
Chapter 2

Dimensions and Tradeoffs
DRAFT

The purpose of software test and analysis is either to assess software qualities or else
to make it possible to improve the software by finding defects. Of the many kinds of
software qualities, those addressed by the analysis and test techniques discussed in this
book are the dependability properties of the software product.

There are no perfect test or analysis techniques, nor a single “best” technique for
all circumstances. Rather, techniques exist in a complex space of tradeoffs, and often
have complementary strengths and weaknesses. This chapter describes the nature of
those tradeoffs and some of their consequences, and thereby a conceptual framework
for understanding and better integrating material from later chapters on individual tech-
niques.

It is unfortunate that much of the available literature treats testing and analysis as
independent or even as exclusive choices, removing the opportunity to exploit their
complementarities. Armed with a basic understanding of the tradeoffs and of strengths
and weaknesses of individual techniques, one can select and combine from an array of
choices to improve the cost-effectiveness of verification.

2.1 Validation and Verification

While software products and processes may be judged on several properties ranging
from time-to-market to performance to usability, the software test and analysis tech-
niques we consider are focused more narrowly on improving or assessing dependabil-
ity.

Assessing the degree to which a software system actually fulfills its requirements,
in the sense of meeting the user’s real needs, is called validation. Fulfilling require-

�
Validation

ments is not the same as conforming to a requirements specification. A specification is
a statement about a particular proposed solution to a problem,1 and that proposed solu-
tion may or may not achieve its goals. Moreover, specifications are written by people,
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2.1. VALIDATION AND VERIFICATION

and therefore contain mistakes. A system that meets its actual goals is useful, while a
system that is consistent with its specification is dependable.

�
Dependable

“Verification” is checking the consistency of an implementation with a specifica-
tion. Here, “specification” and “implementation” are roles, not particular artifacts. For

�
Verification

example, an overall design could play the role of “specification” and a more detailed
design could play the role of “implementation;” checking whether the detailed design
is consistent with the overall design would then be verification of the detailed design.
Later, the same detailed design could play the role of “specification” with respect to
source code, which would be verified against the design. In every case, though, ver-
ification is a check of consistency between two descriptions, in contrast to validation
which compares a description (whether a requirements specification, a design, or a
running system) against actual needs.

Figure 2.1 sketches the relation of verification and validation activities with respect
to artifacts produced in a software development project. The figure should not be inter-
preted as prescribing a sequential process, since the goal of a consistent set of artifacts
and user satisfaction are the same whether the software artifacts (specifications, design,
code, etc.) are developed sequentially, iteratively, or in parallel. Verification activities
check consistency between descriptions (design and specifications) at adjacent levels
of detail, and between descriptions and implementation.2 Validation activities attempt
to gauge whether the system actually satisfies its intended purpose.

Validation activities refer primarily to the overall system specification and the final
code. With respect to overall system specification, validation checks for discrepancies
between actual needs and the system specification as layed out by the analysts, to en-
sure that the specification is an adequate guide to building a product that will fulfill its
goals. With respect to final code, validation aims at checking discrepancies between ac-
tual need and the final product, to reveal possible failures of the development process
and to make sure that the product meets the actual end-user expectation. Validation
checks between the specification and final product are primarily checks of decisions
that were left open in the specification, e.g., details of the user interface or product fea-
tures. Chapter ?? provides a more thorough discussion of validation and verification
activities in particular software process models.

We have omitted one important set of verification checks from Figure 2.1 to avoid
clutter. In addition to checks that compare two or more artifacts, verification includes
checks for self-consistency and well-formedness. For example, while we cannot judge
that a program is “correct” except in reference to a specification of what it should do,
we can certainly determine that some programs are “incorrect” because they are ill-
formed. We may likewise determine that a specification itself is ill-formed because
it is inconsistent (requires two properties that cannot both be true) or ambiguous or
because it does not satisfy some other well-formedness constraint that we impose, such
as adherence to a standard imposed by a regulatory agency.

1A good requirements document, or set of documents, should include both a requirements analysis, and
a requirements specification, and should clearly distinguish between the two. The requirements analysis
describes the problem, the specification describes a proposed solution. This is not a book about requirements
engineering, but we note in passing that confounding requirements analysis with requirements specification
will inevitably have negative impacts on both validation and verification.

2This part of the diagram is a variant of the well known “V model” of verification and validation.
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Figure 2.1: Validation activities check work products against actual user requirements,
while verification activities check consistency of work products.
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Validation against actual requirements necessarily involves human judgment and
the potential for ambiguity, misunderstanding, and disagreement. In contrast, a speci-
fication should be sufficiently precise and unambiguous that there can be no disagree-
ment about whether a particular system behavior is acceptable. While the term “test-
ing” is often used informally both for gauging usefulness and verifying the product, the
activities differ in both goals and approach. Our focus here is primarily on dependabil-
ity, and thus primarily on verification rather than validation, although techniques for
validation and the relation between the two is discussed further in Chapter ??.

Dependability properties include correctness, reliability, robustness, and safety.
Correctness is absolute consistency with a specification, always and in all circum-
stances. Correctness with respect to non-trivial specifications is almost never achieved.
Reliability is a statistical approximation to correctness, expressed as the likelihood
of correct behavior in expected use. Robustness, unlike correctness and reliability,
weighs properties as more and less critical, and distinguishes which properties should
be maintained even under exceptional circumstances in which full functionality can-
not be maintained. Safety is a kind of robustness in which the critical property to be
maintained is avoidance of particular hazardous behaviors.

2.2 Degrees of Freedom

Given a precise specification and a program, it seems that one ought to be able to
arrive at some logically sound argument or proof that a program satisfies the specified
properties. After all, if a civil engineer can perform mathematical calculations to show
that a bridge will carry a specified amount of traffic, shouldn’t we be able to similarly
apply mathematical logic to verification of programs?

For some properties and some very simple programs, it is in fact possible to obtain
a logical correctness argument, albeit at high cost. In a few domains, logical correct-
ness arguments may even be cost-effective for a few isolated, critical components (e.g.,
a safety interlock in a medical device). In general, though, one cannot produce a com-
plete logical “proof” for the full specification of practical programs in full detail. This
is not just a sign that technology for verification is immature. It is, rather, a conse-
quence of one of the most fundamental properties of computation.

Even before programmable digital computers were in wide use, computing pioneer
Alan Turing proved that some problems cannot be solved by any computer program.
The universality of computers — their ability to carry out any programmed algorithm,Undecidability

including simulations of other computers — induces logical paradoxes regarding pro-
grams (or algorithms) for analyzing other programs. In particular, logical contradic-
tions ensue from assuming that there is some program

�
that can, for some arbitrary

program � and input � , determine whether � eventually halts. To avoid those log-The halting problem

ical contradictions, we must conclude that no such program for solving the “halting
problem” can possibly exist.

Countless university students have encountered the halting problem in a course
on the theory of computing, and most of those who have managed to grasp it at all
have viewed it as a purely theoretical result that, whether fascinating or just weird, is
irrelevant to practical matters of programming. They have been wrong. Almost every
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Figure 2.2: Verification Tradeoff Dimensions

interesting property regarding the behavior of computer programs can be shown to
“embed” the halting problem, i.e., the existence of an infallible algorithmic check for
the property of interest would imply the existence of a program that solves the halting
problem, which we know to be impossible.

In theory, undecidability of a property
�

merely implies that for each verification
technique for checking

�
, there is at least one “pathological” program for which that

technique cannot obtain a a correct answer in finite time. It does not imply that verifi-
cation will always fail or even that it will usually fail, only that it will fail in at least one
case. In practice, failure is not only possible but common, and we are forced to accept
a significant degree of inaccuracy.

Program testing is a verification technique, and is as vulnerable to undecidability
as other techniques. Exhaustive testing, i.e., executing and checking every possible
behavior of a program, would be a “proof by cases,” which is a perfectly legitimate way
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to construct a logical proof. How long would this take? If we ignore implementation
details such as the size of the memory holding a program and its data, the answer is
“forever.” That is, for most programs, exhaustive testing cannot be completed in any
finite amount of time.

Suppose we do make use of the fact that programs are executed on real machines
with finite representations of memory values. Consider the following trivial Java class:

- 1: class Trivial {
- 2: static int sum(int a, int b) { return a + b; }
- 3: }

The Java language definition states that the representation of an int is 32 binary
digits, and thus there are only

�������������
	���������������
different inputs on which the

method Trivial.sum() need be tested to obtain a proof of its correctness. At one
nanosecond (

�������
seconds) per test case, this will take approximately

�������
seconds,

or about 30,000 years. This a rough estimate; the reader is encouraged to obtain a
more exact value experimentally, but only if he or she has a very fast computer and
considerable spare time.

A technique for verifying a property can be inaccurate in one of two directions (Fig-
ure 2.2). It may be pessimistic, meaning that it is not guaranteed to accept a program

�
Pessimistic

even if the program does possess the property being analyzed, or it can be optimistic
if it may accept some programs that do not possess the property (i.e., it may not detect

�
Optimistic

all violations). Testing is the classic optimistic technique, because no finite number
of tests can guarantee correctness. Many automated program analysis techniques for
properties of program behaviors 3 are pessimistic with respect to the properties they
are designed to verify. Some analysis techniques may give a third possible answer,
“don’t know.” We can consider these techniques to be either optimistic or pessimistic
depending on how we interpret the “don’t know” result. Perfection is unobtainable, but
one can choose techniques that err in only a particular direction.

A software verification technique that errs only in the pessimistic direction is called
a conservative analysis. It might seem that a conservative analysis would always be
preferable to one which could accept a faulty program. However, a conservative anal-
ysis will often produce a very large number of spurious error reports, in addition to a
few accurate reports. A human may, with some effort, distinguish real faults from a
few spurious reports, but cannot cope effectively with a long list of purported faults of
which most are false alarms. Often only a careful choice of complementary optimistic
and pessimistic techniques can help in mutually reducing the different problems of the
techniques and produce acceptable results.

In addition to pessimistic and optimistic inaccuracy, a third dimension of compro-
mise is possible: substituting a property that is more easily checked, or constraining
the class of programs that can be checked. Suppose we want to verify a property

�
,

but we are not willing to accept the optimistic inaccuracy of testing for
�

, and the only
available static analysis techniques for

�
result in such huge numbers of spurious error

messages that they are worthless. Suppose we know some property
���

that is a suffi-
3Why do we bother to say “properties of program behaviors” rather than “program properties?” Because

simple syntactic properties of program text, such as declaring variables before they are used or indenting
properly, can be decided efficiently and precisely.
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Sidebar: A Note on Terminology

Many different terms related to pessimistic and optimistic inaccuracy appear in the
literature on program analysis. We have chosen these particular terms because it is
fairly easy to remember which is which. Other terms a reader is likely to encounter
include:

Safe: A safe analysis has no optimistic inaccuracy, i.e., it accepts only correct pro-
grams. In other kinds of program analysis, safety is related to the goal of the
analysis. For example, a safe analysis related to a program optimization is one
that allows that optimization only when the result of the optimization will be
correct.

Sound: Soundness is a term to describe evaluation of formulas. An analysis of a
program

�
with respect to a formula

�
is sound if the analysis returns True only

when the program actually does satisfy the formula. If satisfaction of a formula
�

is taken as an indication of correctness, then a sound analysis is the same as a
safe or conservative analysis.

If the sense of
�

is reversed (i.e., if the truth of
�

indicates a fault rather than
correctness) then a sound analysis is not necessarily conservative. In that case it
is allowed optimistic inaccuracy but must not have pessimistic inaccuracy. (Note
however that use of the term sound has not always been consistent in the software
engineering literature. Some writers use the term unsound as we use the term
optimistic.)

Complete: Completeness, like soundness, is a term to describe evaluation of formulas.
An analysis of a program

�
with respect to a formula

�
is complete if the anal-

ysis always returns True when the program actually does satisfy the formula. If
satisfaction of a formula

�
is taken as an indication of correctness, then a com-

plete analysis is one which admits only optimistic inaccuracy. An analysis which
is sound but incomplete is a conservative analysis.
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cient, but not necessary, condition for
�

, i.e., the validity of
� �

implies
�

, but not the
contrary. Maybe

� �
is so much simpler than

�
that it can be analyzed with little or

no pessimistic inaccuracy. If we check
���

rather than
�

, then we may be able to pro-
vide precise error messages that describe a real violation of

� �
rather than a potential

violation of
�

.
Many examples of substituting simple, checkable properties for actual properties

of interest can be found in the design of modern programming languages. Consider,
for example, the property that each variable should be initialized with a value before its
value is used in an expression. In the C language, a compiler cannot provide a precise
static check for this property, because of the possibility of code like the following:

int i, sum;
int first=1;
for (i=0; i<10; ++i) {

if (first) {
sum=0; first=0;

}
sum += i;

}
...

It is impossible in general to determine whether each control flow path can be
executed, and while a human will quickly recognize that the variable sum is initialized
on the first iteration of the loop, a compiler or other static analysis tool will typically
not be able to rule out an execution in which the initialization is skipped on the first
iteration. Java neatly solves this problem by declaring code like this illegal, i.e., the
rule is that a variable must be initialized on all program control paths, whether or not
those paths can ever be executed.

Software developers are seldom at liberty to design new restrictions into the pro-
gramming languages and compilers they use, but the same principle can be applied
through external tools, not only for programs but also for other software artifacts. Con-
sider, for example, the following condition that we might wish to impose on require-
ments documents:

(1) Each significant domain term shall appear with a definition in the
glossary of the document.

This property is nearly impossible to check automatically, since determining whether
a particular word or phrase is a “significant domain term” is a matter of human judg-
ment. Moreover, human inspection of the requirements document to check this require-
ment will be extremely tedious and error-prone. What can we do? One approach is to
separate the decision that requires human judgment (identifying words and phrases as
“significant”) from the tedious check for presence in the glossary.

(1a) Each significant domain term shall be shall be set off in the re-
quirements document by the use of a standard style term. The default
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visual representation of the term style is a single underline in printed doc-
uments and purple text in online displays.

(1b) Each word or phrase in the term style shall appear with a definition
in the glossary of the document.

Property (1a) still requires human judgment, but it is now in a form that is much
more amenable to human inspection. Property (1b) can be easily automated in a way
that will be completely precise (except that the task of determining whether definitions
appearing in the glossary are clear and correct must also be left to humans.)

As a second example, consider a web-based service in which user sessions need not
directly interact, but they do read and modify a shared collection of data on the server.
In this case a critical property is maintaining integrity of the shared data. Testing for
this property is notoriously difficult, because a “race condition” (interference between
writing data in one process and reading or writing related data in another process)
may cause an observable failure only very rarely. Fortunately, there is a rich body
of applicable research results on concurrency control which can be exploited for this
application.

It would be foolish to rely primarily on direct testing for the desired integrity prop-
erties. Instead, one would choose a (well-known, formally verified) concurrency con-
trol protocol, such as the two-phase locking protocol and rely on some combination of
static analysis and program testing to check conformance to that protocol. Imposing a
particular concurrency control protocol substitutes a much simpler, sufficient property
(two-phase locking) for the complex property of interest (serializability), at some cost
in generality, i.e., there are programs that violate two-phase locking and yet, by design
or dumb luck, satisfy serializability of data access.

It is a common practice to further impose a global order on lock accesses, which
again simplifies testing and analysis. Testing would identify execution sequences in
which data is accessed without proper locks, or in which locks are obtained and re-
linquished in an order that does not respect the two-phase protocol or the global lock
order, even if data integrity is not violated on that particular execution, because the
locking protocol failure indicates the potential for a dangerous race condition in some
other execution which might occur only rarely or under extreme load.

With the adoption of coding conventions that make locking and unlocking actions
easy to recognize, it may be possible to rely primarily on flow analysis to determine
conformance with the locking protocol, with the role of dynamic testing reduced to
a “back up” to raise confidence in the soundness of the static analysis. Note that the
critical decision to impose a particular locking protocol is not a post-hoc decision that
can be made in a testing “phase” at the end of development. Rather, the plan for
verification activities with a suitable balance of cost and assurance is part of system
design.

2.3 Varieties of Software

The software testing and analysis techniques presented in the main parts of this book
were developed primarily for procedural and object-oriented software. While these
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“generic” techniques are at least partly applicable to most varieties of software, partic-
ular application domains (e.g., real-time and safety-critical software) and construction
methods (e.g., concurrency and physical distribution, graphical user interfaces) deter-
mine particular properties to be verified, or the relative importance of different proper-
ties, as well as constraints on applicable techniques. Typically a software system does
not fall neatly into one category but rather has a number of relevant characteristics that
must be considered when planning verification.

As an example, consider a physically distributed (networked) system for scheduling
a group of individuals. The possibility of concurrent activity introduces considerations
that would not be present in a single-threaded system, such as preserving the integrity
of data. The concurrency is likely to introduce non-determinism, or else introduce an
obligation to show that the system is deterministic, either of which will almost certainly
need to be addressed through some formal analysis. The physical distribution may
make it impossible to determine a global system state at one instant, ruling out some
simplistic approaches to system test and, most likely, suggesting an approach in which
dynamic testing of design conformance of individual processes is combined with static
analysis of their interactions. If in addition the individuals to be coordinated are fire
trucks, then the criticality of assuring prompt response will likely lead one to choose a
design that is amenable to strong analysis of worst-case behavior, whereas an average-
case analysis might be perfectly acceptable if the individuals are house painters.

As a second example, consider the software controlling a “soft” dashboard display
in an automobile. The display may include ground speed, engine speed (rpm), oil
pressure, fuel level, etc., in addition to a map and navigation information from a global
positioning system receiver. Clearly usability issues are paramount, and may even
impinge on safety (e.g., if critical information can be hidden beneath or among less
critical information). A disciplined approach will not only place a greater emphasis
on validation of usability throughout development, but to the extent possible will also
attempt to codify usability guidelines in a form that permits verification. For example,
if the usability group determines that the fuel gauge should always be visible when
the fuel level is below

�
 tank, then this becomes a specified property that is subject

to verification. The graphical interface also poses a challenge in effectively checking
output. This must be addressed partly in the architectural design of the system, which
can make automated testing feasible or not depending on the interfaces between high-
level operations (e.g., opening or closing a window, checking visibility of a window)
and low-level graphical operations and representations.

Summary

Verification activities are comparisons to determine consistency of two or more soft-
ware artifacts, or self-consistency, or consistency with an externally imposed criterion.
Verification is contrasted to validation, which is consideration of whether software ful-
fills its actual purpose. Software development always includes some validation and
some verification, although different development approaches may differ greatly in
their relative emphasis.

Precise answers to verification questions are sometimes difficult or impossible to
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obtain, in theory as well as practice. Verification is therefore an art of compromise, ac-
cepting some degree of optimistic inaccuracy (as in testing) or pessimistic inaccuracy
(as in many static analysis techniques) or choosing to check a property which is only
an approximation of what we really wish to check. Often the best approach will not be
exclusive reliance on one technique, but careful choice of a portfolio of test and anal-
ysis techniques selected to obtain acceptable results at acceptable cost, and addressing
particular challenges posed by characteristics of the application domain or software.

Further Reading

The “V” model of verification and validation (of which Figure 2.1 is a variant) appears
in many several software engineering textbooks, and in some form can be traced at
least as far back as Myers’ classic book [8]. The distinction between validation and
verification as given here follow’s Boehm [2], who has most memorably described
validation as “building the right system” and verification as “building the system right.”

The limits of testing have likewise been summarized in a famous aphorism, by
Dijkstra [4] who pronounced that “Testing can show the presence of faults, but not
their absence.” This phrase has sometimes been interpreted as implying that one should
always prefer formal verification to testing, but the reader will have noted that we do
not draw that conclusion. Howden’s 1976 paper [6] is among the earliest treatments of
the implications of computability theory for program testing.

A variant of the diagram in Figure 2.2 and a discussion of pessimistic and opti-
mistic inaccuracy was presented by Young and Taylor [10]. A more formal charac-
terization of conservative abstractions in static analysis, called abstract interpretation,
was introduced by Cousot and Cousot in a seminal paper that is, unfortunately, nearly
unreadable [3]. We enthusiastically recommend Jones’ lucid introduction to abstract
interpretation [7], which is suitable for readers who have a firm general background in
computer science and logic but no special preparation in programming semantics.

There are few general treatments of tradeoffs and combinations of software test-
ing and static analysis, although there are several specific examples, such as work in
communication protocol conformance testing [9, 5]. The two-phase locking protocol
mentioned in Section 2.2 is described in several texts on databases; Bernstein et al. [1]
is particularly thorough.
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