
Third Annual University of Oregon Programming Contest, 1999 A

Cribbage Count

In Cribbage scoring, there are several ways of accumulating points in a pile of playing
cards. Among these are

15’s. Any combination of cards whose values sum to 15 scores 2 points.
(Aces have value 1 and picture cards have value 10.)

Pairs. Any pair of cards of the same rank scores 1 point.

Runs. A maximal sequence of length m ≥ 3 of cards of consecutive rank scores m points.

In this problem, you will be given a sequence of up to 7 cards and should report the
total number of points scored according to these rules.

Input will be a series of piles of cards, one per line. Each line will consist of at most 7
characters from the set {A, 2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K}. Output should be the number of
points for that pile. Since each pile is selected from a single deck of cards, there will be at
most 4 cards of any rank.

Sample Input

2 A 3 9
5 5 5
9 J 10 A Q
2 Q 9 8 K
4 6 4 5

Sample Output

5
5
4
0
11

(Explanations.
Pile 1: There is run of length 3 and one way of making 15
Pile 2: There is way of making 15 and there are 3 possible pairs.
Pile 3: There is a run of length 4.
Pile 4: No score.
Pile 5: There are two ways of making 15, one pair, and two runs of length 3.)



Static Links

Compilers for many high-level languages use a stack for runtime storage management.
In the simplest case, every procedure invocation is allocated a portion of the stack called a
frame, which holds the local variables defined by the procedure. In more advanced languages
where procedures may be nested, each frame has a pointer, called a static link, which points
to the frame of the parent procedure. The static link is used to access variables defined in
outer scopes. For the purposes of this problem, we assume that the static link is always
stored at offset -4 of the frame pointer, and that the local variables are stored at offsets 0,
4, 8, etc.

For example, consider the situation depicted in the figure.
zy mzbax

(f
ra

m
e 

fo
r 

R
)

(f
ra

m
e 

fo
r 

Q
)

10
4

10
8

11
2

10
0

25
0

25
4

25
8

26
2

42
0

42
4

42
8

43
2

25
4

fp
 =

 4
24

 

(f
ra

m
e 

fo
r 

P)

10
0

A procedure P defines three variables x, y, and z. Within P , a procedure Q defines two
variables a and b. As the stack organization shows, Q may access the variables defined in
P by following the static link (the dotted line). Within Q, another procedure R defines two
more variables z and m. If procedure R is currently active, a global variable fp points to its
frame. The variables local to R are stored at addresses (fp+0) and (fp+4). To access these
variables we write (*(fp+0)) and (*(fp+4)) respectively. The variable a can be accessed
by following the static link to reach the frame for Q and then using offset 0. We express this
computation as (*((*(fp-4))+0)). The variable y can be accessed by following two static
links, and then using offset 4. We express this computation as (*((*((*(fp-4))-4))+4)).
The variable z in procedure P cannot be accessed from R since the declaration of z in R
shadows the one in P .

You are to implement the part of the compiler that generates intermediate code for
accessing variables.

The input will be sets of nested procedure declarations. The first line of each set gives
the number n (≤ 10) of nested procedure declarations that follow. The next n lines list
the variables declared at each level. (Each line will have at most 10 variables where each
variable name will be one character long.) An additional line then lists the variables for
which you should generate code assuming that last frame is the current one.



Third Annual University of Oregon Programming Contest, 1999 B

The output should list the code for accessing each variable on a separate line. The
syntax of the output code is shown in the samples.

Sample Input

3
x y z
a b
z m
z m a y
3
x y z
x y
x
x y z

Sample Output

(* (fp + 0))
(* (fp + 4))
(* ((* (fp - 4)) + 0))
(* ((* ((* (fp - 4)) - 4)) + 4))

(* (fp + 0))
(* ((* (fp - 4)) + 4))
(* ((* ((* (fp - 4)) - 4)) + 8))



Third Annual University of Oregon Programming Contest, 1999 C

Multicast Routing

For efficient support of one-to-many communication, a network must be able to send a
packet from a source node to a set of destination nodes, called a multicast group. Thus, the
network builds a multicast tree, rooted at the source and extending to the group members.
When the source multicasts a packet, the network sends it along the tree, duplicating the
packet only when it reaches a node that has more than one child. This saves considerable
bandwidth compared to unicast routing, where the source sends a separate packet to each
group member. To reduce delay, the network typically will construct a multicast tree using
the shortest (by weight) paths from the source to the group members. These are the same
paths that would be used by unicast routing.

In this problem, you will be given a set of networks along with source and group mem-
bers. You should compute, in each case, a single-source shortest-path tree and the number
of packet transmissions required when using this tree for multicast and for unicast. (A
packet transmission is defined as the act of sending a packet from a node to its neighbor
via a direct link.)

The first line for each network will give a pair n, s of integers where n (≤ 15) indicates
the number of nodes in the network and s (1 ≤ s ≤ n) is the label of the source node. (We
assume the nodes are labelled 1, 2, . . . , n). The next n lines give the adjacency matrix of
a positively weighted graph representing the network (if the row i, column j entry is w > 0
then there is a direct link from i to j with weight w). An additional line then lists the set of
nodes forming the multicast group. (Inputs on a single line are separated by white space.)

Your output for each network should have the following form.

• The shortest-path multicast tree rooted at the source and extending to the members.
For each parent node i in the tree, there should be one listing “i :” followed by the
children of i (see sample output).

• The next two lines should give the number of multicast transmissions and then the
number of unicast transmissions (see sample output).

Leave a space between elements on a single line and skip a line between networks.



Sample Input

3 1
0 1 3
1 0 1
3 1 0
2 3
3 1
0 1 3
1 0 1
3 1 0
3
5 2
0 3 1 0 2
3 0 1 4 4
1 1 0 2 2
0 4 2 0 1
2 4 2 1 0
1 4 5
5 4
0 5 2 0 0
5 0 0 1 0
2 0 0 7 0
0 1 7 0 3
0 0 0 3 0
1 2 5 3

Sample Output

Shortest-path tree:
1: 2
2: 3
Multicast transmissions: 2
Unicast transmissions: 3

Shortest-path tree:
1: 2
2: 3
Multicast transmissions: 2
Unicast transmissions: 2

Shortest-path tree:
2: 3
3: 1 4 5
Multicast transmissions: 4
Unicast transmissions: 6

Shortest-path tree:
2: 1
4: 2 3 5
Multicast transmissions: 4
Unicast transmissions: 5



8

4
5

6

7

2

3

1
5

23

14

6

3

5

4 2

1

Third Annual University of Oregon Programming Contest, 1999 D

Galactic Days

Although Starfleet Academy is located on Earth, cadets traditionally wear watches that
record time in the fashion of their home world. To keep class time uniform, the length of
an “hour” is standard. However, the number of hours around the watch faces vary. In the
following figure, it is 3 o’clock or 4 o’clock or 1 o’clock according to which alien watch one
reads.

Academy “days” for a student squadron can be quite long as they begin when all cadets’
watch-hands are directed straight up and end when they are next simultaneously straight
up.

In this problem, you are given the times (on the hour) shown on the watches of squadrons
and need to determine the number of hours left in the squadron days.

Input to your program will be sets of watch times for squadrons. The first line for each
squadron will be the number of watches n in the set (1 ≤ n ≤ 10). The following n lines
will each consist of a pair of integers w, h where w (2 ≤ w ≤ 25) is the number of integers
around a watch dial and h is the current position of the hour hand (1 ≤ h ≤ w with w
always straight up).

Output for each squadron should be the number of hours remaining until the end of the
squadron’s current “day”.

Sample Input

2
2 1
3 1
5
4 3
5 4
6 5
7 6
8 7
1
10 4
3
8 3
5 4
6 1

Sample Output

5
1
6
101



Third Annual University of Oregon Programming Contest, 1999 E

Capsized Coins

A puzzle starts with a line of coins, face down

and the objective is to turn them all face up.

The puzzle can vary in the number n of coins and the legal moves. A legal move is
specified by a subset of {1, 2, . . . , n} that indicates the positions of the coins to be turned
by that move.

In this problem, you are given a set of legal moves and must determine the moves that
solve the puzzle or else determine that it is unsolvable.

Input will be a sequence of puzzle specifications. A specification begins with a line
containing two integers, the number n of coins (n ≤ 6) and the number m of legal moves
(m ≤ 6), separated by a space. The legal moves then follow, one to a line; each consists of
a single-character label followed by a single space and then the positions (numbers between
1 and n) of the coins turned by that move, separated by spaces.

Output for each puzzle is a set of labels of moves that solve the puzzle or else “Unsolvable”.

Sample Input

4 2
a 1 2
b 3 4
5 4
a 1 3 5
b 1 2 4
c 1 2
d 1
4 2
a 1 2 3
b 1 2 4

Sample Output

a b
a b d
Unsolvable


