
Simon Peyton Jones (Microsoft Research)

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The quick death

G
ee

k
s

P
ra

ct
it

io
n

er
s

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The slow death

G
ee

k
s

P
ra

ct
it

io
n

er
s

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The complete
absence of death

G
ee

k
s

P
ra

ct
it

io
n

er
s Threshold of immortality

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The committee
language

G
ee

k
s

P
ra

ct
it

io
n

er
s

1,000,000

1

100

10,000

The second life?

G
ee

k
s

P
ra

ct
it

io
n

er
s

“Learning Haskell is a great way of
training yourself to think functionally

so you are ready to take full advantage
of C# 3.0 when it comes out”

(blog Apr 2007)

“I'm already looking at
coding problems and my

mental perspective is now
shifting back and forth

between purely OO and more
FP styled solutions”

(blog Mar 2007)

1990 1995 2000 2005 2010

langpop.com
langpop.com Aug

2013

langpop.com Aug 2013

Ideas
• Purely functional (immutable values)
• Controlling effects (monads)
• Laziness
• Concurrency and parallelism
• Domain specific embedded languages
• Crazy type laboratory

filter :: (a->Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

 | p x = x : filter p xs

 | otherwise = filter p xs

Type signature
(optional)

Polymorphism
(works for any

type a)

Higher order

filter :: (a->Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

 | p x = x : filter p xs

 | otherwise = filter p xs

Type signature
Polymorphism
(works for any

type a)

Higher order

Functions defined
by pattern
matching

Guards
distinguish
sub-cases

f x y
 rather than

f(x,y)

filter :: (a->Bool) -> [a] -> [a]

filter p [] = []

filter p (x:xs)

 | p x = x : filter p xs

 | otherwise = filter p xs

data Bool = False | True

data [a] = [] | a:[a]

Type signature
Polymorphism
(works for any

type a)

Higher order

Declare new data
types

member :: a -> [a] -> Bool

member x [] = False

member x (y:ys) | x==y = True

 | otherwise = member x ys

Test for equality

 Can this really work FOR ANY type a?

 E.g. what about functions?

member negate [increment, \x.0-x, negate]

 Similar problems
 sort :: [a] -> [a]

 (+) :: a -> a -> a

 show :: a -> String

 serialise :: a -> BitString

 hash :: a -> Int

 Local choice
 Write (a + b) to mean (a `plusFloat` b) or

(a `plusInt` b) depending on type of a,b

 Loss of abstraction; eg member is monomorphic

 Provide equality, serialisation for everything,
with runtime error for (say) functions
 Not extensible: just a baked-in solution for

certain baked-in functions

 Run-time errors

Similarly:

square :: Num a => a -> a

square x = x*x

Works for any type „a‟,
provided ‘a’ is an

instance of class Num

sort :: Ord a => [a] -> [a]

serialise :: Show a => a -> String

member :: Eq a => a -> [a] -> Bool

square :: Num n => n -> n

square x = x*x

class Num a where

 (+) :: a -> a -> a

 (*) :: a -> a -> a

 negate :: a -> a

 ...etc..

FORGET all
you know
about OO
classes!

The class
declaration says
what the Num
operations are

Works for any type „n‟
that supports the
Num operations

instance Num Int where

 a + b = plusInt a b

 a * b = mulInt a b

 negate a = negInt a

 ...etc..

An instance
declaration for a

type T says how the
Num operations are
implemented on T‟s

plusInt :: Int -> Int -> Int

mulInt :: Int -> Int -> Int

etc, defined as primitives

square :: Num n => n -> n

square x = x*x

square :: Num n -> n -> n

square d x = (*) d x x

The “Num n =>” turns into an
extra value argument to the

function.
It is a value of data type Num n

When you write this... ...the compiler generates this

A value of type (Num T) is a
vector (vtable) of the Num

operations for type T

square :: Num n => n -> n

square x = x*x

class Num a where

 (+) :: a -> a -> a

 (*) :: a -> a -> a

 negate :: a -> a

 ...etc..

The class decl translates to:
• A data type decl for Num
• A selector function for

each class operation

square :: Num n -> n -> n

square d x = (*) d x x

When you write this... ...the compiler generates this

data Num a

 = MkNum (a->a->a)

 (a->a->a)

 (a->a)

 ...etc...

(*) :: Num a -> a -> a -> a

(*) (MkNum _ m _ ...) = m

A value of type (Num T) is a
vector of the Num operations for

type T

dNumInt :: Num Int

dNumInt = MkNum plusInt

 mulInt

 negInt

 ...

square :: Num n => n -> n

square x = x*x

An instance decl for type T
translates to a value

declaration for the Num
dictionary for T

square :: Num n -> n -> n

square d x = (*) d x x

When you write this... ...the compiler generates this

A value of type (Num T) is a
vector of the Num operations for

type T

instance Num Int where

 a + b = plusInt a b

 a * b = mulInt a b

 negate a = negInt a

 ...etc..

dNumInt :: Num Int

dNumInt = MkNum plusInt

 mulInt

 negInt

 ...

f :: Int -> Int

f x = negate (square x)

An instance decl for type T
translates to a value

declaration for the Num
dictionary for T

f :: Int -> Int

f x = negate dNumInt

 (square dNumInt x)

When you write this... ...the compiler generates this

A value of type (Num T) is a
vector of the Num operations for

type T

instance Num Int where

 a + b = plusInt a b

 a * b = mulInt a b

 negate a = negInt a

 ...etc..

sumSq :: Num n => n -> n -> n

sumSq x y = square x + square y

sumSq :: Num n -> n -> n -> n

sumSq d x y = (+) d (square d x)

 (square d y)

Pass on d to square Extract addition
operation from d

 You can build big overloaded functions by
calling smaller overloaded functions

class Eq a where

 (==) :: a -> a -> Bool

instance Eq a => Eq [a] where

 (==) [] [] = True

 (==) (x:xs) (y:ys) = x==y && xs == ys

 (==) _ _ = False

data Eq = MkEq (a->a->Bool)

(==) (MkEq eq) = eq

dEqList :: Eq a -> Eq [a]

dEqList d = MkEq eql

 where

 eql [] [] = True

 eql (x:xs) (y:ys) = (==) d x y && eql xs ys

 eql _ _ = False

 You can build big instances by building on
smaller instances

class Num a where

 (+) :: a -> a -> a

 (-) :: a -> a -> a

 fromInteger :: Integer -> a

inc :: Num a => a -> a

inc x = x + 1

Even literals are
overloaded

“1” means
“fromInteger 1”

inc :: Num a -> a -> a

inc d x = (+) d x (fromInteger d 1)

 Equality, ordering, serialisation

 Numerical operations. Even numeric constants
are overloaded

 Monadic operations

 And on and on....time-varying
values, pretty-printing, collections,
reflection, generic programming,
marshalling, monad transformers....

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

Note the
higher-kinded

type variable, m

Quickcheck (which is just a Haskell 98 library)
 Works out how many arguments
 Generates suitable

 test data
 Runs tests

propRev :: [Int] -> Bool

propRev xs = reverse (reverse xs) == xs

propRevApp :: [Int] -> [Int] -> Bool

propRevApp xs ys = reverse (xs++ys) ==

 reverse ys ++ reverse xs

ghci> quickCheck propRev

OK: passed 100 tests

ghci> quickCheck propRevApp

OK: passed 100 tests

quickCheck :: Testable a => a -> IO ()

class Testable a where

 test :: a -> RandSupply -> Bool

class Arbitrary a where

 arby :: RandSupply -> a

instance Testable Bool where

 test b r = b

instance (Arbitrary a, Testable b)

 => Testable (a->b) where

 test f r = test (f (arby r1)) r2

 where (r1,r2) = split r

split :: RandSupply -> (RandSupply, RandSupply)

test propRev r

= test (propRev (arby r1)) r2

where (r1,r2) = split r

= propRev (arby r1)

propRev :: [Int] -> Bool

Using instance for (->)

Using instance for Bool

 Type classes are the most unusual feature of
Haskell‟s type system

1987 1989 1993 1997

Implementation begins

Despair Hack,
hack,
hack

Hey, what’s
the big deal?

Incomprehension

Wild enthusiasm

Wadler/
Blott
type

classes
(1989)

Multi-
parameter

type classes
(1991) Functional

dependencies
(2000)

Higher kinded
type variables

(1995)

Associated
types (2005)

Implicit
parameters (2000)

Generic
programming

Testing

Extensible
records (1996) Computation

at the type
level

“newtype
deriving”

Derivable
type classes

Overlapping
instances

Variations

Applications

Type classes
and

object-oriented programming

1. Haskell “class” ~ OO “interface”

A Haskell class is more like a Java interface
than a Java class: it says what operations
the type must support.

class Show a where

 show :: a -> String

f :: Show a => a -> ...

interface Showable {

 String show();

}

class Blah {

 f(Showable x) {

 ...x.show()...

} }

 No problem with multiple constraints:

 Existing types can retroactively be made instances
of new type classes (e.g. introduce new Wibble
class, make existing types an instance of it)

f :: (Num a, Show a)

=> a -> ...

class Blah {

 f(??? x) {

 ...x.show()...

} }

class Wibble a where

 wib :: a -> Bool

instance Wibble Int where

 wib n = n+1

interface Wibble {

 bool wib()

}

...does Int support

Wibble?....

Type classes
and

object-oriented programming

1. Haskell “class” ~ OO “interface”

2. Type-based dispatch, not value-
based dispatch

 A bit like OOP, except that method suite
(vtable) is passed separately?

 No!! Type classes implement type-based
dispatch, not value-based dispatch

class Show where

 show :: a -> String

f :: Show a => a ->

...

 The overloaded value is returned by read2,
not passed to it.

 It is the dictionaries (and type) that are
passed as argument to read2

class Read a where

 read :: String -> a

class Num a where

 negate :: a -> a

 fromInteger :: Integer -> a

read2 :: (Read a, Num a) => String -> a
read2 s = negate (read s)

read2 dr dn s = negate dn (read dr s)

So the links to intensional polymorphism are
closer than the links to OOP.

The dictionary is like a proxy for the
(interesting aspects of) the type argument of a
polymorphic function.

 f :: forall a. a -> Int
f t (x::t) = ...typecase t...

f :: forall a. C a => a -> Int
f x = ...(call method of C)...

Intensional
polymorphism

Haskell

 e.g. typeRep “foo” = TR “List” [TR “Char” []]

class Typeable a where
 typeRep :: a -> TypeRep

data TypeRep = TR String [TypeRep]

instance Typeable Int where
 typeRep _ = TR “Int” []

instance Typeable a => Typeable [a] where
 typeRep (x:xs) = TR “List” [typeRep x]
 -- ???

Not really a
string, of

course

 e.g. typeRep “foo” = TR “List” [TR “Char” []]

class Typeable a where
 typeRep :: a -> TypeRep

data TypeRep = TR String [TypeRep]

instance Typeable Int where
 typeRep _ = TR “Int” []

instance Typeable a => Typeable [a] where
 typeRep _ = TR “List”
 [typeRep (undefined :: a)]

The value argument is never looked at;
it plays the role of a type argument

Hence is
fine

Type classes
and

object-oriented programming

1. Haskell “class” ~ OO “interface”

2. Type-based dispatch, not value-
based dispatch

3. Generics (i.e. parametric
polymorphism) , not subtyping

 Polymorphism: same code works on a variety
of different argument types

cost :: Car -> Int

cost works on Fords, Renaults...
rev :: [a] -> [a]

rev works on [Int], [Char],...

OO culture ML culture

 Haskell has no sub-typing

 Ability to act on argument of various types
achieved via type classes:

data Tree = Leaf | Branch Tree Tree

f :: Tree -> Int

f t = ...

f‟s argument must
be (exactly) a Tree

square :: (Num a) => a -> a
square x = x*x

Works for any
type supporting

the Num
interface

 Means that in Haskell you must anticipate
the need to act on arguments of various
types

(in OO you can retroactively sub-class Tree)

f :: Tree -> Int

 vs

f’ :: Treelike a => a -> Int

 Type annotations:
 Implicit = the type of a fresh binder is inferred

 Explicit = each binder is given a type at its binding
site

 Cultural heritage:
 Haskell: everything implicit

 type annotations occasionally needed

 Java: everything explicit;
 type inference occasionally possible

void f(int x) { ... }

f x = ...

 Type annotations:
 Implicit = the type of a fresh binder is inferred

 Explicit = each binder is given a type at its binding
site

 Reason:
 Generics alone => type engine generates equality

constraints, which it can solve

 Subtyping => type engine generates subtyping
constraints, which it cannot solve (uniquely)

void f(int x) { ... }

f x = ...

 In Java (ish):

 In Haskell:

 Compare...

INum inc(INum x)

Result: will
support INum

Argument: must
support INum

inc :: Num a => a -> a

Result has
precisely same

type as argument

x::Float

...(inc x)...

x::Float

...(x.inc)...

INum Float

 In practice, because many operations work by
side effect, result contra-variance doesn‟t
matter too much

 In a purely-functional world, where setColour,
setPosition return a new x, result contra-
variance might be much more important

 F#‟s immutable libraries don‟t use subclassing
(binary methods big issue here too; eg set union)

x.setColour(Blue);

x.setPosition(3,4);

None of this
changes x‟s type

 Java and C# both (now) support constrained
generics

 Very like

 (but little used in practice, I believe)

A inc<A>(A x)

 where A:INum {

 ...blah...

}

inc :: Num a => a -> a

 Why? So that this works

 Button is a subtype of Control, so

 IEnumerator<Button> is a subtype of IEnumerator<Control>

interface IEnumerator<out T> {

 T Current;

 bool MoveNext();

}

m(IEnumerator<Control>)

IEnumerator<Button> b

...m(b)...

Legal iff T
is only

returned
by

methods,
but not

passed to a
method,
nor side-
effected

 OOP: must embrace variance
 Side effects => invariance

 Generics: type parameters are co/contra/invariant
(Java wildcards, C#4.0 variance annotations)

 Interaction with higher kinds?

 (Only Scala can do this, and it‟s very tricky!)

 Variance simply does not arise in Haskell.

 And we need constrained polymorphism anyway!

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

 Each approach has been elaborated considerably over
the last decade

 What differences remain?

 Can one develop a unified story?

Add type classes ,
type families,
existentials

Add
interfaces,
generics,
constrained
generics

 Parametric polymorphism and subtyping both
address polymorphism

 Subtyping alone definitely isn‟t enough

 Having both is Jolly Complicated (honourable
mention for Scala).

 Having all of both is infeasible (higher kinds,
kind polymorphism, ...)

 Parametric polymorphism alone seems pretty
close to “enough”

In a language with
• Generics
• Constrained polymorphism

do you (really) need subtyping too?

James Gosling: What would you take out? What would
you put in? To the first, James evoked laughter with the
single word: Classes. He would like to replace classes
with delegation since doing delegation right would
make inheritance go away.
http://www.newt.com/wohler/articles/james-gosling-ramblings-1.html

