EVES. In
Industrial-Strength Formal Methods in Practice, J.P. Bowen and M.G. Hinchey (eds.), Springer
Verlag, September 1999.

[12] Craig A. Damon, Ralph Melton, Robert J. Allen, Elizabeth Bigelow, James M. Ivers and David
Garlan. Formalizing a Specification for Analysis: The HLA Ownership Properties. Technical
Report CMU-CS-99-126, School of Computer Science. Carnegie Mellon University, Pitts-
burgh, PA, April 1999.

[13] Desmond F. D’Souza and Alan Cameron Wills. Objects, Components and Frameworks With
Uml : The Catalysis Approach. Addison-Wesley, 1998.

[14] A.S. Evans and A.N. Clark. Foundations of the unified modeling language. In 2nd Northern
Formal Methods Workshop, Ilkley, Electronic Workshops in Computing. Springer-Verlag,
1998.

[15] Martin Fowler. Analysis Patterns: Reusable Object Models. Addison Wesley, 1997.
[16] Robert B. France, Jean-Michel Bruel and Maria M. Larrondo-Petrie. An Integrated Object-

Oriented and Formal Modeling Environment. Journal of Object Oriented Programming
(JOOP), 10(7), November/December 1997.

[17] Robert B. France, Jean-Michel Bruel, Maria M. Larrondo-Petrie, and Malcolm Shroff. Explor-
ing the Semantics of UML Type Structures with Z. Proceedings of the Formal Methods for Open
Object-based Distributed Systems (FMOODS’97), 1997.

[18] Erich Gamma, Richard Helm,Ralph Johnson, and John Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison Wesley, October 1994.

[19] J. Gil, J. Howse, and S. Kent. Constraint Diagrams: A Step Beyond UML. In Proceedings of
Tools USA’99. IEEE Computer Society Press, December 1999.

[20] Joseph Goguen and Joseph Tardo. An introduction to OBJ: A language for writing and testing
software specifications. In Marvin Zelkowitz, ed., Specification of Reliable Software, pages
170–189. IEEE, 1979. Reprinted in Software Specification Techniques, Nehan Gehani and
Andrew McGettrick, eds., Addison Wesley, 1985, pages 391–420.

[21] David Gries and Fred B. Schneider. Avoiding the Undefined by Underspecification. In Jan van
Leeuwen (ed.), Computer Science Today: Recent Trends and Developments, pages 366–373. Vol-
ume 1000, Lecture Notes in Computer Science, Springer-Verlag, NY, 1995.

[22] John V. Guttag, James J. Horning, and Andres Modet. Report on the Larch Shared Language:
Version 2.3. Technical Report 58, Compaq Systems Research Center, Palo Alto, CA, 1990.

[23] Anthony Hall. Using Z as a Specification Calculus for Object-Oriented Systems. In D. Bjorner,
C.A.R. Hoare, and H. Langmaack, eds., VDM and Z: Formal Methods in Software Develop-
ment, Lecture Notes in Computer Science, Volume 428, pp. 290–381, Springer-Verlag, New
York, 1990.

[24] Ali Hamie, John Howse and Stuart Kent. Interpreting the Object Constraint Language. Pro-
ceedings of Asia Pacific Conference in Software Engineering, IEEE Press, 1998.

[25] Eric M. Hammer. Logic and Visual Information. Center for the Study of Language and Infor-
28

mation, Stanford University, Stanford, CA, 1995.
[26] Michael Hammer and Dennis McLeod. Database Description with SDM: A Semantic Data-

base Model. ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981, pp. 351–386.
[27] David Harel. On visual formalisms. Communications of the ACM, Vol. 31, No. 5, pp. 514-530,

1988.
[28] Ian Hayes. Specification Case Studies. Prentice Hall, 1993.
[29] Eric C.R. Hehner. Bunch Theory: A Simple Set Theory For Computer Science. Information

Processing Letters, Vol. 12, No. 1, February 1981, pp. 26–30.
[30] R. Hull and R. King. Semantic Data Models. ACM Computing Surveys, Vol. 20, No. 3, 1987, pp.

153–189.
[31] Daniel Jackson. Nitpick: A Checkable Specification language. Proc. First ACM SIGSOFT Work-

shop on Formal Methods in Software Practice, San Diego, CA, January 1996, pp. 60–69.
[32] Daniel Jackson. Automatic Analysis of Architectural Style. Unpublished manuscript. August

1997.
[33] Daniel Jackson. Automating first-order relational logic. Proc. ACM SIGSOFT Conf. Founda-

tions of Software Engineering. San Diego, November 2000.
[34] Daniel Jackson and John Chapin. Redesigning Air-traffic Control: An Exercise in Software

Design. IEEE Software, May/June 2000.
[35] Daniel Jackson and Craig Damon. Semi-executable Specifications. Technical report CMU-CS-

95-216, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, November
1995.

[36] Daniel Jackson and Craig A. Damon. Nitpick Reference Manual. Technical Report CMU-CS-
96-109. School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, January
1996.

[37] Daniel Jackson, Somesh Jha and Craig A. Damon. Isomorph-free Model Enumeration: A New
Method for Checking Relational Specifications. ACM Trans. Programming Languages and Sys-
tems, Vol. 20, No. 2, March 1998, pp. 302–343.

[38] Daniel Jackson and Kevin Sullivan. COM Revisited: Tool Assisted Modelling and Analysis of
Software Structures. Proc. ACM SIGSOFT Conf. Foundations of Software Engineering. San
Diego, November 2000.

[39] Daniel Jackson and Mandana Vaziri. Finding Bugs with a Constraint Solver. International
Symposium on Software Testing and Analysis (ISSTA’2000), Portland, OR, August 2000.

[40] Daniel Jackson, Yuchung Ng and Jeannette Wing. A Nitpick Analysis of IPv6. Formal Aspects
of Computing.

[41] Daniel Jackson, Ian Schechter and Ilya Shlyakhter. Alcoa: the Alloy Constraint Analyzer. Proc.
International Conference on Software Engineering, Limerick, Ireland, June 2000.

[42] Michael Jackson. Software Requirements and Specifications: A Lexicon of Practice, Principles
and Prejudices. Addison-Wesley, 1995.

[43] Cliff Jones. Systematic Software Development Using VDM. Second edition, Prentice Hall, 1990.
[44] Sarfraz Khurshid and Daniel Jackson. Exploring the Design of an Intentional Naming Scheme

with an Automatic Constraint Analyzer. Proc. Automated Software Engineering, Grenoble,
France, September 2000.

[45] C.P.J. Koymans and G.R. Renardel de Lavalette. The logic MPLw. Algebraic Methods: Theory,
29

Tools and Applications, M. Wirsing and J.A. Bergstra (eds.), LNCS 394, Springer Verlag, 1989,
pp. 247–282.

[46] Leslie Lamport. LaTeX : a document preparation system. Addison-Wesley, 1986.
[47] Barbara Liskov with John Guttag. Program Development in Java. Addison-Wesley, 2001.
[48] Daniel Le Metayer. Software Architecture Styles as Graph Grammars. Proceedings of the Fourth

ACM SIGSOFT Symposium on the Foundations of Software Engineering, ACM Software Engi-
neering Notes, Vol. 21, No. 6, ACM Press, October 1996, pp. 3–14.

[49] David Parnas. A Logic for Describing, not Verifying, Software. Erkenntnis (Kluwer), Vol. 43,
No. 3, November 1995, pp. 321–338.

[50] J. Peckham and F. Maryanski. Semantic Database Modeling: Survey, Applications, and
Research Issues. ACM Computing Surveys, Vol. 19, No. 3, 1988, pp. 201–260.

[51] W.V.O. Quine. New Foundations for Mathematical Logic. American Mathematical Monthly,
Vol. 44, 1937, pp. 70–80.

[52] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy and William Lorensen.
Object-Oriented Modeling and Design. Prentice Hall, 1991.

[53] James Rumbaugh, Ivar Jacobson and Grady Booch. The Unified Modeling Language Reference
Manual. Addison-Wesley, 1999.

[54] Mark Saaltink. Domain Checking Z Specifications. 4th NASA LaRC Formal Methods Work-
shop, September 1997.

[55] Dana S. Scott. Existence and Description in Formal Logic. In Bertran Russell, Philosopher of
the Century, R. Schoenmann, ed., Allen and Unwin, 1967, pp. 181–200.

[56] David W. Shipman. The Functional Data Model and the Data Language DAPLEX. ACM
Transactions on Database Systems, Vol. 6, No. 1, March 1981, pp. 140–173.

[57] John F. Sowa. Conceptual Structures: Information Processing in Mind and Machine. Addison
Wesley, Reading, MA, 1984.

[58] J. Michael Spivey. The Z Notation: A Reference Manual. Second edition, Prentice Hall, 1992.
[59] Alfred Tarski and Steven Givant. A Formalization of Set Theory Without Variables. American

Mathematical Society Colloquium Publications, Volume 41, 1987.
[60] Sam H. Valentine. Inconsistency and Undefinedness in Z – A Practical Guide. 11th Interna-

tional Conference of Z Users (ZUM’98), Berlin, Germany, 1998.
[61] Mandana Vaziri and Daniel Jackson. Some Shortcomings of OCL, the Object Constraint Lan-

guage of UML. Response to Object Management Group’s Request for Information on UML
2.0, December 1999.Available at http://sdg.lcs.mit.edu/~dnj/publications.

[62] UML Partners. UML Semantics. Version 1.1, September 1997. Available at http://www.ratio-
nal.com.

[63] Jos Warmer and Anneke Kleppe. The Object Constraint Language: Precise Modeling with UML.
Addison Wesley, 1999.

[64] Xiaoping Jia. ZTC: A Type Checker for Z Notation. User’s Guide, Version 2.03. Division of Soft-
ware Engineering School of Computer Science, Telecommunication, and Information Sys-
tems, DePaul University, Chicago, IL, August 1998.

[65] David Zhang. Design of the Collaborative Arrival Planner using Object Modeling. MEng. The-
sis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, MA, May 2000.
30

Appendix: Alloy Grammar

Vertical bar denotes choice; star denotes zero or more repetitions; angle brackets indicate optional
phrases; x, indicates a comma-separated lists of x’s. STAR, BAR and PRIME are terminals representing an
asterisk, vertical bar and prime mark respectively.

model ::= model model-name { domain {domdecl, *} para*}

para ::= state 〈name〉 { compdecl*}

 | inv 〈name〉 { formula* }

 | def comp { formula* }

 | cond name 〈arglist〉 { formula* }

 | assert 〈name〉 { formula*}

 | op name 〈arglist〉 { formula*}

domdecl ::= 〈fixed〉 set

compdecl ::= setdecl | reldecl

setdecl ::= 〈disjoint | partition〉 set, : 〈fixed | static〉 set mult

reldecl ::= relx 〈(~ relx)〉 , : 〈static〉 set mult -> 〈static〉 set mult

relx ::= rel | rel [set]

mult ::= ? | ! | +

arglist ::= (argdecl,)

argdecl ::= arg, : set mult

formula ::= negate formula

 | formula logic-op formula

 | quantifier var-decl , BAR formula

 | expr comp-op expr

 | quantifier expr

 | (formula)

 | name 〈(expr ,)〉
var-decl ::= var , 〈: expr〉
logic-op ::= && | || | -> | <->

negate ::= not | !

comp-op ::= in | = | negate in | negate = | /= | /in

quantifier ::= all | some | no | sole | one

expr ::= var | arg | set | expr expr-op expr | expr . qualifier | { var-decl BAR formula } | (expr)

expr-op ::= + | - | &

qualifier ::= rel | rel [var] | ~ qualifier | + qualifier | STAR qualifier

arg ::= id

var ::= id

name ::= id

set ::= id | id PRIME

rel ::= id | id PRIME
31

	Abstract
	1 Introduction
	2 Example
	2.1 Specification
	2.2 Analysis

	3 Language Definition
	3.1 Kernel Syntax
	3.2 Kernel Type System
	3.3 Kernel Semantics
	3.4 Full Language
	3.5 Declarations: Mutability & Multiplicity
	3.6 Formula Shorthands
	3.7 Paragraph Structure

	4 Graphical Syntax
	4.1 Comparison to UML

	5 Rationale
	5.1 Basing Alloy on Z
	5.2 Automatic Analysis
	5.3 Set-Based Syntax
	5.4 Mutability
	5.5 Lexical Issues

	6 Experience & Evaluation
	6.1 Language Design Faults
	6.2 Extending Expressiveness
	6.3 Structuring
	6.4 Attributes and Aggregation

	7 Related Work
	7.1 UML’s Object Constraint Language
	7.2 Z Variants
	7.3 Semantic Data Models
	7.4 Formalizing Object Models
	7.5 Visual Logic
	7.6 Scalars and Partial Functions

	8 Conclusions
	Acknowledgments
	References
	Appendix: Alloy Grammar

