A Framework for Testing and
Analysis
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Verification and validation

« Validation:
does the software system meets the user's real
needs?

are we building the right software?

« Verification:
does the software system meets the
requirements specifications?

are we building the software right?
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Learning objectives

« Introduce dimensions and tradeoff between
test and analysis activities

« Distinguish validation from verification
activities

» Understand limitations and possibilities of test
and analysis
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Validation and Verification

SW
Actual Specs =>
Requirements SR
Validation Verification
Includes usability Includes testing,
testing, user inspections, static
feedback analysis
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Verification or validation depends on
the specification

Example: elevator response

Unverifiable (but validatable) spec: ... if a user
presses a request button at floor i, an available
elevator must arrive at floor i soon...

Verifiable spec: ... if a user presses a request
button at floor i, an available elevator must
. arrive at floor i within 30 seconds...
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Correctness properties are undecidable

the halting problem can be embedded in almost
every property of interest
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Validation and Verification Activities
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Getting what you need ...

Theorem proving:
Unbounded effort to "
verify general

properties.|

Model checking:

Decidable but possibly | A
intractable checking of

|/ llanalysis

Precise analysis of
simple syntactic
properties.
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optimistic inaccuracy: we may
accept some programs that do
not possess the property (i.e.,
it may not detect all
violations).

- testing
pessimistic inaccuracy: it is
not guaranteed to accept a
program even if the program
does possess the property
being analyzed

- automated program analysis

techniques

simplified properties: reduce
the degree of freedom for
simplifying the property to
check
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Example of simplified property:
Unmatched Semaphore Operations
original problem simplified property

Java prescribes a

if (.... ) | more restrictive, but
s statically checkable
lock (S) ; . )
} Static construct
checking for
if (... ) { match is synchronized(S) {
necessarily e
unlock (S) ; 1naccurate ...
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Summary

» Most interesting properties are undecidable,
thus in general we cannot count on tools that
work without human intevention

o Assessing program qualities comprises two
complementary sets of activities: validation
(daes the software do what it is supposed to
do?) and verification (does the system behave
as specificed?)

» There is no single technique for all purposes:
test designers need to select a suitable
combination of techniques
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Some Terminology

Safe: A safe analysis has no optimistic
inaccuracy, i.e., it accepts only correct
programs.

Sound: An analysis of a program P with respect
to a formula F is sound if the analysis returns
true only when the program does satisfy the
formula.

Complete: An analysis of a program P with
respect to a formula F is complete if the
analysis always returns true when the program

| actually does satisfy the formula.
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