
Eighth Annual

University of Oregon Programming Competition

Saturday, April 17, 2004

Eighth Annual University of Oregon Programming Contest, 2004 A

Many Happy Returns
Investment performance is usually measured by an annualized rate of return. For ex-

ample, a mutual fund may quote its current one year performance by saying how large an
investment would grow in a year: if you put $1,000 in the fund on January 1, you would
have $1,070 on December 31. You could compare this to growth in a savings account if
you put $1000 in a savings account with a 6.77% interest rate that was compounded daily,
then after one year (365 days) your account would be $1,070. You can calculate this future
value from the formula: FV = P × (1 + r/365)k, where P is the original amount, r is the
annual interest rate, and k is the number of days in the period. This equation could also
be solved for the rate when all the other values are known, and so for comparison purposes,
we could determine that the mutual fund had an annual total return rate of 6.77%.

The trouble with comparisons like this is that the rate quoted for the mutual fund
assumes that you make only one investment, and it must be made on January 1. Likewise,
solving for the rate in the formula can only be done if you make a single investment in the
mutual fund. But it is more likely that you start your investment on some date other than
January 1, and you add to your investment throughout the year. If we did this in a savings
account with a fixed interest rate, we could calculate the future value of each deposit at
the end of the year and add them to get the total value of the account. But calculating
the return rate for a mutual fund that is equivalent to a savings account is a much more
difficult equation to solve.

In this problem, you are given the value of an investment as of the end of the year, and
the dates and amounts of additions to the investment during the year. You are to calculate
the interest rate that would have yielded the same value in a savings account with daily
compounding and the same set of deposits. The input data will be for the year 2003 (so
you do not have to worry about the number of days in a leap year).

The input will be a series of investment descriptions. The first line of the input will be
the number of investments for which you will calculate the rates of return. Each investment
will begin with a line that has the number of deposits, the value at the end of the year, and
the date (for this problem that date will always be 12/31/2003). This will be followed by
the list of deposits, where each deposit is a line beginning with +, followed by the deposit
date, and the deposit amount. Dates are in the form MM/DD/YYYY.

For each investment description, output the rate of return in the form shown, with
accuracy to two decimal places. This rate should be equivalent to daily compounding from
the date of each deposit to the end of the year, inclusive.

Sample Input

3
1 1070 12/31/2003
+ 1/1/2003 1000
2 2105 12/31/2003
+ 1/1/2003 1000
+ 6/30/2003 1000
4 7129.55 12/31/2003
+ 2/11/2003 1000
+ 4/15/2003 1500
+ 6/1/2003 999.90
+ 8/9/2003 3000

Sample Output

$1070.00 represents a return of 6.77%
$2105.00 represents a return of 6.77%
$7129.55 represents a return of 16.00%

Eighth Annual University of Oregon Programming Contest, 2004 B

Talking Routers

Suppose routers in a network talk to each other by exchanging control messages. A
control message sent between a pair of routers traverses a path of edges and routers in the
network. Every day each pair of routers talk to each other enough times so that control
messages between them follow every possible shortest path (in terms of number of edges)
between the pair. Each router records the number of distinct (unordered) pairs of routers
that have exchanged messages through it, i.e., not counting pairs that include that router.

In this problem you must determine which routers record the most such pairs.

The first line of input will contain an integer n indicating how many problem instances
will follow. Each instance then will start with a line indicating the number r of routers
(assumed to be labeled 0 to r − 1) and the number e of edges in the network; the next e
lines will each contain two router labels representing an undirected edge of the network.

The output for each problem should be a list of routers observing a maximum number
of router pairs followed by that maximum number, all on one line.

Sample Input

2
3 2
0 1
1 2
6 6
0 1
1 2
2 3
3 4
4 5
5 0

Sample Output

1 1
0 1 2 3 4 5 3

Eighth Annual University of Oregon Programming Contest, 2004 C

Spelling Suggestions

The first spelling checker programs simply determined whether each word in a document
was present in a dictionary. Modern spelling checkers also suggest corrections to a misspelled
word. One of the methods used to find possible corrections is to search for dictionary words
within a given edit distance of a misspelled word.

The edit distance between two words is defined relative to a set of edits, which are
operations on a word. For example, one possible edit might be inserting a letter. The edit
distance between word A and word B, relative to the set of edits E, is the minimum number
of operations from E needed to transform A to B. For example, if the edit operations E
are limited to insertion and deletion of a single character, then the edit distance between
“coast” and “court” is 4 (delete ‘a’ and ‘s’, insert ‘u’ and ‘r’). If the edit operations E also
include substituting one character for another, then the edit distance between “coast” and
“court” is 2 (substitute ‘u’ for ‘a’, ‘r’ for ‘s’).

For this problem, the set of edits will include single character substitutions, deletions,
and insertions, and your program must find all the words in a dictionary within edit distance
2 of a given word. The dictionary, which will be provided in a file named dict, may have
up to 200,000 words, so some care may be necessary to check each word efficiently.

The first line of input to your program is an integer, n, indicating the number of words
to follow, one to a line. The dictionary file dict will be a file consisting of at least one and
no more than 200,000 lines of text, each line will consist of a single word, although some
accented and non-alphabetic characters may be present.

For each of the n instances, the output consists of those dictionary words whose edit
distance from the input word is 0, 1, or 2, where the possible edits are inserting a single
character, deleting a single character, or substituting one character for another.

Each such word should be printed on the standard output, one word per line, in any
order. There should be a blank line following each instance.

For this sample, assume the file dict consists of: alpha
beta
gamma
almanac
almond

Sample Input

3
alpo
almand
grammar

Sample Output

alpha

almanac
almond

gamma

Eighth Annual University of Oregon Programming Contest, 2004 D

Modular Sums

Consider the numbers that can be obtained by summing a subset of {1, 2, . . . , r}. Those
2r sums are not all distinct. For example, with r = 5, the sum 6 can be obtained in 3 ways

6 = 1 + 5 = 2 + 4 = 1 + 2 + 3.

If we relax the condition and only ask how many subset sums are congruent to 6 modulo 9,
then there are now 4 of these:∗

6 ≡ 1 + 5 ≡ 2 + 4 ≡ 1 + 2 + 3 ≡ 1 + 2 + 3 + 4 + 5 (mod 9).

In this problem, you are given integers r, s, and t, and must determine how many subsets
of {1, 2, . . . , r} sum to s modulo t.

The first line of input will contain an integer n indicating how many problem instances
will follow. The instances will then appear, one to a line, as a triple of integers

r s t

each between 1 and 50, separated by single spaces.

Your output for each instance r s t should be a line with a single number that indicates
the number of subsets of {1, 2, . . . , r} that sum to s modulo t.

Note: The empty set is assumed to sum to 0.

Sample Input

4
3 3 3
5 6 9
4 7 1
2 4 5

Sample Output

4
4
16
0

∗We say that a is congruent to b modulo m, or a ≡ b (mod m), if a − b is a multiple of m.

Eighth Annual University of Oregon Programming Contest, 2004 E

Mondrian Land Rush

The planet Mondrian has been settled by a colony of artists. On the occasion of the
recent Mondrian Land Rush, prospective settlers were not restricted to claiming dull rect-
angular parcels of land. Instead, they were permitted to use multiple stakes to mark the
corners of their chosen properties. The perimeter of the property would then be comprised
of line segments joining successive stakes with the only stipulations being that

• No more than 50 stakes may be used.

• The number of feet between successive stakes must be an integer ≤ 1000.

• the segment joining two successive stakes must run either North/South or East/West,
with North/South segments alternating with East/West segments.

To register their property claims, the Mondrianese outline their lot shape by starting at
the first stake, then indicating the compass direction and number of feet from each stake
to the next, with the last segment necessarily ending at the starting stake. A bit less
comfortable with the mathematical details than with the design, the artists occasionally
have difficulty computing the area of their lots. Thus, you have the opportunity for some
profitable consulting.

In this problem, you will be given settlers’ outlines of their lots and must compute the
area of the lot.

The first line of input to your program is an integer, n, indicating the number of Mon-
drianese lots to follow. Each instance is then described as follows : the first line will contain
a single number m indicating the number of stakes used; the next m lines will then have a
sequence of perimeter segments, each line indicating the compass direction and number of
feet to the next stake, with one space between the direction (N,E,S,W) and the correspond-
ing distance. The first segment starts at some initial stake and the last segment terminates
at that initial stake; the perimeter does not otherwise intersect itself.

For each input lot, a line of your output should indicate the number of square feet in
the lot.

Eighth Annual University of Oregon Programming Contest, 2004 E

Sample Input

3
4
N 200
E 200
S 200
W 200
6
W 400
N 100
E 300
N 200
E 100
S 300
8
E 100
N 100
E 100
S 100
E 100
N 200
W 300
S 200

Sample Output

40000 square feet
60000 square feet
50000 square feet

