

Twenty-first Annual
University of Oregon
Eugene Luks Programming Competition

2017 April 29, Saturday
am10:00 – pm2:00

Problem Contributors
Daniel Lowd, Eugene Luks, Chris Wilson

Technical Assistance and Organization
Lauradel Collins, Anton Matschek

HOW MANY TEAMS?

You have a new job assisting your local computer science department in
forming teams for a programming competition. Each team must be
formed as a group of three friends, and you need to write a program to
determine from a list of (pair-wise) friends how many possible teams
could be formed.

For example, if we have students numbered 1, 2, 3, and 4 and it turns out that all are friends with each
other, then there would be 4 possible teams:

The list of friends will be given as an undirected graph. There will be an edge between U and V if U
and V are mutual friends. Note that if U and V are friends, then V and U are friends (friendship goes
both ways). However, If U and V are friends, and V and W are friends, it might not be true that U and
W are friends. That would only be true if U and W are in the friendship list: that is, if (U,W) is also an
edge.

The input will start with a number C, C ≤10, of test cases. Each test case starts with two integers N and
M, on separate lines, where N≤ 100, is the number of students. The next number M, M ≤�4950, is
number of edges (friendships). The following M lines contain a pair U V, where 1 ≤�U ,V ≤�N
represents an edge.

The output should consist of one integer for each test case: the number of teams that could be formed of
three people, all pairs of whom are friends. In other words, find the number of distinct triples U V W
such that (U,V), (V,W), and (W,U) are edges. (Note that a team such as 1 3 4 is the same as 4 1 3 and
should only be counted once.)

See reverse for Sample I/O.

A

possible teams
 1 2 3
 1 2 4
 1 3 4
 2 3 4

 Sample Input
2
4
6
1 2
1 3
1 4
2 3
2 4
3 4
5
9
1 2
1 3
1 4
2 3
2 4
2 5
3 4
3 5
4 5

Sample Output
4
7

LOTH-CATTERIES

Since their domestication on Lothal by Star Wars rebels, loth-cats have
dominated the interstellar pet-trade. Pet emporiums throughout the Outer Rim
have been constructing catteries to house these adorable-but-temperamental
creatures. Loth-cattery walls must be constructed from aromatic Lothal-pine
panels which come in one-meter widths and are equipped with hinges that allow
straight extensions or right-angle turns. This enables constructions of catteries
that simulate the Loth-cats’ twisty burrows.

The specification for a cattery construction consists a sequence of panel-positions comprising the
perimeter. After a starting panel “S” a panel position is indicated by its orientation with respect to its
predecessor:

 “F” indicates continue in the same direction.
 “R” indicates turn right.
 “L” indicates turn left.

Thus, the string “SFLRLLFLRL” specifies the cattery

(In this picture, the first panel starts horizonally from the lower left.) Since animal welfare regulations
require one square meter of space per loth-cat, this cattery can accommodate 4 loth-cats.

In this problem you are asked to determine the loth-cat capacity of specified cateries.

The first line of the input will declare the number N of problem instances to be considered. Each of the
next N lines will contain a string that starts with “S” and consists otherwise of “F”s, “R”s, and “L”s.
The string will always specify the closed, non self-intersecting, perimeter of a legitimate cattery.

For each cattery, the output should indicate the log-cat capacity (that is, the area of the enclosed region).

The second and third samples are sketched on the reverse.

B

Sample Input

3
SFLRLLFLRL
SLLFFLFFFLFFLFLLRRFR
SFRLLFRLLFFFRFLLRLLRRLLRLL

Sample Output

4
9
15

SLLFFLFFFLFFLFLLRRFR

SFRLLFRLLFFFRFLLRLLRRLLRLL

S

S

CANCEL THE FEWEST TALKS

The Computer Science Department at the University of Turing has
many applications for their rare faculty positions, so the time slots to
give talks there are highly coveted. All the applicants will give a talk
on the same day in the same room, and each person’s talk has a fixed
start and finish time. Since these times may overlap, and no talks will
be allowed to occur at the same time, your job is to write a program
that will determine the fewest number of talks to cancel.

Suppose we indicate a talk’s start and finish time as a pair
(start,finish), where start and finish are integers. We allow that one talk may start immediately after one
talk ends (so the finish time of one talk can be equal to the start time of the next). For example:

• If the talks are (1,2), (3,4), (1,3), (2,3), then the answer is 1. This is because we can cancel only
(1,3) and keep (1,2), (2,3), (3,4).

• If the talks are (1,2), (1,2), (1,2), then 2 talks must be cancelled as only one talk can be given in
the (1,2) slot.

• With an input talk schedule of (3,4), (4,5), (7,9), (9,10), none have to be cancelled so the correct
output is 0.

The input will start with a number C, C ≤20, of test cases. Each test case will start with an integer N,
1≤N≤ 500, the number of talks for this case. This is followed by N lines of the form S F, where S and F
are integers, 0≤S<F≤500, with S indicating the start time of a talk and F the finish time. You may not
assume that the list of talks is sorted by either the start time S or the finish time F, but you can assume
that S is strictly earlier than F (that is, S<F).

The output needs to be a single integer R for each test case on its own line. This number R is the fewest
number of talks that will need to be removed from the schedule (cancelled) so that the remaining talks
do not overlap.

Sample Input
2
4
1 2
2 3
3 4
1 3
7
1 3
3 6
6 8
1 4
2 4
5 7
5 8

Sample Output
1
4

C

 AIRLINE REACCOMMODATION

Each group of customers who flies on Turing Airlines
(TA) (motto: "We Fly the Computable Skies!") specifies
an amount of money they would accept as compensation
for being placed on a later flight. When TA needs to make
room for crew members, it removes one or more groups of
customers, paying each group the amount of money they
specified. For example, a family of four might accept
being removed for $1200, and a sports team with 15
players might accept being removed for $3000. TA can pay the family $1200 to make room for four
crew members, pay the sports team $3000 to make room for 15 crew members, or pay them both a total
of $4200 to make room for 19 crew members. However, TA never removes a partial group.

As a staff engineer for Turing Airlines, you need to implement an algorithm to compute the lowest cost
required to remove a specified number of passengers, k. You may not remove part of a group, but you
are allowed to remove groups totaling more than k passengers as long as the cost is minimized.

For example, suppose we need to remove 2 customers and we have the following 4 groups:
 Group Size Cost to Remove

1 $100
1 $150
2 $300
3 $200

The cheapest way to remove (at least) 2 customers is to pay the last group $200.

The first line of the input is the number of test cases C (C ≤ 10), each case representing one flight. Each
test case begins with the number of passengers to remove, K (1 ≤ K ≤ 100), and the number of customer
groups, N (1 ≤ N ≤ 100). For each group of customers, a line specifies the number of customers in the
group (S ≤ 100) and the amount of money they require as compensation (M ≤ 1,000,000). All numbers
are integers.

The output should consist of one integer for each test case, specifying the minimum total cost to
reaccommodate the passengers.

Sample Input
2
2 4
1 100
1 150
2 300
3 200
3 5
1 100
1 200
1 400
2 500
3 450

Sample Output
200
450

D

PENULTIMATE PLACE

The double-exponential !!!!can represent a huge number even with modest
values of a,b,c. For example, 3!!expands to the 299-digit number in the box
to the right. Conversely, the famously-immense googol is compactly
expressed by 10!"!.

This problem will deal with such double-exponentials with a,b,c each lying
between 2 and 99. Mercifully, you will have to produce only the next-to-last digit of the expansion of
the number.

The first line of the input will declare the number N of problem instances to be considered. Each of the
next N lines will contain a triple of integers a b c separated by single spaces. The output should
indicate the next-to-last digit (i.e., the tens’ place) in the decimal expansion of !!!.

For example, since 5!! = 5! = 390625, the input “5 2 3” should yield the output “2”.

E

Sample Input

8
2 2 2
3 2 4
3 5 4
7 8 9
9 9 9
2 7 4
5 3 20
10 10 2

Sample Output

1
2
4
0
8
5
2
0

DO THE RANKINGS AGREE?

Your team has been retained by the director of a competition who
supervises a panel of judges. The competition asks the judges to assign
integer scores to competitors – the higher the score, the better. Although the
event has standards for what score values mean, each judge is likely to
interpret those standards differently. A score of 100, say, may mean
different things to different judges.

The director's main objective is to determine which competitors should
receive prizes for the top positions. Although absolute scores may differ from judge to judge, the
director realizes that relative rankings provide the needed information – if two judges rank the same
competitors first, second, third, ... then they agree on who should receive the prizes.

Your team is to write a program to assist the director by comparing the scores of pairs of judges. The
program is to read two lists of integer scores in competitor order and determine the highest ranking place
(first place being highest) at which the judges disagree.

The first line of input will be a number C, the number of competitor pairs. What follows will be a series
of C score list pairs. Each pair begins with a single integer giving the number of competitors N, 1 < N <
1,000. The next N integers are the scores from the first judge in competitor order. These are followed by
the second judge's scores – N more integers, also in competitor order. Scores are in the range 0 to
100,000 inclusive. Judges are not allowed to give ties, so each judge’s scores will be unique. Values are
separated from each other by one or more spaces.

For each score pair, print a line with the integer representing the highest-ranking place at which the
judges do not agree. If the judges agree on every place, print a line containing only the word 'agree'. Use
the format below: “Case”, one space, the case number, a colon and one space, and the answer for that
case with no trailing spaces.

Sample Input
2
4
3 8 6 2
15 37 17 3
8
80 60 40 20 10 30 50 70
160 100 120 80 20 60 90 135

Sample Output
Case 1: agree
Case 2: 3

F

