

Seventeenth Annual

University of Oregon

 Eugene Luks Programming Competition

Saturday, April 13, 2013

Problem Contributors

Jim Allen

David Atkins

Gene Luks

Chris Wilson

Food and prizes provided by Pipeworks

T-shirts provided by Emberex

Seventeenth Annual Luks Programming Contest, 2013

GO DUCKS

 If you have ever been to a UO football game, then you know

that we have an exceptionally fit mascot. Every time that the

UO team scores, the crowd counts while Ducky does as many

push-ups as the UO team’s total score at that point in the game.

Of course, this means that with each scoring play, Ducky does

even more push-ups.

 For example, if the first UO score is a touchdown with a 2 point conversion, then the UO

score would be 8, and Ducky would do 8 push-ups. If the next UO score is a field goal for 3

points, then the UO score would be 11 and Ducky would do 11 push-ups. If the next score is

another field goal, Ducky would do 14 push-ups. If the final UO score is a touchdown with the

kicked extra point, then 7 points would be added and now Ducky would do 21 push-ups. For the

game Ducky would have done 8+11+14+21 = 54 push-ups.

 For this problem, you are to calculate the final UO score for the

game and the total number of push-ups that Ducky does during the

game. The first line in input specifies the number of games for which

you are to calculate totals. Each game is specified on a line as a list of

the UO scoring plays. Each play is one of five strings: “TD”, “TD+1”,

“TD+2”, “FG”, “S”, which represent a touchdown with zero, one, or two

extra points; a field goal; or a safety. The corresponding scores are 6, 7,

8, 3, and 2. For each game, you must output the number of push-ups and

the total score in the format shown.

A

Sample Input

3

TD+2 FG FG TD+1

FG TD+1 TD+2 S TD

TD TD+1 TD+1 TD+1 TD+1

Sample Output

Game 1: final score 21, total push-ups 54

Game 2: final score 26, total push-ups 77

Game 3: final score 34, total push-ups 100

TD 6

TD+1 7

TD+2 8

FG 3

S 2

Seventeenth Annual Luks Programming Contest, 2013

WALKING THE DOG

 You have been hired to walk your employer’s dog across the city each

morning. The route through the city is expressed by a graph with n nodes, and you

will start at position 1 and walk to position n. Since you get paid by the hour, you

want to take the longest possible route. Also, your contract says that you get a

bonus if you take a different route each day, so you want to know how many long

routes there are.

 The routes are described by a special kind of graph: an acyclic digraph. It has the following

properties:

1. Nodes are numbered 1,2, …, n.

2. All edges are directed and specified by two nodes i and j with i<j.

3. There is at least one path from node 1 to node n.

4. The weight on an edge (i,j) corresponds to the expected amount of time it takes to walk

from location i to location j, given in hours and minutes.

5. All edge weights are greater than zero.

6. Streets are one-way, you cannot reverse direction.

 Consider the example graph to the right. The

longest route from node 1 to node 6 takes 17 hours

and 0 minutes. There are four paths that take that

long: 1-3-5-6, 1-3-4-6, 1-2-3-5-6, and 1-2-3-4-6.

For this problem, your program must determine the

length of the longest path and the number of

distinct paths of that length for each of a series of

graphs.

 The first line of input will be the number of graphs to solve. The first line of each subsequent

graph problem will consist of two numbers n, the number of nodes and e, the number of edges.

Following this will be e lines, one for each edge, and consisting of four numbers i, j, h, and m.

The directed edge is from node i to node j. The weight of the edge is h hours and m minutes. For

each graph your program must output the length of the longest path from node 1 to node n, and

the number of distinct paths of that length in the form shown.

B

Sample Input
2

6 8

1 2 3 0

1 3 8 0

2 3 5 0

2 4 8 0

3 4 4 0

3 5 3 0

4 6 5 0

5 6 6 0

3 2

1 2 2 45

2 3 1 25

Sample Output
17 HOURS, 0 MINUTES, 4 PATHS

4 HOURS, 10 MINUTES, 1 PATHS

Seventeenth Annual Luks Programming Contest, 2013

JUST A CLICK AWAY

 Many devices connected to a TV have functionality which requires text entry, but

don’t have a full keyboard available. For example, my Blu-Ray DVD player has built

in applications to play You Tube and Netflix videos, but only has a simple TV style

remote controller. This makes it difficult to search for a topic or title. For text input,

the player displays a virtual keyboard on the TV screen. In order to input some text, I

must use the remote to move to each letter of input, select it, and move to the next.

The remote control only uses four arrow buttons for the directions to move from one

character to the next (one position up, down, left, or right), and a select button (SEL).

 The virtual keyboard is shown to the left. The starting

position is the upper left character ‘a’, and with the arrow

buttons, you can move to a horizontally or vertically

adjacent character. However, the keyboard does

implement wrap around. For example, if the cursor is on

‘a’ and you press Up, then the cursor moves to the ‘y’.

Likewise, if the cursor is on ‘g’ and you press Left, the

cursor moves to ‘6’. In some cases, wrap around could reduce the number of presses needed to

get from one character to another. The actual space character in a string may be entered using the

position labeled ‘SP’ on the keyboard. To complete the entry of a string, the special ‘OK’

position on the keyboard must be selected.

 Inputting a text string may require many button pushes. For example, consider how to input

the string “abc”. The default character at the beginning of text selection is ‘a’ in the upper left

corner. So just pressing the SEL button will select it. Then you must press Right to move to the

‘b’, and press SEL to select it. Then you must press Right to move to ‘c’ and press SEL to select

it. Finally, to complete the text entry, you must move the cursor to the ‘OK’ character and press

SEL. The quickest way to do that is to use wrap around and move Up from the ‘c’ to get to ‘OK’.

Thus, a total of 7 button presses is required (2 Rights, 1 Up and 4 SELs).

 For this problem, you are to determine the smallest number of button presses that can be used

to input a given text string. The cursor on the virtual keyboard always starts in the upper left at

‘a’. The only movements are Up, Down, Left, and Right. The SEL button must be pressed to

select a character. At the end of the string, the ‘OK’ pseudo-character must be selected. The first

line of input is the number of text strings for which you are to calculate the smallest number of

presses. Each subsequent line is a string formed from the characters shown on the keyboard.

(‘SP’ on the keyboard represents the actual space character, which may appear in the strings.)

Your program must output the smallest number of key presses for each string.

Sample Input
3

abc

ayz

deja vu

Sample Output
7

7

25

C

aaaa bbbb cccc dddd eeee ffff 1111 2222 3333

gggg hhhh iiii jjjj kkkk llll 4444 5555 6666

mmmm nnnn oooo pppp qqqq rrrr 7777 8888 9999

ssss tttt uuuu vvvv wwww xxxx @@@@ 0000

yyyy zzzz OKOKOKOK SPSPSPSP #### //// ---- ____ ,,,,

Seventeenth Annual Luks Programming Contest, 2013

THE ANSWER IS

 You work on the Watson team at IBM. After its success on the English

version of Jeopardy, your boss wants to develop other versions that can win

on foreign language versions of Jeopardy. As the most recent employee, you

are assigned to the team working on the Onami version, a recently discovered

remote language spoken in the Amazon Rain Forest. Watson works by using

an ontology to suggest possible interpretations of the question. The possible

interpretations must be validated against the language grammar before determining which

interpretation is most likely. Your unit is assigned to do this validation by taking a sequence of

parts of speech and deciding if it is a valid sentence in Onami.

The parts of speech of Onami which will appear in input are:

Nouns

nom Can be used for sentence subjects

acc Can be used for direct objects

dat Can be used for indirect objects

Verbs verb verb conjugations are handled with suffixes in Onami

Adverbs

time adverb describing when

place adverb describing where

manner adverb describing anything other than when or where

Other
conj word used to join two or more ideas (Conjunction)

adj word used to describe a noun (Adjective)

The general rules for the Onami grammar are:

1) Adverbs can go anywhere, but any time adverbs must precede any other type of adverbs, and

any place adverbs must come after any other type of adverbs within the same simple clause.

2) The verb must be in the second position in a simple clause.

3) The subject (nom) must come immediately before or immediately after the verb.

4) Direct and indirect objects (acc and dat) are optional. If both occur within a simple clause, the

indirect object must come after the direct object.

5) Adjectives (adj) must occur in front of the noun they describe with no intervening words except

other adjectives. For purposes of rules 2 and 3, adjectives don’t count as taking up a position in

the clause separate from the noun’s position

6) Each simple clause contains at most one subject, one direct object and one indirect object.

7) Subjects, direct objects or indirect objects may be a single noun, possibly preceded by adjectives,

or a conjunction-separated list of adjective-noun groups. Such a compound noun counts as only

occupying one position for purposes or rules 2 and 3.

8) Sentences in Onami can be either a simple clause as described in rules 1-7 or a conjunction-

separated list of clauses.

 The input will begin with a line with a single number 0 < n ≤ 10000. This will be followed

with n problems, each on a line by itself. Each problem will consist of one or more parts of

speech. For each problem in the input, your program should output either “accept” or “reject” on

a line by itself. Printing “accept” means the proposed assignment of parts of speech is within the

D

Seventeenth Annual Luks Programming Contest, 2013

grammar rules of Onami. Printing “reject” means the assignment of parts of speech violates the

grammar rules of Onami.

Sample Input
15

time verb nom

place verb nom

manner verb adj nom

nom verb acc

nom verb time acc

nom verb acc time

nom verb dat acc

nom verb time place

nom verb time conj place

nom verb place time

nom conj adj nom verb dat

nom verb conj verb

time time verb nom

nom verb conj nom conj nom verb

Sample Output
accept

accept

accept

accept

accept

accept

reject

accept

reject

reject

accept

reject

reject

accept

Seventeenth Annual Luks Programming Contest, 2013

POCKET ENIGMA

This problem is based on the POCKET ENIGMA, a toy that is functionally

equivalent to primitive military ciphering machines. The Pocket Enigma

consists of a fixed outer circular disk, marked with the alphabet in clockwise

order, and a replaceable inner rotor with 13 wires that pair up the letters for

encryption/decryption.

The outer disk and two examples of inner rotors are shown on the reverse. The device is shown

here with Rotor I in successive positions (see arrow) D, E.

The disk moves one notch clockwise before encrypting each letter of plaintext. Thus, with Rotor

I starting in position D, “CIS” is encrypted to “APO”.

In this problem, you are given a ciphertext (encrypted message) that used an unknown rotor but

are in possession of a “crib” (a segment of the source plaintext). Your job is to determine where

the crib appeared in the plaintext.

The first line of the input specifies the number n of ciphertexts to follow. Each of the following

n lines consists of two strings of capital letters, of maximum lengths 50 and 10, respectively,

separated by a single space:
CIPHERTEXT CRIB

The n ciphertexts would all have been created with different inner rotors, and not those shown on

the reverse.

For each input, output the number m if the crib starts at the m
th

 character, There will be always

be just one feasible position.

(Sample I/O on reverse)

E

Seventeenth Annual Luks Programming Contest, 2013

The outer disk and two possible rotors for the Pocket Enigma

Sample Input
4

AHA A

KFOP CAT

ZAORQAS DOG

VFKHEY DUCK

Sample Output

2

1

4

3

