
UO Programming Contest, 1997 A

ID Hash

University regulations prohibit public posting of grades if individual students are easily
identifiable. For example, ID numbers should not be shown explicitly. One may, however,
use a portion of the ID if reasonable effort is made to disguise the posted number.

Consider the following hashing scheme based upon a positive integer m.

For each ID in the class, take the number represented by the last 4 digits of the
ID and reduce it modulo m.

Write a program that, given the ID’s for the class, determines the minimum m for which
the hashing is free of collisions (duplicate values).

The input to your program will be a sequence of classes, given by student ID’s. The
first line for each class will indicate the class size. Following that, the ID’s will appear in
the usual format ($$$-$$-$$$$), one to a line. (Class size will be at most 25.)

The output should be the minimum hash modulus m for the class if one exists. If no
such m exists the output then the output should read “Collisions are unavoidable!”

Sample Input

3
109-45-4361
083-45-6680
924-98-0135
4
874-35-7447
331-88-9285
078-12-7447
991-67-5712

Sample Output

4
Collisions are unavoidable!

Observe for the first class that, modulo 2, the numbers 4361, 6680, 135 are respectively
congruent to 1,0,1; viewing them modulo 3, they reduce to 2,2,0; however, modulo 4 they
yield three distinct values 1,0,3. For the second class, there is no collision-free modulus
since two of the numbers formed by taking the last 4 digits are identical.

UO Programming Contest, 1997 B

SubDuoPalindromes

A subduopalindrome (SDP) in a string S is a pair of substrings {S1, S2} (not necessarily
disjoint) of S such that S2 is the reverse of S1. The size of such an SDP is the total number
of string positions involved in either S1 or S2.
NOTE: The size is determined by the union of the string positions; S1 and S2 may overlap,
and positions common to S1 and S2 are only counted once. See the sample input/output
for examples.

Write a program that will accept a string S as input and determine the maximum size
SDP’s of S.

Input will be a sequence of strings, each of length at most 25, one per line.

For each input string S, one line of output should indicate the SDP of maximum size.
For each such pair, S1 should be printed, followed by a space, followed by S2 even if S1 and
S2 overlap within S. (In an SDP {S1, S2}, if S1 6= S2, then S1 is taken to be the leftmost of
the two.) Successive maximum size SDP’s of a string, if there are more than one, should
be separated by a space and ordered as follows: {S1, S2} should precede {S′

1, S
′
2} if either

the first character of S1 precedes the first character of S′
1, or S1 and S ′

1 have the same first
character and the last character of S2 precedes the last character of S′

2.

Sample Input

abc
defgedeffgefed
hijjjiklmnopkonmmno
rsstutssr
vwxxwzzzzywv

Sample Output

a a b b c c
def fed def fed
mno onm onmmno onmmno
rsstutssr rsstutssr
vw wv wxxw wxxw zzzz zzzz

UO Programming Contest, 1997 C

Spirited Binary Trees

A spirited binary tree (SBT) may include, in addition to its ordinary nodes, three special
kinds of nodes: milestones, devils, and angels.

The angels and devils meddle in your preorder traversal. At ordinary nodes, normal
preorder sequencing is followed (you visit the node first, then its left subtree, and then its
right subtree). But, supernatural events take place when you visit a special node:

• When visited, a milestone acquires a charge.

• When visited, a devil implants in your subconscious a summons to return and then
teleports you back to the latest charged milestone, at which point that milestone loses
its charge. The preorder traversal continues as if the subtree rooted at the milestone
has just been traversed (in particular, this is not considered a visit to the milestone).
If no milestone is currently charged, a devil has no effect

• When visited, an angel teleports you to the devil with the most recently implanted
summons, at which point that summons is released from your subconscious. The
preorder traversal continues as if the subtree rooted at the devil has just been traversed
(in particular, this is not considered a visit to the devil). If no summons is currently
implanted, an angel has no effect.

Write a program to traverse an SBT in preorder, printing the nodes in the order visited.
The input has the following format. Nodes are numbered starting 1. Each node is

represented on a line by four critical elements separated by spaces: first comes the ID
number of the node; next a label describing the node as ordinary, milestone, devil, or
angel; then the ID numbers of the left child and right child. The root is the node on the
first line. A leaf has children 0 and 0.

The output should list, in order and one to a line, the number of the visited node,
followed by a space, then followed by the node’s label.

Sample Input (for pictured tree) Sample Output
1 ordinary 2 3 1 ordinary
2 ordinary 4 5 2 ordinary
3 ordinary 6 7 4 milestone
4 milestone 8 9 8 devil
5 ordinary 10 11 5 ordinary
6 ordinary 0 0 10 angel
7 ordinary 0 0 9 ordinary
8 devil 0 0 5 ordinary
9 ordinary 0 0 10 angel
10 angel 0 0 11 ordinary
11 ordinary 0 0 3 ordinary

6 ordinary
7 ordinary

UO Programming Contest, 1997 D

TetraTiles

TetraTiles are formed by joining four congruent colored isosceles right triangles to form
a square. Four colors are used for the triangles and the individual TetraTiles might use
these in any combination. Some sample types:

In using the TetraTiles for a tiled floor pattern, it is desirable to match colors where
TetraTiles have a common edge. Furthermore, nine TetraTiles types are selected to form a
fundamental 3×3 SuperTetraTile. The SuperTetraTile also must have single-colored sides,
with each of the four colors comprising one of the sides. (Copies of this SuperTetraTile can
be used to tile the floor in a periodic pattern.) With appropriate rotations, it is possible to
form a SuperTetraTile with the above nine TetraTiles.

Write a program that will determine whether a given set of nine TetraTiles can be used
to form a SuperTetraTile

Each line of the input specifies nine TetraTiles to test for supertetratilability. An in-
dividual TetraTile is given by indicating the colors of its four triangles, read in clockwise
order, and are separated by a single space. e.g. R B B G (note: by rotation, this is identi-
cal to B G R B). A single space separates TetraTiles specifications from one another. The
possible colors are: R, W, B, and G.

If the nine TetraTiles are supertetratilable, one possible SuperTetraTile should be out-
put. The SuperTetraTile should always be oriented with G on the top edge. The SuperTe-
traTile is then specified by indicating, in succession, the colors in the TetraTiles on the top
row, left to right, then the middle row and, finally, the bottom row similarly. An individ-
ual TetraTile is indicated by giving the colors in clockwise order, always starting with the
top-edge color as it is oriented in the the SuperTetraTile. If the nine TetraTiles cannot be
configured to form a SuperTetraTile, the output should be “Unsupertetratilable!”

Sample Input (the first is for tiles pictured above)

R W G B R B G W W B W R W G R G W B W B G R W R W B R B B R G R W G W B
W W W W R R R R B B B B G G G G R R B W B B W R W W R B B R G W B W G R

Sample Output

G W G R G W B W G B R W G R W R B G W R R B R G W B W R W B B W R B W B
Unsupertetratilable!

UO Programming Contest, 1997 E

Lucky Medians

To find the median of an array, A[1..n], of n distinct numbers, it is not necessary to sort
A. There are fast methods that guarantee only O(n) comparisons, though these tend to be
complicated. Sometimes, however, you can get lucky. For example, if the array is A[1..5]
and you have learned that A[2] < A[3], A[3] < A[1], A[4] < A[2], and A[5] < A[2], then you
already know that A[2] is the median element since half the elements are demonstrably less
than A[2] and half are greater than A[2].

Write a program that finds whether a specified collection of results of comparisons
suffices to determine the median of the array and, if so, indicate the index of the median
element. The length of each array will be odd and at most 25.

Input will be results of comparisons on some sets. The data for each set begins with a
line giving the length of the array; then a line indicating the number of comparisons to be
reported; the comparisons follow, one to a line, where “i j” indicates A[i] < A[j].

Output for each array is “m” if it can be determined that A[m] is the median element
or “unlucky” if the median cannot be deduced from the given data.

Sample Input

5
4
2 3
3 1
4 2
5 2
3
2
1 2
1 3

Sample Output

2
unlucky

UO Programming Contest, 1997 F

Pebble Pushers

A game is played with a pebble on a directed acyclic graph, G = (V, E).
The pebble is initially situated on some v0 ∈ V . Two players A and B then move in

turn. A player may push a pebble along any arc (i.e., if (v,w) ∈ E, a pebble on v may be
pushed to w). The last player able to move wins the game.

Write a program which you will you use to determine whether you want to move first
or second, and, if you move first, what your first move would be (there may be more than
one correct answer in that case).

Input will be a sequence of initial game setups. The data for each game is organized as
follows: the (≤ 26) vertices of the graph will be always be an initial seqment of the alphabet
a,b, c,d,e, . . . ; the first line for the game is a pair of numbers |V |, |E| (number of vertices,
number of edges) separated by a single space; the second line indicates the initial position
of the pebble; the next |E| lines give the the edges, each given as a pair of vertices separated
by a space (i.e., “r s” indicates that (r, s) ∈ E).

Output should be any vertex to which you would move if it is best to move first or else
the phrase “I want to go second.”

Sample Input

4 4
b
a c
b d
d a
b c
3 2
a
a c
c b

Sample Output

d
I want to go second.

UO Programming Contest, 1997 G

Periodic Binaries

As you know, the decimal expansion of a rational number is eventually periodic. This,
of course, holds for binary expansions as well.

Write a program that will accept a pair of positive integers (≤ 1000) and determine the
length of the period in the binary expansion of m/n.

Input will be a sequence of pairs of numbers, one pair per line with a space between the
numbers in each pair.

There should be one line of output for each input, containing just the length of the
period in the binary expansion of the rational number.

Sample Input

3 1
15 9
13 8
9 28

Sample Output

1
2
1
3

The above output corresponds to the binary representations:
(

3
1

)

2
= 11.00000000000000 · · · = 11.0

(
15
9

)

2
= 1.10101010101010 · · · = 1.10

(
13
8

)

2
= 1.101000000000000 · · · = 1.1010

(
9
28

)

2
= 0.01010010010010 · · · = 0.01010

UO Programming Contest, 1997 H

Flippant Cups

A puzzle involves a line of paper cups, all initially turned upside down

. . .1 2 3 n

and the objective is to flip them all right side up.

. . .1 2 3 n

However, the legal moves are restricted to a collection of triples, where the triple i, j, k

represents a simultaneous flip of cup i, cup j, and cup k.
Write a program that will accept a set of legal moves and determine whether the puzzle

can be solved.

Input will be a sequence of puzzle specifications. A specification begins with a line
containing two numbers, the number of cups (up to 20) and the number of legal moves,
separated by a space; the legal moves then follows as labeled triples, one to a line, namely,
a single-character label then a space and then three numbers separated by spaces.

Output for each puzzle is a set of labels for moves that solve the puzzle or else “Unsolvable”,
with one answer per line.

Sample Input

4 2
a 1 2 3
b 1 3 4
5 4
c 1 3 5
d 1 2 3
e 2 4 5
f 1 3 4

Sample Output

Unsolvable
c d f

Notice that the second puzzle is solved by performing moves (1, 3, 5), (1, 2, 3), (1, 3, 4).

