
Twelfth Annual

University of Oregon Programming Competition

Saturday, February 23, 2008

Supported in part by



Problem Contributors

Jim Allen

David Atkins

Art Farley

Aaron Henner

Eugene Luks

Matt Sottile



Twelfth Annual University of Oregon Programming Contest, 2008 A

DEAL
∨ ¬DEAL

Deal or No Deal is a popular TV game show in many
countries. It is essentially a game of the psychology of
gambling where a player has a chance to win an amount
of money or be paid a guaranteed sum to give up that
chance.

In the US version, the game begins with 26 cases that
hold various monetary figures, from one cent to one mil-
lion dollars. The player chooses one case which is theirs
to keep, but is not told its contents. Then the player
picks six of the remaining cases, and their amounts are
revealed. The banker makes an offer to buy the player’s
case. If the player takes the money (Deal), then the game
is over and the player gets the amount offered, regard-
less of what was in the chosen case. If the player turns
down the offer (No Deal), then in the next round five
more cases must be picked and revealed, and a new offer
will be made. With each successive round, one less case
is picked until the cases are chosen one at a time.

$ 0.01 $ 1,000
$ 1 $ 5,000
$ 5 $ 10,000
$ 10 $ 25,000
$ 25 $ 50,000
$ 50 $ 75,000
$ 75 $ 100,000
$ 100 $ 200,000
$ 200 $ 300,000
$ 300 $ 400,000
$ 400 $ 500,000
$ 500 $ 750,000
$ 750 $ 1,000,000

Psychology enters when player must decide whether to turn down the deal
and continue to choose cases. The only way for the player to get the amount in
her case is to turn down all offers. Of course, if the higher amounts are revealed,
then the player’s case cannot hold those values, and subsequent offers will de-
crease. From a probabilistic point of view, the expected value at any point in the
game is simply the average of the amounts that have not been revealed. If every-
thing was even, the banker would offer the expected value at each point, but in
the game show, the banker usually offers somewhat less than this amount, trying
to buy it for less than its expected value.

In this problem, you are given a sequence of game configurations. Each con-
figuration will consist of a number of cases to be revealed, and a list of the values
in all the cases remaining. For each configuration, you are to print out “Deal” if
the probability that the next offer will be less than the current offer is less than
1/2. Print out “No Deal” if it is at least twice as likely that the next offer will ex-
ceed the current. If neither of these conditions holds, then print out “Feeling
lucky?”. For any game configuration, assume that the banker will actually offer
the expected value, i.e., the average of the remaining cases (including the original
one chosen).

The first line of input will be a number that specifies how many configurations
are to be evaluated. Each configuration will be on a single line and consist of an
integer from 1 to 6, followed by amounts as in the table. All values are separated
by spaces. Your output must consist of the messages above, with the message for
each configuration on a line.



Twelfth Annual University of Oregon Programming Contest, 2008 A

Sample Input

4

1 1000000 500000 10

1 75000 50000 5

1 .01 1000000

3 25000 1000 750 500 400 300 200 50 5 1 .01

Sample Output

No Deal

Deal

Feeling lucky?

No Deal



Twelfth Annual University of Oregon Programming Contest, 2008 B

MESSAGE MONITORS

Suppose we want to monitor messages being sent between two sites of a net-
work without the two sites knowing we are doing so. We could do this by setting
up a special “listening” process at some other site in the network. We assume that
messages (or pieces of messages) always follow a shortest path between two sites
in the network. If there is more than one shortest path, then any of these paths
could be used at any time. Thus, to monitor all messages effectively, we must
find a site that is on all shortest paths between the two sites of interest, if such sites
exist. Assume that every network is connected, i.e., there is at least one (shortest)
path between every pair of vertices.

The graph of a network is input as one line indicating how many vertices n
(labeled 0 up to n − 1) are in the graph and then a second line indicating how
many edges m are in the graph. These two lines are followed by m lines indicating
(bi-directional) edges as pairs of labels. For example,

0 1 2 3

4 5 6 7
is represented by

8

10

0 1

1 2

2 3

0 4

1 5

2 6

3 7

4 5

5 6

6 7

Immediately following the graph, an input line will indicate how many queries q
there are, followed by q lines, each indicating a query as a pair of vertex labels.

Additional networks may follow, not separated by blank lines. Output is ter-
minated with a line containing only a single “0”.

For each network, the output should begin with the line
Network r:

where r is the number of the network. For each of the corresponding queries a b,
there should be a line

All network monitors between a and b: L
where L is a nonempty list of monitors for the query or “none” if there are no
monitors for the query.



Twelfth Annual University of Oregon Programming Contest, 2008 B

Sample Input

3

2

0 1

1 2

1

2 0

8

10

0 1

1 2

2 3

0 4

1 5

2 6

3 7

4 5

5 6

6 7

2

3 0

1 7

0

Sample Output

Network 1:

All network monitors between 2 and 0: 1

Network 2:

All network monitors between 3 and 0: 1, 2

All network monitors between 1 and 7: none



Twelfth Annual University of Oregon Programming Contest, 2008 C

PHONETIC MATCHING

You are playing the role of a newspaper reporter who wishes to build a pro-
gram that will help flag press releases that come across the wire related to a po-
litical candidate that you are covering. Press releases come quite frequently from
all of the candidates, so automating the process of identifying those from your
candidate will reduce the amount of reading you need to do in order to keep on
top of the race. Unfortunately, the candidate you are covering comes from a fam-
ily that immigrated into the country from a place that didn’t speak English, so the
transliterated spelling of their name to English is non-unique from a phonetic
point of view. Their name is easy to pronounce but difficult to spell correctly, so
press releases frequently contain the name of the candidate spelled slightly in-
correctly. Clearly an approach that searches on exact string matches will miss
important press releases. Something more creative must be employed.

In researching the problem of identifying misspelled articles, you discover an
algorithm from the early 1900s known as ”Soundex”. It is a basic algorithm in
which words are given signatures based on their pronunciation. Words that are
misspelled but are similar in pronunciation will be given identical signatures, al-
lowing one to match based on signatures instead of exact string matching. You
would like to build a tool that processes text files to identify press releases from
your candidate using this algorithm. The algorithm for constructing the signa-
ture of a word is as follows:

1. Retain the first letter of the string.

2. Remove all occurrences of the following letters, unless it is the first letter: a,
e, h, i, o, u, w, y.

3. Assign numbers to the remaining letters (after the first) as follows:

• b, f, p, v = 1

• c, g, j, k, q, s, x, z = 2

• d, t = 3

• l = 4

• m, n = 5

• r = 6

4. If two or more letters with the same number were adjacent in the original
name (before step 1), or adjacent except for any intervening h and w then
omit all but the first.

5. Return the first four characters, right-padding with zeroes if there are fewer
than four.

As an example, both “Rupert” and “Robert” yield Soundex signatures “R163”,
while Rubin produces “R150”.



Twelfth Annual University of Oregon Programming Contest, 2008 C

The input text will have already been tokenized into a stream of words. The
first line will contain two integers, the first being the number of candidates (k)
and the second being the number of press releases (p). The next k lines will each
contain the proper spelling of each candidate name. This will be followed by p
blocks of words, each of which starts with the number of words (n) within the
block, followed by n lines each containing a single word to process.

The output should be a table with p columns and k rows, with columns sepa-
rated by a single space. For each document that contains a candidate name via a
Soundex match, an Xwill be placed in the corresponding column of the candidate
row. If there is no match, an O (oh, not zero) will be placed instead.

Sample Input

2 3

knuth

luks

4

knuth

likes

writing

algorithms

3

luks

grades

homework

5

knooth

and

lux

are

misspelled

Sample Output

X O X

O X X



Twelfth Annual University of Oregon Programming Contest, 2008 D

SANE TRANSIT DISTRICT

Impressed with Lane County’s goal of carbon neutrality, Kansas’ Sane County
is planning an extensive public transit system like LTD. The plan is for STD to use
non-polluting street cars in the most effiicient way possible. Unlike busses, the
street cars go from one end of the line to the other, then head “backward” along
the same track. Since a street can accommodate at most one set tracks, it cannot
be used by more than one streetcar.

The Commission has called for proposals to implement the street car system.
However, it will only consider plans with the following features:

1. It must be possible to get from any stop to any other stop, possibly requiring
some transfers from one streetcar to another.

2. The amount of track used must be the minimum amount required to con-
nect all the stops.

3. For a given track/stop configuration satisfying the above conditions, the
number of streetcars should be minimum.

Your program should take as input a set of street car lines and indicate whether
modifications are needed to conform to Commission specifications

The flat Kansas terrain has enabled streets to be laid out in a perfectly square
grid with blocks of length 1

12
mile . The North-South streets are First Ave, Second

Ave, etc and the East-West streets are First Street, Second Street, etc. Intersections
are always desribed with the North-South street first. Thus, the corner of 42nd &
2nd, means 42nd Ave and 2nd St.

The first line input to this problem will contain an integer n indicating the
number of proposals to follow. The first line of each proposal will then indicate
the number s of streetcar lines in that proposal. The subsequent s lines will then
indicate the route of a streetcar. Routes are listed via a comma-separated list of
corner stops.∗ Each stop has the form i & j indicating the intersection of ith Ave
and jth St.

Considering each proposal, you should determine whether constraints 1,2,3
are satisfied.

• If it is not possible to get from every stop to every other stop, your output
should be “Incomplete”.

• If condition 1 is satisfied, but the proposal is not using the minimum amount
of track, your output should be “Excess track”.

• Otherwise, your output should be “m Streetcars” where m is the minimum
number of streetcars needed to traverse the track (and may be less than the
proposed number).

∗Segments from stop to stop may involve turns with the exact route unspecified, but the length of the
track is not affected by the choice of streets on which the streetcars make the turns.



Twelfth Annual University of Oregon Programming Contest, 2008 D

Sample Input

4

1&1,1&3,1&5,4&5,7&7,7&5,7&3

2

1&1,1&3,1&5,4&5,7&5

7&7,7&5,7&3

3

1&1,1&3,1&5

1&5,4&5,7&5

7&7,7&5,7&3

2

1&1,1&3,1&5,4&5

7&3,7&5,7&7

Sample Output Comments

Excess track see map A
2 Streetcars see map B
2 Streetcars see map B
Incomplete see map C



Twelfth Annual University of Oregon Programming Contest, 2008 E

DECIMAL DIGIT

All you need do in this problem is indicate the digit that lies at a given position
in the decimal expansion of a given fraction.

The first line of the input will be an integer m indicating the number of prob-
lem instances to follow. Each of the subsequent m lines will contain a triple of
integers a b n, with 1 ≤ a < b < 106 and 1 ≤ n < 1015.

For each problem instance a b n, you should output the digit that lies in the
nth place in the decimal expansion of a/b.

Sample Input

3

1 2 4

3 7 2

4 9 1

Sample Output

0

2

4



Twelfth Annual University of Oregon Programming Contest, 2008 X

PRACTICE PROGRAM

This sample exercise asks you to write a program that adds and multiplies two
integers.

Your program should expect input as follows: the first line will contain a single
integer n followed by n lines, each of which has a pair of integers separated by a
single space.

Each input integer pair should produce one output line that gives the sum
and the product of the two integers separated by a single space. Following that
should be a blank line and then your output should conclude with the name of
your team followed by a blank line followed by the names of your team members,
each on its own line.

Sample Input

3

0 4

1 5

3 2

Sample Output

4 0

6 5

5 6

usofa

North Carolina

South Dakota

West Virginia


