A Framework for Testing and
Analysis

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 1

Verification and validation

« Validation:
does the software system meets the user's real
needs?

are we building the right software?

« Verification:
does the software system meets the
requirements specifications?

are we building the software right?

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 3

Learning objectives

« Introduce dimensions and tradeoff between
test and analysis activities

« Distinguish validation from verification
activities

» Understand limitations and possibilities of test
and analysis

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 2

Validation and Verification

SW
Actual Specs =>
Requirements SR
Validation Verification
Includes usability Includes testing,
testing, user inspections, static
feedback analysis
(c) 2007 Mauro Pezzé & Michal Young Ch 2, slide 4

Verification or validation depends on
the specification

Example: elevator response

Unverifiable (but validatable) spec: ... if a user
presses a request button at floor i, an available
elevator must arrive at floor i soon...

Verifiable spec: ... if a user presses a request
button at floor i, an available elevator must
. arrive at floor i within 30 seconds...

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 5

You can't aﬁgisrget what you want

Fo~.
(Fowar]”

Correctness properties are undecidable

the halting problem can be embedded in almost
every property of interest

Decision
Procedure

» | Pass/Fail

SOFTWARE TESTING
AND ANALYSIS

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 7

Validation and Verification Activities

Actual Needs and

Constraints

@ e
Specifications

A Delivered
U Ipha, beta test
ser Al (alpha, beta test) o
< System Test System
N Integration

Analysis /
\'T Review

Sub

9 Analysis /
\T Review

ystern
Design/Specs|

Unit/
Component Module Test
Specs

Components

validation
Unit/

SOFTWARE TESTING
AND ANALYSIS

\7 User review of external behavior as it is
determined or becomes visible

erification

i 4

(c) 2007 Mauro Pezze & Michal Young

Ch 2, slide 6

Getting what you need ...

Theorem proving:
Unbounded effort to "
verify general

properties.|

Model checking:

Decidable but possibly | A
intractable checking of

|/ llanalysis

Precise analysis of
simple syntactic
properties.

Wy

’ Simplified
__ properties

SOFTWARE TESTING
AND ANALYSIS

| Perfect verification of

- logical proof or exhaustive

Data flow

~ arbitrary properties by °

testing (Infinite effort)

Typical testing
techniques

/" Optimistic °
. ‘a\ inaccuracy

[~ Pessimistic
_ inaccuracy =/

optimistic inaccuracy: we may
accept some programs that do
not possess the property (i.e.,
it may not detect all
violations).

- testing
pessimistic inaccuracy: it is
not guaranteed to accept a
program even if the program
does possess the property
being analyzed

- automated program analysis

techniques

simplified properties: reduce
the degree of freedom for
simplifying the property to
check

(c) 2007 Mauro Pezze & Michal Young

Ch 2, slide 8

Example of simplified property:
Unmatched Semaphore Operations
original problem simplified property

Java prescribes a

if (....) | more restrictive, but
s statically checkable
lock (S) ; .)
} Static construct
checking for
if (...) { match is synchronized(S) {
necessarily e
unlock (S) ; 1naccurate ...

5 (c) 2007 Mauro Pezze & Michal Young Ch 2, slide 9

Summary

» Most interesting properties are undecidable,
thus in general we cannot count on tools that
work without human intevention

o Assessing program qualities comprises two
complementary sets of activities: validation
(daes the software do what it is supposed to
do?) and verification (does the system behave
as specificed?)

» There is no single technique for all purposes:
test designers need to select a suitable
combination of techniques

(c) 2007 Mauro Pezze & Michal Young Ch 2, slide 11

Some Terminology

Safe: A safe analysis has no optimistic
inaccuracy, i.e., it accepts only correct
programs.

Sound: An analysis of a program P with respect
to a formula F is sound if the analysis returns
true only when the program does satisfy the
formula.

Complete: An analysis of a program P with
respect to a formula F is complete if the
analysis always returns true when the program

| actually does satisfy the formula.

= (c) 2007 Mauro Pezze & Michal Young Ch 2, slide 10

