
Fourth Annual University of Oregon Programming Contest, 2000 A

Poly SQRT

In this problem, you are given the coefficients of a polynomial P (x) with integer coeffi-
cients and need to determine whether there is a polynomial Q(x) with integer coefficients
such that P (x) = Q(x) ∗ Q(x).

Input to your program will be specifications of polynomials over the integers of degree∗

≤ 100. For each polynomial, the first line will indicate the degree n of a polynomial P (x).
The following n+1 lines will give the coefficients of the powers of x in P (x) in descending
order of degree. For example,

2
3
-7
0

specifies the polynomial 3x2 − 7x.

Output for each polynomial P (x) should indicate the (integer) coefficients of some
Q(x) such that P (x) = Q(x) ∗ Q(x), one integer per line, or else the phrase

“No square root among integer polynomials.”
There should be one line skipped in the output between polynomials.

Sample Input

2
4
-12
9
0
3
2
4
0
0
3
1
1
1
1

Sample Output

2
-3

No square root among integer polynomials.

2
0

No square root among integer polynomials.

∗The degree of a polynomial in x is the highest power of x that occurs with a non-zero coefficient.

Fourth Annual University of Oregon Programming Contest, 2000 B

Voluminous Vocabulary

The languages developed throughout the history of the Vulcan planetary system reflected
the inherent efficiency of the Vulcan mind. Each language made exhaustive use of its
alphabet by assigning a word to every combination of letters up to a maximum word length.
For example, the primitive XYXians had just a two-letter alphabet, {X, Y} and, since their
words have length ≤ 3, the entire XYXian dictionary consisted of the 14 words

X,XX,XXX,XXY,XY,XYX,XYY,Y,XY,YXX,YXY,YY,YYX,YYY
(listed here in dictionary order). Of course, through succeeding millenia, the languages
of the advanced planets needed larger alphabets and word lengths to accommodate the
enormous Vulcan vocabularies.

In this problem, you will be given a Vulcan language via its alphabet and the upper
bound to word lengths, along with a word in the language. You need then determine the
position of this word in the dictionary.

Input to your program will be specifications of languages. For each language, the first
line will list the the number (≤ 12) of letters in the alphabet, followed after a space by
the maximum word length (≤ 12). The second line will list the alphabet† itself (in its own
alphabetical order, separated by single spaces). Finally, the third line for each language will
contain a word W in the language.

Output for each such language should be a line with the integer n such that W is the
nth word in the dictionary.

Sample Input

3 2
Y O U
UO
2 4
O B
BOO

Sample Output

11
18

†For the convenience of Terran linguists, the letters of the Vulcan alphabets have been transliterated to
English characters but they are considered in their native Vulcan alphabetical order.

Fourth Annual University of Oregon Programming Contest, 2000 C

MC/DC Test Vector Generation

This problem is based on the “modified condition/decision coverage” (MC/DC) crite-
rion, which is required by U.S. and European agencies for certification of safety-critical
flight control software. Briefly, the MC/DC criterion requires testing with data that shows
that each elementary term (e.g., comparison) of a predicate be used to control the outcome
of each test (e.g., if statement).

For example, if the program contained a statement like

if (x > 30 && x < y) { ...

then the following assignments of truth values would satisfy the MC/DC criterion:

x > 30 x < y Result
Case 1: True True True
Case 2: False — False
Case 3: True False False

Cases 1 and 2 show the effect of the first term, x > 30. Cases 1 and 3 show the effect of the
second term, x < y. Note that in Case 2, the second term of the predicate is not evaluated,
because of short-circuit evaluation. We call it a “don’t-care” value. For purposes of the
MC/DC criterion we consider that the value of that term to be unchanged between Case 1
and Case 2 because a don’t-care value could be either True or False.

For the contest, the problem has been considerably simplified. Each elementary term
of a predicate is represented by a single alphabetic character, and the boolean expression
is represented in postfix syntax with one-character operators for easy parsing. Thus the
above predicate (x > 30 && x < y) would appear as ab&.

Your program will read lines of text from the standard input stream. Each line of
text will contain a boolean expression in postfix syntax. The program should print on the
standard output stream assignments of truth values to terms in the boolean expression, and
the resulting truth value of the expression.

Each input expression is a single line of text, no more than 30 characters in length. The
non-blank characters in the line are interpreted as follows:

a-z An alphabetic character represents an elementary term in the predicate.
No alphabetic character will appear more than once in the input line.

& Conjunction (“and”), with short-circuit evaluation.
| Disjunction (“or”), with short-circuit evaluation.
! Negation (“not”).

The line of text will be a single syntactically valid postfix expression. For example, the Java
predicate ((x > y && y > 0) || ! (y < 100)) would appear as ab&c!|.

If an input expression contains N alphabetic characters, then the output consists of
exactly N + 1 lines of text, each line containing containing exactly N + 1 characters. Each
character of the output is either the upper-case letter “T” denoting the boolean value “true,”
the upper-case letter “F” denoting the boolean value “false,” or the character “*” denoting
a don’t-care value.

The ith character of each output line, i ≤ N , represents an assignment of a boolean
value or a “don’t care” value to the ith boolean expression. A don’t-care value must appear
if and only if the corresponding term would not be evaluated in a short-circuit evaluation.
The (N + 1)st character of each output line must represent the boolean result of evaluating
the expression with the assigned truth values.

For each column i, 1 ≤ i ≤ N + 1, the output must contain two lines m and n with the
following properties:

• The ith position of line m differs from the ith position of line n.

• The (N + 1)st position of line m differs from the (N + 1)st position of line n.

• For every other position j, j �= i and 1 ≤ j ≤ N , either the jth position of line m is
the same as the jth position of line n, or else the jth position of at least one of the
two lines is the “don’t-care” symbol “*.”

These properties correspond to the MC/DC test coverage requirement that lines m and n
represent truth assignments in which the value of term i controls the value of the boolean
expression.

The output from successive expressions should be separated by a single blank line.

Sample Input

ab|
ab&c!|
ab&cd&ef&||

Sample Output

T*T
FTT
FFF

TT*T
TFFT
TFTF
F*TF

TT****T
TFTT**T
TFTFTTT
TFTFTFF
F*TFTFF
TFF*TFF
TFTFF*F

Example 1: (a or b)
Lines 1 and 2 show the effect of a; lines 2 and 3 show the effect of b.

Example 2: ((a and b) or not c)
Lines 1 and 4 show the effect of a. Lines 1 and 2 show the effect of b. Lines 2 and 3

show the effect of c.

Example 3: ((a and b) or (c and d) or (e and f))
Note that the correct output is not unique: Many different sets of truth assignments

could have the same properties.

Fourth Annual University of Oregon Programming Contest, 2000 D

λ.com (Java Version)

Having studied the λ-calculus, the president of a “.com” startup has stored sensitive
financial numbers in instances of the Java class SecretInfo defined below:

interface Encoded {
Object decode (Decoder f, Object x);

}

interface Decoder {
Object decode (Object x);

}

class SecretInfo implements Encoded {
private int n; // the secret

SecretInfo (int n) { this.n = n; }

public Object decode (Decoder f, Object x) {
Object current = x;
for (int i=0; i<n; i++) current = f.decode(current);
return current;

}
}

As the code shows, the only way to get any information about the secret number is to use
the decode method. If a SecretInfo object is hiding number n, then its decode method
will apply the Decoder n times.

A new employee in the company has just figured out a way to make millions. She comes
to you for help. All she needs is for you to complete the implementation of the method
decode below:

class CompromisedInfo implements Encoded {
private Encoded originalInfo;

CompromisedInfo (Encoded originalInfo) {
this.originalInfo = originalInfo;

}

public Object decode (Decoder f, Object x) {
...

}
}

If the originalInfo is hiding a number n, then your decode method should arrange for
the Decoder to be applied 3n times instead of n times.

To solve the problem, turn in the class CompromisedInfo and any other help classes
you need.

C++ alternative on reverse

λ.COM (C++ Version)

Having studied the λ-calculus, the president of a “.com” startup has stored sensitive
financial numbers in instances of the C++ class SecretInfo defined below:

class Decoder {
public:
virtual void* decode (void* x) { return (void*)0; }

};

class Encoded {
public:
virtual void* decode (Decoder* f, void* x) {

return (void*)0;
}

};

class SecretInfo : public Encoded {
private:
int n; // the secret

public:
SecretInfo (int n) { this->n = n; }

virtual void* decode (Decoder* f, void* x) {
void* current = x;
for (int i=0; i<n; i++) current = f->decode(current);
return current;

}
};

As the code shows, the only way to get any information about the secret number is to use
the decode method. If a SecretInfo object is hiding number n, then its decode method
will apply the Decoder n times.

A new employee in the company has just figured out a way to make millions. She comes
to you for help. All she needs is for you to complete the implementation of the method
decode below:

class CompromisedInfo : public Encoded {
private:
Encoded* originalInfo;

public:
CompromisedInfo (Encoded* originalInfo) {

this->originalInfo = originalInfo;
}

virtual void* decode (Decoder* f, void* x) {
...

}
};

If the originalInfo is hiding a number n, then your decode method should arrange for
the Decoder to be applied 3n times instead of n times.

To solve the problem, turn in the class CompromisedInfo and any other help classes
you need.

Fourth Annual University of Oregon Programming Contest, 2000 E

Bargain Boxing

Confederated Express charges a fixed rate per package for shipping packages up to 36
inches in their maximum dimension. BigTime Boxes, Inc., uses ConEx to send their elite
boxes. Since the rectangular boxes are themselves empty, they can save considerably by
nesting boxes inside other boxes when feasible.

Box B will fit inside box B′ if, after suitable rotation, the length, width, and height of
B are, respectively, at least one inch less than the length, width, and height of B. For
example, a 5′′ × 3′′ × 6′′ box will fit inside a 4′′ × 7′′ × 6′′ box (since 3 < 4, 5 < 6, and 6 < 7.

In this problem, you are given the dimensions of the boxes in a planned shipment by
BigTime Boxes. You need to determine the minimum number of packages that BigTime
will turn over to ConEx.

Input to your program will be specifications of shipments. The first line for each ship-
ment will be the number of boxes n in the shipment (1 ≤ n ≤ 25). The following n lines will
each consist of a triple of integers l w h (with one space separation) with 1 ≤ l, w, h ≤ 36,
indicating the length, width, and height of a box in inches.

Output for each shipment should be the minimum number of nested packages that will
accommodate all the boxes in the shipment.

Sample Input

4
2 1 3
4 3 5
2 3 4
4 5 6
5
5 5 5
4 4 5
4 5 5
2 3 3
5 6 6

Sample Output

1
3

