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MAGIC MULTIPLES                                                           
 
The Elvish races of Middle Earth believed that certain 
numbers were more significant than others.  When using a 
particular quantity N of metal to forge a particular sword, 
they believed that sword would be most powerful if 
the thickness K were chosen according to the following 
rule: 
 
Given a nonnegative integer N, what is the smallest K such 
that the decimal representations of the integers in the sequence: 
 N,  2N,  3N, …, KN 
contain all ten digits (0 through 9) at least once? 
 
Lord Elrond of Rivendell has commissioned you with the task to develop 
an algorithm to find the optimal thickness (K) for any given quantity of 
metal (N). 
 
Input will consist of a single integer N per line.  The end of input will be signaled by end 
of file.  The input integer will be between 1 and 200,000,000, inclusive. 
 
The output will consist of a single integer per line, indicating the value of K needed such 
that every digit from 0 through 9 is seen at least once. 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
note: problem courtesy of the 2012 ACM Pac NW Regional Competition 

A 

Sample Input 
1 
10 
123456789 
3141592 

Sample Output 
10 
9 
3 
5 



In a Ranked Pairs voting system, each voter ranks the candidates in order according to 
the voter’s preference, so for example, a voter might fill out the ballot as on the right.  
Here, the voter indicated they would most like to see Kasich elected and least like to see 
Trump elected.  The ballots are then run through the following processes to select the 
winner: 

1. Compute the outcome of every possible race between pairs of candidates 
2. Sort pairwise races in descending order of winning margin.  For example, if the 

vote is 43% to 57%, then the winning margin is 14%, 
3. Create a digraph whose vertices are the candidate and the directed edges are from the loser to the winner 

of each pairwise match.  A pairwise tie does not create an edge.  Only add the edges that do not create a 
cycle, when considering the edges in descending order. 

4. The overall winner is the sink of the digraph (see back). 

For example, in the sample ballot, Clinton beats Cruz; 
Kasich beats Cruz; Sanders beats Cruz; Cruz beats 
Trump; Kasich beats Clinton; Sanders beats Clinton; 
Clinton beats Trump; Kasich beats Sanders; Kasich 
beats Trump; and Sanders beats Trump.  With millions 
of ballots, these would be expressed as percent of 
voters.  For example, suppose all the ballots combined 
lead to the grid of percents on the right. 

In this grid, we would read that 57% prefer Cruz to 
Clinton.  Notice that we only have to give the 
upper triangular portion, because we can infer that 
43% prefer Clinton to Cruz.  This would generate 
the digraph on the right, where the edges are 
numbered in the order in which they were 
considered.  The black edges are part of the 
digraph, but the grey edges were not added to the 
digraph because they would have created cycles.  

The first line of input will consist of a single number between 1 and 1000 indicating the number of elections that 
follow.  Each election will consist of two lines.  The first line consists of the number of candidates between 1 and 
1000 followed by a space and a space-delimited list of the candidates sirnames.  The sirnames in each election 
consist of upper and lowercase letters and are guaranteed to be unique in that election.  The second line is the 
integer percents to fill into the upper triangular matrix of pair-wise races where the names are listed along the top 
and side in the order given in the first line.  Your output should consist of one line for each election that lists the 
winner. 

 
Sample Input Sample Output 
3 
5 Cruz Clinton Kasich Sanders Trump 
57 4 61 24 5 12 58 2 23 60 
4 Larry Curly Moe Shemp 
94 32 18 76 5 87 
3 Patty Laverne Maxine 
40 87 14 

Sanders 
Moe 
Patty 

Ballot 
Clinton 3 
Cruz 4 
Kasich 1 
Sanders 2 
Trump 5 

Cruz 

Clinton 

Kasich 

Trump 

Sanders 
1 

2 

3 4 5 6 

7 

8 

9 

10 

 Cruz Clinton Kasich Sanders Trump 
Cruz — 57% 4% 61% 24% 

Clinton 43% — 5% 12% 58% 
Kasich 96% 95% — 2% 23% 
Sanders 39% 88% 98% — 60% 
Trump 76% 42% 77% 40% — 
 

B 



Ranked Pair Voting Almost  
Always Produces a Winner 

To see that a finite DAG has at least one sink, pick a random vertex.  If it is not a 
sink, then follow an edge out to a new vertex.  Continue following edges as long 
as you can.  The last vertex you visit is a sink.  Since it is a DAG, you cannot 
revisit vertices you have already visited.  Since there are only finitely many 
vertices, the process must halt. 

Since the ranked pair method creates a finite DAG, it has at least one sink.  
Suppose there are more that one sink.  Select sinks A and B.  Without loss of 
generality, assume A beats B.  Since B is a sink, there cannot be an edge from B 
to A.  Thus, at the time the edge from B to A was considered, it was disqualified 
for creating a cycle.  This means there is a path from A to B, but this means there 
must be an edge leading out of A.  This contradicts the choice of A as a sink. 

A pairwise tie may cause us not to consider the edge from B to A in the argument 
above, resulting in two sinks and therefore, no winner.  Also, ranked pair voting 
does not produce a winner if two pairwise race results are equal and adding both 
edges would create a cycle, but adding either edge alone won’t, and the choice of 
edge to delete generates a different outcome.  Either of these is less likely than a 
tie in a traditional voting system.  The test input to this problem contains no such 
situations. 

 



CHIPOTLE  [UDATED DESCRIPTION]                                                    
 
 
You are a successful executive of a tech startup, and you want to bring 
your coding team out for a nice lunch at the nearby Chipotle 
restaurant.  Because you are a great lover of efficiency, you want to 
spend all of your money and to do so in a way that maximizes the 
calorie count for your hungry programmers. 
 
For example, suppose you have $100.00 to spend, and the menu looks like the following. 
 
 
 
 
 
 
 
Then you would be able to obtain a maximum of 12800 calories and spend exactly $100.00.  Note that 
you could obtain more calories (13550) by spending less money ($99.85), but that is another question.  
Here we must spend exactly $100.00. 
 
The input will start with a number C, C ≤10, of test cases.  Each test case will start with a float T, 
T≤ 9000.00, the target amount to spend.  The next number M, M ≤�50, is the number of menu items.  
The next M lines contain a pair V W, where V ≤�20.00 is a float giving the cost of a menu item and W≤�
1000 is the calorie count of one order of that menu item.  (All floats represent dollars and cents, so there 
are only two digits to the right of the decimal.) 
 
The output should consist one integer for each test case, that being the maximum number of calories 
obtainable by spending exactly V.  If it is not possible to spend exactly V, then that line should be 0. 
 
 
 
 
 
 
 
 
 

Sample Input 
3 
100.00 
4 
1.39 150 
4.39 600 
8.99 550 
6.27 800 
1.00 
1 
1.39 150 
1.00 
1 
0.89 100 

Sample Output 
12800 
0 
0 

D 

cost cal 
$1.39   150 
$4.39   600 
$8.99   550 
$6.27   800 



FIBONACCI SMOOTHIES                                                          
 
You are surely familiar with the Fibonacci sequence:  0, 1, 1, 2, 3, 5, 8, 13, 
21, 34, 55, 89, 144, ...  

which is defined by  

F (0)=0, F (1)=1, and F (n) = F (n-1) + F (n-2) for n≥2. 
 
An alternate, non-recursive characterization, 
 

0 1
1 1

!
=  F (! − 1) F (!)

F (!) F (! + 1)     for  !! ≥ 1. 
 

may help in appreciating the exponential growth of F (n) with n.  In fact, it is not hard to show that 
F (n) ≈  τn!/ 5  where τ = ( 5 + 1)/2, the Golden Section.  So, for example, F (1015) has over 209 trillion 
digits. 
 
Fortunately, the output for this problem will not involve the full value of F (n).     
 
A concept from computational number theory: An integer is called smooth if it factors completely into 
“small” primes.  Here, we will consider only the single-digit primes 
    2,  3,  5,  and 7 
to be small.    Any integer n has a maximum smooth divisor S(n), thus the integer  n /S(n)  is not 
divisible by 2, 3, 5, or 7.  Examples: 

 S(5) = 5,   S(13) = 1,  S(34) = 2,  S(144) = 144,  S(377) = 1,  S(610) = 10. 
 
In this problem, you will be given values for n and you are to determine S (F (n)) in each case.  Even 
though F (n) grows exponentially, you may take comfort from the fact that  S (F (n)) <100 n  for all  n. 
 
The first line of the input will declare the number N  of  problem instances to be considered.  Each of the 
next N  lines will contain a positive integer  n ≤ 1015. 
 
 

E 

Sample Input 
6 
5 
7 
9 
12 
14 
15 
 
 

Sample Output 
5 
1 
2 
144 
1 
10 



DIAMONDS                                                           
 
A diamond’s overall worth is determined by its mass in carats as well 
as its overall clarity. A large diamond with many imperfections is not 
worth as much as a smaller, flawless diamond. The overall clarity of a 
diamond can be described on a scale from 0.0–10.0 adopted by the 
American Gem Society, where 0.0 represents a flawless diamond and 10.0 represents an imperfect 
diamond.  

Given a sequence of N diamonds, each with weight, wi, in carats and clarity, ci, on the scale described 
above, find the longest subsequence of diamonds for which the weight and clarity are both becoming 
strictly more favorable to a buyer.  

 
In the following sequence of diamonds,  

 

 

 

 

the longest desirable subsequence is 

 

 

 

Input begins with a line with a single integer T, 1≤ T≤100, indicating the number of test cases. Each test 
case begins with a line with a single integer N, 1≤ N≤200, indicating the number of diamonds. Next 
follow N lines with 2 real numbers wi and ci, 0.0≤ wi�ci�≤10.0, indicating the weight in carats and the 
clarity of diamond i, respectively.  

Output for each test case a single line with the length of the longest desirable subsequence of diamonds. 

 

(see over for sample data) 

 
 
 

F 

wi  ci 
1.5 9.0 
2.0 2.0 
2.5 6.0 
3.0 5.0 
4.0 2.0 
10.0 5.5 

1.5 9.0 
2.5 6.0 
3.0 5.0 
4.0 2.0 



 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

note: problem courtesy of the 2014 ACM Pac NW Regional Competition  

 
 
 
 
 
 
 
 
 
 
 
 

Sample Input 
3 
2 
1.0 1.0 
1.5 0.0 
3 
1.0 1.0 
1.0 1.0 
1.0 1.0 
6 
1.5 9.0 
2.0 2.0 
2.5 6.0 
3.0 5.0 
4.0 2.0 
10.0 5.5 

Sample Output 
2 
1 
4 


