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Fourteenth Annual University of Oregon Programming Contest, 2010 

RAISING THE BAR 
 

 Like many new hybrid cars, a Prius has an energy 

consumption display that shows the driver the fuel 

efficiency in real time. The display shows the average 

miles per gallon for the tank of gas, but also has a bar 

chart that shows the mpg over five mile intervals. 

Since driving up hill or accelerating uses more fuel, if 

one of the intervals is mostly uphill, the mpg would 

be fairly low for that interval. Likewise, if one of the 

intervals consisted mostly of going downhill and 

coasting, the mileage would be very high. The mpg 

figures in the display are accurate to one decimal place, and limited to two significant figures. 

Thus, the highest value that can be shown is 99.9 mpg.  This applies to the bar chart as well, 

where the height of each bar is limited to 99.9.  One result of this limitation is that the bar chart 

may have a bar of maximum height (e.g., when coasting down hill), but the actual consumption 

during that interval could be higher than 99.9.  We would like to know what the real fuel 

consumption is for such an interval. 

 

 For this problem, you must write a 

program that determines the actual miles per 

gallon consumed during an interval that 

displays as a 99.9 mpg bar on the bar chart.  

For example, suppose there are two bars 

showing: one is 25 mpg, the second is 99.9 

mpg. The average for the ten miles traveled is 

70 mpg. So, the actual consumption for the 

second bar is 115 mpg, since it must exceed 

the average of 70 by the 45 that the first bar 

falls short in order to average out to 70. The 

figure to the left is an example display with 

four bars of heights 20, 30, 99.9, and 50 with 

an overall mpg of 50. In this case, the actual 

mileage for the 99.9 bar is 100 mpg. 

 

Input to the program consists of a number of problems to solve.  The first line indicates how 

many problems follow.  Each problem consists of one line.  The line begins with a decimal 

number that is the average miles per gallon over all intervals.  Next is an integer from 1 to 20 

that indicates the number of bars, followed by the mpg for each bar as a positive decimal 

number.  Exactly one of the bar values is 99.9. Your program must output the actual miles per 

gallon for that bar to one decimal place in the form shown. If the actual mpg value is less than 

99.9, your program must output “Impossible display!”. 

 
Sample Input 
3 

70 2 25 99.9  

50 4 20 30 99.9 50 

50 4 25 99.9 75 50 

 

Sample Output 
Actual mpg on interval 2 is 115.0 

Actual mpg on interval 3 is 100.0 

Impossible display! 

A 

CONSUMPTION 

25 

0 

50 

75 

    50 MPG 
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CHECKMATE 

 

 The N-Queens problem involves counting the number of ways to place n 

queens on an n by n chessboard in a way that the queens cannot capture each 

other.  The classic problem has O(n!) complexity and is the textbook example of a 

backtracking algorithm used to show the usefulness of functional programming 

paradigms.  For values of n < 27, there are several groups who have compiled tables of all 

possible solutions.  In particular, they are interested in “unique” solutions.  That is, solutions that 

cannot be obtained by simply rotating the chessboard of another solution or holding it to a mirror 

(or some combination of both).  For example, for an 8 × 8 chessboard, there are 92 different 

configurations, but only 12 of them are unique in this sense. 

 In this problem you must decide whether two solutions are unique.  Your program will 

take as input two different solutions A and B and determines whether there is some combination 

of rotation and/or reflection of the board that would make A the same as B.   In all cases, B is a 

previously verified solution. 

The first input line is the number of problems, and each problem consists of three lines.  

The first problem line is a single number 0 < n < 26, and each of the next two lines is a 

configuration on an n×n board.  The configurations are given as an n-length, space delimited list 

of numbers.  The first number tells which column the queen occupies in the first row; the second 

number tells which column the queen occupies in the second row; etc. The columns are 

numbered 1 through n.  First, you must test whether the first proposed solution is correct, i.e., 

that no queen in the solution is on the same row, column or diagonal as any other queen on that 

board.  Your output should be either “unique” if the first solution cannot be generated from the 

second by rotating or reflecting the board, “not unique” if it can, or “illegal 

configuration” if the first line is not a solution at all.   

 

 

 

 

 

 

 

 

 

 

 

Example of a configuration: 

The first row contains a queen at position 4; the second row contains 

a queen at position 7; the third row contains a queen at position 3, etc.  So, 

the encoding for this solution is 4 7 3 8 2 5 1 6. 

. 

Sample Input 
5 
4 
2 4 3 1 
2 4 1 3 
4 
2 4 1 3 
3 1 4 2 
5 
2 4 1 3 5 
2 4 1 5 3 
5 
1 3 5 2 4 
3 5 2 4 1 
5 

3 5 2 4 3 
3 5 2 4 1 

Sample Output 
illegal configuration 
not unique 
unique 
not unique 
illegal configuration 

 

B 
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NO LEFT TURN 

 

 Programmer’s Pizza Delivery analyzed its driving patterns and found 

that left turns at unprotected intersections have a higher rate of accidents as 

well as slowing down the delivery. When there is no left turn signal arrow 

or four way stop sign, there is no control for on-coming traffic and the 

drivers have to wait to turn safely. So, PPD is paying some programmers (in pizza, of course) to 

route the drivers by the shortest way that avoids left turns at the unprotected intersections. 

 

For example, in the pictured street grid of three North-South streets 

and three East-West avenues, where odd numbered streets are one 

way south and even numbered streets are one way north, the shortest 

route from A to B is two blocks (shown in blue). However, if no left 

turn is allowed at the intersection of 2
nd

 Avenue and 2
nd

 Street, then 

the shortest route is five blocks (shown in red). If there was also no 

left turn allowed at 2
nd

 Avenue and 1
st
 Street, then the shortest route 

would have to use 3
rd

 Street and take six blocks. 

 

In this problem, you are given a list of map descriptions.  For each 

map, your program must compute the number of blocks in the 

shortest route that avoids the given left turns. If there is no route 

possible, your program must print “You can’t get there from here!”. 

  

 The first line of input will be a problem count that specifies how many maps you are to 

process. Each map will consist of three lines. The first line consists of two numbers (between 1 

and 15) specifying the number of avenues and the number of streets. The second line consists of 

four pairs of numbers. The first pair and second pair are the intersections surrounding the start 

point, and the third and fourth pairs are the intersections around the ending point.  Assume that 

the starting and ending points are halfway down the block. The third line is a list of the no-left-

turn intersections, where the first number specifies how many pairs are on the line. Odd 

numbered streets are one way south and even numbered streets are one way north. East-west 

avenues are both directions, but you may not make U-turns. 

 

 

 

 

 

 

 

 

 

Sample Input 
4 
3 3 
2 1 2 2 1 2 1 3 
0 
3 3 
2 1 2 2 1 2 1 3 
1 2 2 
3 3 
2 1 2 2 1 2 1 3 
2 2 2 2 1 
3 3 
3 1 3 2 1 2 2 2 
3 2 1 2 2 3 2 

     Sample Output 
2 blocks 
5 blocks 
6 blocks 
You can't get there from here! 

 

8000 

C 

1
st
 Ave 

2
nd

 Ave 

3
rd
 Ave 

2
n
d S

t 

3
rd S

t 

1
s
t S

t 

A 

B 
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1 3 2 –5 

1 1 1 1 

23 10000000 

 
A RECURRING PROBLEM 
 

 The physics students are collaborating with the biology students to study 

the effects of climate change on species extinction. This involves recurrence 

modeling techniques, the discrete nature of which confuses and enrages the 

physics undergrads.  They want a simple computer program that takes as input 

a recurrence relation and outputs a particular element of the sequence (modulo 

some prime).  For example, starting 

with initial terms a0 = a1 = a2 = a3 = 1, they need to know 

the ten-millionth term (mod 23) in the sequence:  

 

 

To solve the problem, the 

physics students wrote this 

FORTRAN program. However, 

they found that it took too long, 

even though FORTRAN  is known 

to be faster than Java and Python.  

They were all out of ideas on how 

to make their code faster, so they 

turned to the computer science students to help them out. 

 

 For this problem, you are given a recurrence relation and must produce a specified term in 

the sequence (modulo a given prime). The first line of input will contain the number of problems 

to solve.  Each problem consists of three lines of space-separated integers.  The first of the three 

lines contains the integer coefficients of the recurrence relation.  The second line consists of the 

first elements in the sequence, starting with a0, and the third line contains two numbers, the 

prime number modulus followed by the index of the term in the sequence to find.  (Since the 

sequence is zero-based, 0 indexes the first term in the sequence.)  The first and second lines will 

always have the same number of entries, and the third line will have 

exactly two entries. The problem described above would be coded as 

shown to the right. 

 

 The first number on the third line will be a prime number less than 10,000.  The second 

number will be less than 1,576,800,000 (representing 50 years in seconds).   

 
 

 

 
 

an = an–1 + 3an–2 + 2an–3 – 5an–4 

      INTEGER A(10000000), RESULT 

      DO 10, N = 1, 4 

10    A(N) = 1 

      DO 20, N = 5, 10000000 

20    A(N) = A(N–1) + 3*A(N–2) + 2*A(N–3) – 5*A(N–4) 

      RESULT = MODULO(A(10000000), 23) 

      WRITE(*,1000) RESULT 

1000  FORMAT (I2) 

 

Sample Input 
4 

1 1 

1 1 

5 1000 

1 2 0 -5 3 

1 0 0 0 0 

7907 7919 

5 -2 3 -2 1 -2 3 -2 5 

1 2 3 4 5 6 7 8 9 

997 1400000000 

1 3 2 –5 

1 1 1 1 

23 10000000 

 

Sample Output 
1 

5825 

39 
1 

D 
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FACTORIAL QUOTIENTS 

 

 The most solved problem on last December's Putnam Mathematical Competition was the 

following 

Show that every positive rational number can be written as a quotient of 

products of factorials of (not necessarily distinct) primes. For example, 

!3!3!3

!5!2

9

10

⋅⋅

⋅

=  

Invariably, solutions described (not necessarily efficient) algorithms for obtaining such 

representations. 

 In this problem, you are to compute a quotient of products of factorials of 

given rational numbers with numerators and denominators between 1 and 

10,000. (To save you some trouble in testing primality, the primes less than 

10,000 are in the file /cs/contest/primes.) 

 The first line in the input will give an integer m, indicating that m problem 

instances are to follow, one to a line. Each problem instance will consist of two 

integers n and d, separated by a single space, indicating the numerator and denominator of a 

fraction. 

 The output for each problem instance, should be of the form 

   { set of primes}{ set of primes } 

where the primes in each set are listed in order and separated by commas, and the lists should 

have no primes in common. The first set should correspond to the numerator in the required 

representation, the second to the denominator. For example, given the input 10 9, your program 

should produce the output 
   {2,5}{3,3,3} 

since
9

10

666

1202

!3!3!3

!5!2
=

⋅⋅

⋅

=

⋅⋅

⋅ . (Beware that the output for an instance may be an extremely long line.) 

There should be blank lines in the output between problem instances. 

 

 

 

 

 

 

 

 

 

 

 

NOTE: The product of an empty set ({}) is understood to be 1. 

E 

Sample Output 
{2,5}{3,3,3} 
 
{}{2,2,2} 
 
{}{} 
 
{2,2,2,2,3}{5} 
 
{3,17}{2,2,7,13} 

 

Sample Input 
5 

10 9 

1 8 

5 5 

8 10 

17 1 


