
Sixth Annual University of Oregon Programming Contest, 2002 A

Dependent Changes

The software project on which you are working is under a source code management
system where every change is tracked with a Change ID (CID). Commands provided by
the system allow versions of the source containing specific sets of changes to be retrieved.
In particular, the getversion command lets you specify a list of CIDs, and it will deter-
mine all the source files affected by these CIDs and fetch those files with the appropriate
changes applied. Unfortunately, this source management system is old and the getversion
command tends to break if too many CIDs are given to it at once, yet monthly load builds
often require large sets of CIDs. Until you can get this command updated, you need to
work around its limitations by using several executions of getversion on smaller sets of
CIDs. Ideally, you would like to execute getversion for each CID individually. But two
or more CIDs may affect the same file, so in this case the CIDs must be retrieved together
to get the effects of all changes - the same CID could not be given to two separate execu-
tions of getversion and still produce a consistent version. Your job is to write a program
that analyzes the CID-file relationship and determine the largest number of getversion
commands that will yield a consistent version.

The first line of input to this problem will be an integer n indicating a number of sets
of CIS-file tuples to follow.

Each tuple for a set will be on a line by itself and consists of a CID and a file that it
affects with these values separated by a colon. Blank lines will separate the sets. There
will be no more than 1000 tuples per set. The output should consist of one line for each
set, indicating the largest number of getversion commands that the set of CIDs could be
spread over.

Sample Input

2
cid1:fileA
cid1:fileB
cid2:fileC
cid3:fileB
cid3:fileD
cid4:fileC
cid5:fileD
cid4:fileE
cid5:fileF

cid13:fileA
cid11:fileB
cid9:fileC

Sample Output

The group 1 CIDs can be broken into no more than 2 commands
The group 2 CIDs can be broken into no more than 3 commands

In the first set of this example, cid1, cid3, and cid5 must be grouped together because
they affect files A,B,D and F; and cid2 and cid4 must be grouped together because they
affect files C and E, giving a maximum of two getversion commands. In the second set,
there are no common files, so a separate getversion command could be used with each
CID.



Sixth Annual University of Oregon Programming Contest, 2002 B

JumpShip

You pilot a 25th Century jumpship. These vehicles have the ability to leap between
jumppairs, namely ordered pairs of jumpports which may be separated by astronomical
distances but are adjacent in unidirectional hyperspace. Thus, jumps take a variable amount
of time, which can even be negative.

Your goal is to a plot a jumppath that minimizes travel time. In fact, there is particular
advantage to making the voyage in negative time since the effect on our bodies is to reverse
the aging process by the corresponding number of days; with such a course, you can collect
a proportional surcharge on passenger tickets.

However, as forecast in 20th-21st century science fiction, the paradox resulting from a
return to a location before one leaves that location could be disastrous. A jumpport that
admits such a path is marked “parodox-prone”. Naturally, the tight controls maintained
by the Federal Jumping Agency prohibit jumping out of any port if there is any jumppath
from there to a paradox-prone port, even if the intention was to go toward a different and
entirely safe place.

In this problem, you are asked to write a program for determining optimal jumppaths,
given the usable jumppairs and their corresponding time deviations.

The first line of the input will be an integer n indicating the number of instances of
jumppaths to construct. Each instance will begin with a line indicating the number m
of jumppairs, identified by their 3-letter jumpport codes, in the sector followed by the
departure port and then the destination port (separated by single spaces). Each of the next
m lines will be of the form ABC XYZ t signaling the possibility of a jump from ABC to XYZ
in time t (t will be a integer of absolute value ≤ 1000).

For each instance where jump travel is safe, you should indicate an optimal jumppath,
along with the total time, using the format

jpcode1 time1 jpcode2 time2 . . . time`−1 jpcode` for total time T
where timei is the time deviation in jumping from jpcodei to jpcodei+1.

However, if a paradox-prone port is reachable from the departure point, you should indicate

Potential paradox, jumping prohibited.

The instances should be separated by a blank line in the output.

(See sample Input/Output on reverse.)



Sample Input

3
11 ACT HPR
ACT BIT 3
ACT DSL 5
ACT FAQ 2
BIT CAD -4
CAD HPR 4
DSL EOT 6
EOT DSL -3
EOT HPR 8
FAQ GIF 3
GIF FAQ -2
GIF HPR 7
3 EUG SFO
EUG PDX -3
EUG SFO 2
PDX SFO 1
7 COM EDU
COM GOV -1
GOV EDU -1
COM MIL 5
MIL NET 2
NET ORG -1
ORG INT -1
INT MIL -1

Sample Output

ACT 3 BIT -4 CAD 4 HPR for total time 3

EUG -3 PDX 1 SFO for total time -2

Potential paradox, jumping prohibited.



Sixth Annual University of Oregon Programming Contest, 2002 C

Anagram Anyone?

String S is an anagram of string T if it contains the same letters with the same
multiplicities. In other words, an anagram of a string is a permutation of the letters in
the string. For example, if S contains two occurences of the letter x, then T must also
contain exactly two occurences of the letter x. It is customary to ignore spaces when making
an anagram of a phrase: “dirty room” and “dormitory” are anagrams of each other, even
though “dirty room” contains a space and “dormitory” does not. It is also customary to
insist that the solution to an anagram puzzle be words from a dictionary.

In this problem, you are given a number of input phrases consisting of one or more
words (sequences of non blank characters, not necessarily in any dictionary). Your program
must produce an output phrase that is an anagram of the input if one can be constructed;
this output phrase must consist of exactly one or two words chosen from a provided list of
common English words.

A list of 999 common English words, one per line, is available as words.txt.

The first line of input to the program is the number of phrases to follow. Phrases consist
of one to three strings totaling no more than 20 characters, separated by blanks, and made
up of lower case letters.

For each input phrase, your program must produce an output phrase of one or two words
from the word list, where the letters of these words are the same letters as the input phrase
letters. If there is no possible anagram phrase, your program should print

There is no anagram.

Sample Input

4
pinot noir
contest
ska
pizza pie

Sample Output

iron point
cost ten
ask
There is no anagram.



Sixth Annual University of Oregon Programming Contest, 2002 D

ReversaTile

ReversaTile is a mechanical puzzle consisting of 9 square tiles, each white on one face
and black on the reverse. The tiles are linked together in a 3 × 3 formation:

The ingenious linkage allows for the outside rows (left, right, top, bottom) to be pivoted
around the middle tile of the row. For example, the operation L switches the upper left tile
with the lower left tile with all three of the tiles flipped over:

L

Similarly operations R, T, B privot the right, top, bottom rows, respectively. The puzzle
is solved when all tiles show their white face. For example:

R B TT

In this problem, you are asked to write a program that solves the puzzle from a given
configuration using no more than 10 moves (if that is possible).

The first line of input will consist of an integer n, indicating the number of puzzle
instances to follow. For each, the starting configuration will be described in 3 lines indicating
the color of the tiles (b or w) on that line (with no spaces in between).

Your output for each puzzle instance should be either the phrase
There is no solution within 10 moves.

or a sequence of configurations from the initial one to the solved state; this should occupy
just three lines with the configurations lined up horizontally and separated by triple spaces
for readability (as shown in the samples on the reverse side of this page): the first line
should show the sequence for the top row of the puzzle, etc. Skip a line between solutions.

(See sample Input/Output on reverse side.)



Sample Input

4
bww
wwb
bbw
bbb
bbb
bbb
wbb
www
bww
wwb
wwb
wwb

Sample Output

bww bbw bbb bbb www
wwb wwb www www www
bbw bbw bbb www www

There is no solution within 10 moves.

There is no solution within 10 moves.

wwb www
wwb www
wwb www



Sixth Annual University of Oregon Programming Contest, 2002 E

Possible Products

If a binary operation • is not associative then there is some ambiguity about the value
of unparenthesized “products”. For example, consider the operation • on the set {A, B,C}
defined by the “multiplication table”:

• A B C

A C C A
B B C B
C B B A

Thus, A•A = C, A•B = C, A•C = A, B•A = B, etc. Then the string C•A•B•C has five
possible “products”.

C•(A•(B•C)) = C•(A•B) = C•C = A

C•((A•B)•C) = C•(C•C) = C•A = B

(C•A)•(B•C) = B•(B•C) = B•B = C

((C•A)•B)•C = (B•B)•C = C•C = A

(C•(A•B))•C = (C•C)•C = A•C = A

Three of the interpretations yield the result A, one yields B and one yields C.

In this problem, you are asked to write a program to determine how many times each
element of a set arises in the interpretation of a given string according to a given operation.

The first line of input to this problem will consist of an integer n, indicating the number
of problem instances to follow. Each instance with start with a line indicating the number m,
with m ≤ 7 of elements in the set, which will always consist of the initial m (capital) letters
of the alphabet A, B,C, . . . in order. The next m lines, with m letters per line (separated
by single spaces) will comprise the table for the operation, e.g., if the 3rd character of
the second line is E then B ◦ C = E. Finally, one more line will give the string $ under
investigation, given as a sequence of set elements of length at most 25, separated by single
spaces.

Your output for each problem should be on a single line that lists the m elements of the
set, each followed by the number of ways the product along $ could have been interpreted
as that element. There should be a space between entries on that line.

Sample Input

2
3
C C A
B C B
B B A
C A B C
2
A A
A A
B A B

Sample Output

A 3 B 1 C 1
A 2 B 0


