
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sixteenth Annual 

University of Oregon 

 Eugene Luks Programming Competition 
 

Saturday, April 14, 2012 

 

 

 

 
 

Problem Contributors 

 

Jim Allen 

David Atkins 

Gene Luks 

 

 

 

 

 

 

Prizes and food provided by Pipeworks 

 



Sixteenth Annual Luks Programming Contest, 2012 

OLD MATH 
 

 These days kids use calculators and computers to do most arithmetic, but it 

is still a good idea to learn and understand how to do arithmetic by hand. For 

example, to multiply two large numbers by hand, we are taught the technique 

of calculating the intermediate products formed when you multiply the first 

number by each digit of the second number, and recording those results with 

columns aligned to reflect the progressive powers of 10.  Then we add up the 

intermediate results to get the final answer. 

. 

 For this problem, you are given two numbers that are to be multiplied and 

you must show the “long multiplication”. Use leading blanks so that all digits 

are aligned properly.  Each intermediate product is on a line of its own, except 

that if a digit in the second operand is zero, then that intermediate product will 

be combined on the line with the following one.  The operands must be 

followed by a line of dashes, and the final product must be preceded by a line 

of dashes.  If there would be only one intermediate product, then don’t show it. 

 

 The first line in input specifies the number of multiplications to work out.  Each 

multiplication exercise is on a line and consists of two numbers to be multiplied.  Each of the 

two numbers will be non-negative and less than one billion, and neither number (other than zero 

itself) will have leading zeroes.  Each multiplication solution must be followed by a blank line. 

The sample output shows the proper output formatting, which you must produce exactly as 

shown. 

 
 

 

 
 

A 

Sample Input 
3 
32 16 
124 302 
345 6 

Sample Output 
 32 
 16 
--- 
192 
32  
--- 
512 
 
  124 
  302 
----- 
  248 
3720  
----- 
37448 
 
 345 
   6 
---- 
2070 

  123 
x 456 
  738 
 615 
492  
56088 



Sixteenth Annual Luks Programming Contest, 2012 

 

CONNECT THE DOTS 

On an Android phone, you can set a pattern to be traced as the way to 

unlock the phone. This can be a more intuitive way to unlock the phone than 

entering a numeric PIN. The pattern is formed by starting with one dot in a 3x3 

grid and moving to other dots. Tracing the dots is just another interface for 

entering a sequence of numbers. At first glance, you might think there is a dot 

pattern for every possible PIN, but there are some restrictions on tracing the dot pattern.  In the 

sequence described by a dot pattern, no number may occur more than once. And, a pair of dots in 

the sequence (we’ll call them the current and target dots) is subject to this rule: From the current 

dot, you can move to any other dot that has not been traced yet, provided that any dots on the 

straight line from the current to the target dot have already been traced. If there is an untraced dot 

on the straight line from the current dot to the target dot, then it is impossible to get to the target 

dot without tracing the intermediate dot, so it would be an invalid sequence of numbers. 

The dots are numbered, beginning with 1, from left to right and top to 

bottom, as pictured for a 3x3 grid. The sequence traced by 2-1-5-9 is a valid 

sequence.  However, the sequence 2-1-9-5 is not valid since you can not get 

from 1 to 9 without first tracing 5. The sequence traced by 2-1-5-9-5 is also not 

valid since 5 cannot appear twice in the sequence. On the other hand, the 

sequence 2-5-1-9 is valid since in this case 5 has already been traced, so it is 

okay to go through it to get to 9, which has not yet been traced. 

For this problem, you must determine if a sequence of numbers is 

described by a valid tracing of dots. No number may be repeated in the sequence, and the tracing 

for the sequence must follow the rules described above. Although Android phones only use a 3x3 

array of dots, for this problem you must consider grids of any size. 

The first line in input specifies the number of sequence configurations to solve.  Each 

subsequent line describes a configuration and consists of a list of space-separated numbers.  The 

first three numbers M, N, and L, are the number of rows in the grid, the number of columns in 

the grid, and the length of the sequence, with 1 ≤ M, N ≤ 50 and 1 ≤ L ≤ M×N.  The remaining 

numbers on the line form the sequence.  For each line of input, you must output either “valid” or 

“invalid” according to whether the sequence follows the rules. 

 

 

B 

Sample Input 
6 
3 3 4 2 1 5 9 
3 3 4 2 1 9 5 
3 3 5 2 1 5 9 5 
3 3 4 2 5 1 9 
4 3 6 1 2 3 10 11 12 
4 3 6 1 2 3 7 8 9 

Sample Output 
valid 
invalid 
invalid 
valid 
valid 
invalid 

1 2 3 

5 4 6 

9 7 8 



Sixteenth Annual Luks Programming Contest, 2012 

 

CHAPTER AND PAGE 
 

 A conventional duplex printer can be used to print a small 

book by printing on both sides of the sheets of paper and then 

folding the sheets in half to form a book. To accomplish this, 

two pages are printed side by side in landscape mode on each 

side of a sheet of paper. There will be one fourth as many 

sheets as there are total pages in the book.  Of course, the 

placement of the pages is very important so that the book is 

read in the correct order. 

 

 For example, suppose the book has four pages. On the single sheet of 

paper, page 1 would be printed on the back right, page 2 on the front 

left, page 3 on the front right and page 4 on the back left. This is shown 

in the drawing to the right.  The drawing below shows the placement on 

two sheets if the book had 8 pages. Note that sheets are output from the 

printer with the front side down and the first sheet on the bottom so that 

we can just fold and staple to make the book. 

 

 However, there is another complicating factor. The book is 

formed of chapters, and like many books, we want each chapter to 

start on an odd numbered page, so that first pages of chapters will 

always appear on the right side as we turn the pages of the book. 

This means that sometimes a blank page will have to be printed at 

the end of one chapter before the start of another.  Finally, to keep 

things simple and tidy, we will add blank pages to the end of the 

book to ensure each paper sheet is completely filled. All pages 

(including the blank pages) will have page numbers.  

 

For this problem, you are given the number of pages in each chapter of a book. You are also 

given a page number. With the printing conditions described above, you are to determine which 

paper sheet the page will print on, where on the paper sheet it will print, and what will print (i.e., 

the page of the chapter or a padding blank page). The first line of input  specifies the number of 

puzzles to be solved. Each subsequent line describes a printing puzzle:  it consists of a page 

number  P, followed by a number, N, of chapters, and then N numbers representing the number 

of pages in each chapter. The output should describe for page P what is to be printed on which 

sheet and should be formatted as shown in the sample.  

 
Sample Input 
3 
2 1 4 
4 3 2 1 3 
6 3 2 1 3 

Sample Output 
Page 2: page 2 of chapter 1 on the front left of sh eet 1 
Page 4: blank on the front left of sheet 2 
Page 6: page 2 of chapter 3 on the back left of she et 2 

C 



Sixteenth Annual Luks Programming Contest, 2012 

DROID MATCH 

   

 Anakin found R2D2 to be an eager playmate and taught him 

a game that he had played with his friends on Tatooine.  Two 

youngsters would gather a large pile of sand pebbles and take 

turns removing either 1 or 2 pebbles.  The winner was the one 

who removed the last pebble.  Back on Tatooine, Anakin had 

been a strong competitor; perhaps his moves were unwittingly influenced by the Force.    

Nevertheless, Anakin could not dominate R2D2, whose computing speed measured in zettaflops, 

and he soon tired of the game.   On the other hand, R2D2 was hooked and introduced the game 

to fellow astro droids during R&R (recharging and refitting) periods.   

 

 To maintain a challenge, the droids worked with larger and larger random piles of (virtual) 

pebbles and generalized the rules: for each game a random set M of positive integers was 

declared so that each move involved removing m pebbles for some m ∈ M.    The methodical 

droids would then play out the full game even though, for such perfect players, the outcome is 

predetermined from the starting configuration, 

 

 For this problem, you are given the initial pile size P and a set M of positive integers 

including 1 (so that the entire pile would be removable).   R2D2 is scheduled to move first.    If 

he is to win the game, you should determine his possible first moves. 

    

 The first line of the input will specify the number N of games to be analyzed.  Each of the 

next N lines will indicate the pile size P for a game, with 0 < P < 264, followed by the set M of 

legal moves, with M ⊆ {1, 2, 3, …, 21}.    For each game, the output should be one of the forms 

 

  R2D2 will lose. 

or 

  R2D2’s first move must be m. 

or 

  R2D2’s first move must be one of: m1, m2, … , mk. 

 

where  1 ≤ m ≤ 21  and  1 ≤ m1 < m2 < … < mk ≤ 21.  There should be a blank line between 

games. 

 

  

 

 

 

 

 

 

 

 

 

 

Sample Input 
6  
4 1  
5 1 2  
9 1 2  
12 1 3 6  
15 1 4 5 10  
12 1 4 5 7 10  
 

Sample Output 
R2D2 will lose.  
 
R2D2’s first move must be 2.  
 
R2D2 will lose.  
 
R2D2’s first move must be one of: 1, 3.  
 
R2D2’s first move must be one of: 1, 4.  
 
R2D2’s first move must be one of: 1, 4, 10.  

 

 

D 



Sixteenth Annual Luks Programming Contest, 2012 

JUST SAY NO 

 

You are working on an automated speech recognition system.  Fortunately, 

your application only has to decide what word the customer said from a short list 

of options.  Unfortunately, it is difficult to distinguish certain sounds using 

waveform analysis.  Because of regional variation, vowels are difficult to match, 

but they are easily recognized and thrown out, and the computer reports the word 

it has heard as a string of consonant sounds.  You must decide which word (from 

a list) the person most likely said. 

To determine this, the probabilities for each consonant sound are given in the table below.  

For a sound the computer reports, the corresponding row in the table gives the probabilities of 

what was actually said.  For example, the highlighted row in the table gives the probabilities if 

the computer reports the sound ‘d’. The probability the reported ‘d’ was actually a ‘b’ is 0.8, and 

the probability that it was actually a ‘t’ is 0.9. 

 
 p b m f v t d s z n S Z k g N ℓ L r 

p 1.0 0.7 0.7 0.5 0.3 0.8 0.6 0.2 0 0 0 0 0.8 0.6 0 0 0 0 

b 0.7 1.0 0.9 0.3 0.5 0.6 0.8 0 0.2 0.2 0 0 0.6 0.8 0.2 0 0 0 

m 0.7 0.9 1.0 0.3 0.5 0 0.2 0.4 0.7 0.9 0.4 0.5 0 0.2 0.9 0.3 0.3 0.3 

f 0.5 0.3 0.3 1.0 0.9 0.2 0 0.7 0.4 0.2 0.7 0.4 0 0 0.2 0 0 0 

v 0.3 0.5 0.5 0.9 1.0 0 0.2 0.4 0.7 0.3 0.4 0.7 0 0 0.3 0.1 0.1 0.1 

t 0.8 0.6 0 0.2 0 1.0 0.9 0.5 0.3 0.3 0.3 0.1 0.8 0.6 0.1 0 0 0 

d 0.6 0.8 0.2 0 0.2 0.9 1.0 0.3 0.5 0.4 0.1 0.3 0.6 0.8 0.3 0 0 0 

s 0.2 0 0.4 0.7 0.4 0.5 0.3 1.0 0.9 0.3 0.9 0.6 0.2 0 0.4 0.1 0.1 0.1 

z 0 0.2 0.7 0.4 0.7 0.3 0.5 0.9 1.0 0.5 0.6 0.9 0 0.2 0.7 0.2 0.2 0.2 

n 0 0.2 0.9 0.2 0.3 0.3 0.4 0.3 0.5 1.0 0.1 0.3 0 0.1 0.9 0.3 0.3 0.3 

S 0 0 0.4 0.7 0.4 0.3 0.1 0.9 0.6 0.1 1.0 0.9 0.2 0 0.4 0.2 0.2 0.2 

Z 0 0 0.5 0.4 0.7 0.1 0.3 0.6 0.9 0.3 0.9 1.0 0 0.2 0.6 0.3 0.3 0.3 

k 0.8 0.6 0 0 0 0.8 0.6 0.2 0 0 0.2 0 1.0 0.9 0.3 0 0 0 

g 0.6 0.8 0.2 0 0 0.6 0.8 0 0.2 0.1 0 0.2 0.9 1.0 0.5 0 0 0 

N 0 0.2 0.9 0.2 0.3 0.1 0.3 0.4 0.7 0.9 0.4 0.6 0.3 0.5 1.0 0.3 0.3 0.3 

ℓ 0 0 0.3 0 0.1 0 0 0.1 0.2 0.3 0.2 0.3 0 0 0.3 1.0 0.8 0.7 

L 0 0 0.3 0 0.1 0 0 0.1 0.2 0.3 0.2 0.3 0 0 0.3 0.8 1.0 0.6 

r 0 0 0.3 0 0.1 0 0 0.1 0.2 0.3 0.2 0.3 0 0 0.3 0.7 0.6 1.0 

 

Sometimes the computer will interpret background noise as additional sounds so there could 

be extra consonants in the string as well as the wrong consonants.  For each utterance, you must 

compute the best correspondence between the word the computer heard and the possible choices.  

The best correspondence is determined by the highest possible sum of the chances of getting it 

right.  For each sound in the utterance it might be background noise, in which case we remove it 

and add nothing, or it has a probability of matching a consonant according to the table.  For 

example, the best correspondence between the computer hearing pmpt  and the choice dpt  is 

found by throwing out the m and computing p→d, p→p and t →t  for a total of 

0.6+1.0+1.0=2.6.  If instead we throw out the initial p, then we get m→d, p→p and t →t , for a 

correspondence of 0.2+1.0+1.0=2.2, which is not as good, so we use 2.6.  If the computer heard 

pmpt  there is no correspondence with the choice pmplt . 

The input will start with one number on a line indicating the number of recognition decisions 

to solve.  Each recognition decision consists of a line of a list of space separated “words”.  The 

E 



Sixteenth Annual Luks Programming Contest, 2012 

first word is the utterance the computer heard, and the remaining words on the line are the 

allowed choices.  For each recognition decision, your program should output which choice has 

the highest correspondence with what the computer heard.  Utterances and choices will consist of 

only the letters from the table (vowels and semi-vowels will already have been removed). If there 

is no best choice (i.e., the best correspondence score is zero), then your program should output 

“What?”. 

The table is in the file /home/users/contest/2012/sounds.dat, and your program may open that 

file to read in the table when it runs. 

   

 

 

 

 

 

 

 

For these samples, the choices are  

1. omelet, peas, or rice; the computer heard “patty melt” and matched it with omelet. 

2. omelet, patty melt, or rice; the computer heard “peas” and matched it with rice. 

3. omelet, patty melt, or rice; the computer heard “paddy melt” and matched it with patty 

melt. 

4. left, right, or straight; the computer heard “right”, with loud background noise and 

matched it with right. 

5. din, rhyme, or tin; the computer heard “tim” and matched it with tin. 

6. prompt or pamphlet; the computer heard “pumped” and there is no correspondence 

 

Sample Input 
6 
ptmLt mlt pz rs 
pz mlt ptmLt rs 
pdmlt mlt ptmLt rs 
rgt lft rt strt 
tm dn rm tn 
pmpd prmpt pmplt 

Sample Output 
mlt 
rs 
ptmLt 
rt 
tn 
What? 


