Type directed compilation in the wild GHC and System FC

> Simon Peyton Jones Microsoft Research June 2013

GHC Haskell A rich language

GHC Haskell A very complicated and ill-defined language, with a long user manual, that almost no one understands completely

GHC is big and old

Module	Lines (1992)	Lines (2011)	Increase
Compiler			
Main	997	11,150	11.2
Parser	1,055	4,098	3.9
Renamer	2,828	4,630	1.6
Type checking	3,352	24,097	7.2
Desugaring	1,381	7,091	5.1
Core tranformations	1,631	9,480	5.8
STG transformations	814	840	1
Data-Parallel Haskell		3,718	
Code generation	2913	11,003	3.8
Native code generation		14,138	
LLVM code generation		2,266	
GHCi		7,474	
Haskell abstract syntax	2,546	3,700	1.5
Core language	1,075	4,798	4.5
STG language	517	693	1.3
C (was Abstract C)	1,416	7,591	5.4
Identifier representations	1,831	3,120	1.7
Type representations	1,628	3,808	2.3
Prelude definitions	3,111	2,692	0.9
Utilities	1,989	7,878	3.96
Profiling	191	367	1.92
Compiler Total	28,275	139,955	4.9
Runtime System			
All C and C code	43,865	48,450	1.10

Figure 1: Lines of code in GHC, past and present

	Module	Lines (1992)	Lines (2011)	Increase
	Compiler			
	Main	997	11,150	11.2
	Parser	1,055	4,098	3.9
	Renamer	2,828	4,630	1.6
	Type checking	3,352	24,097	7.2
	Desugaring	1,381	7,091	5.1
•	Core tranformations	1.621		
	STG transform			
		- atio	n	
		25110		
	Qu.			
00	~			
~ -5				
0100				\sim
allu		stall	SUN	e:
	bow TO	SIUY	50	
1 1			,	2.3
		3,111	2,692	0.9
	o unicies	1,989	7,878	3.96
	Profiling	191	367	1.92
	Compiler Total	28,275	139,955	4.9
	Runtime System			
	All C and C code	43,865	48,450	1.10

Figure 1: Lines of code in GHC, past and present

How GHC works

ypecheck

Desugar

Source language

Typed intermediate language

> Core 3 types, 15 constructors

> > Rest of GHC

Haskell Massive language Hundreds of pages of user manual Syntax has dozens of data types 100+ constructors

A typed intermediate language

Haskell	Core (the typed IL)
Big	Small
Implicitly typed	Explicitly typed
Binders typically un-annotated \x. x && y	Every binder is type-annotated \(x:Bool). x && y
Type inference (complex, slow)	Type checking (simple, fast)
Complicated to specify just which programs will type-check	Very simple to specify just which programs are type-correct
Ad-hoc restrictions to make inference feasible	Very expressive indeed; simple, uniform

A typed intermediate language: why?

- 1. Small IL means that analysis, optimisation, and code generation, handle only a small language.
- 2. Type checker ("Lint") for Core is a very powerful internal consistency check on most of the compiler
 - Desugarer must produce well-typed Core
 - Optimisation passes must transform well-typed Core to well-typed Core
- 3. Design of Core is a powerful sanity check on crazy type-system extensions to source language. If you can desugar it into Core, it must be sound; if not, think again.

A typed intermediate language

WHAT SHOULD CORE BE LIKE?

What should Core be like?

- Start with lambda calculus. From "Lambda the Ultimate X" papers we know that lambda is super-powerful.
- But we need a TYPED lambda calculus
- Idea:
 - start with lambda calculus
 - sprinkle type annotations
- But:
 - Don't want to be buried in type annotations
 - Types change as you optimise

Example

- compose :: (b->c) -> (a->b) -> a -> c compose = $\lambda f:b$ ->c. $\lambda g:a$ ->b. $\lambda x:a$. let tmp:b = g x in f tmp
- Idea: put type annotations on each binder (lambda, let), but nowhere else
- But: where is 'a' bound?
- And: unstable under transformation...

Example

compose :: (b->c) -> (a->b) -> a -> c compose = $\lambda f:b->c$. $\lambda g:a->b$. $\lambda x:a$. let tmp:b = g x in f tmp

> neg :: Int -> Int isPos :: Int -> Bool

compose isPos neg
= (inline compose:
 f=isPos, g=neg)
 λx:a. let tmp:b = neg x
 in isPos tmp

Now the type annotations are wrong
 Solution: learn from Girard and Reynolds!

System F

compose ::
$$\forall abc. (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$$

compose = $\Lambda abc. \lambda f: b \rightarrow c. \lambda g: a \rightarrow b. \lambda x: a.$
let tmp: b = g x
in f tmp

 Idea: an explicit (big) lambda binds type variables

System F

compose :: $\forall abc. (b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow a \rightarrow c$ compose = $\Lambda abc. \lambda f: b \rightarrow c. \lambda g: a \rightarrow b. \lambda x: a.$ let tmp: b = g x in f tmp

compose Int Int Bool isPos neg

= (inline compose: a=Int, b=Int, c=Bool, f=isPos, g=neg) λx:Int. let tmp:Int = neg x in isPos tmp

- Big lambdas are applied to types, just as little lambdas are applied to values
- Now the types stay correct!

The real "System F"

- In GHC, the IL is like what we've seen but we add:
 - Algebraic data type declarations

data Maybe a = Nothing | Just a

Data constructors in terms

 $\lambda x: Int. Just (Just x)$

Case expressions

case x of { Nothing -> 0; Just x -> x+1 }

Let expressions

let
$$x:Int = 4$$
 in $x+x$

Existentials

We say that 'b' is an existential variable of T1

'b' as well as the term

variables 'y' and 'g'

System F is GHC's intermediate language e ::= x | k $e_1 e_2 = \lambda(\mathbf{x}:\tau).e$ |еτ | Λ(а:к).е let bind in e $| case e of \{ alt_1 .. alt_n \}$ bind ::= x:τ=e $| \operatorname{rec} \{ x_1 : \tau_1 = e_1 \dots x_n : \tau_n = e_n \}$ alt := C $(x_1:\tau_1)$.. $(x_n:\tau_n) \rightarrow e \mid DEFAULT \rightarrow e$

Core: GHC's intermediate language

data Expr	
= Var	Var
Lit	Literal
App	Expr Expr
Lam	Var Expr Both term and type lambda
Let	Bind Expr
Case	<pre>Expr Var Type [(AltCon, [Var], Expr)]</pre>
Type	Type Used for type application
data Var = Ic Ty	l Name Type Term variable Var Name Kind Type variable
• ·	
data Type = 1	YVarTy Var
data Type = 1 I	TyVarTy Var LitTy TyLit
data Type = 1 I <i>I</i>	TyVarTy Var LitTy TyLit AppTy Type Type
data Type = 1 I <i>I</i> 1	TyVarTy Var LitTy TyLit AppTy Type Type TyConApp TyCon [Type]
data Type = 1 I <i>I</i> 1 1	TyVarTy Var LitTy TyLit AppTy Type Type YConApp TyCon [Type] YunTy Type Type Not really necy

Core: GHC's intermediate language

What's good about System F

In our presentation of System F, each variable occurrence is annotated with its type.

Hence every term has a unique type

exprType :: Expr -> Type exprType (Var v) = varType v exprType (Lam v a) = Arrow (varType v) (exprType a) ...more equations...

exprType is pure; needs no "Gamma" argument

Sharing of the Var means that the apparent duplication is not real

What's good about System F?

 Type checking (Lint) is fast and easy, because the rules are syntax-directed

The syntax of a term encodes its typing derivation

Story so far

Robust to transformations (ie if the term is well typed, then the transformed term is well typed):

- beta reduction
- inlining
- floating lets outward or inward
- case simplification
- Simple, pure exprType :: Expr -> Type
- Type checking (Lint) is easy and fast

ADDING GADTS

GADTs in Core?

T1 :: $\forall a$. (a~Bool) -> Bool -> T a

Evidence

T1 :: $\forall a$. (a~Bool) -> Bool -> T a

- Any application of T1 must supply evidence T1 σ e1 e2 where e1 : (σ ~Bool), e2 : Bool
- Here e1 is a value that denotes evidence that σ =Bool

And any pattern match on T1 gives access to evidence
 case s of { T1 (c:σ~Bool) (y:Bool) -> ... }
 where s : Tσ

System FC

e ::= x | k $|e_1e_2| \lambda(x:\tau).e$ $|e\tau| \Lambda(a:\kappa).e$ |let bind in e $|case e of { alt_1 .. alt_n }$ $|e\gamma| \lambda(c:\tau_1 \sim \tau_2).e$ $|e \triangleright \gamma|$ A coercion γ:τ₁~τ₂ is evidence that t1 and t2 are equivalent

> Coercion abstraction and application

Type-safe cast If $e:\tau$ and $\gamma: \tau \sim \sigma$, then ($e \triangleright \gamma$) : σ

The syntax of a term (again) encodes its typing derivation

Modifications to Core

= Var Var Lit Literal	
Lit Literal	
App Expr Expr	
Lam Var Expr	
Let Bind Expr	
Case Expr Var Type [(AltCon, [Var], Expr)]
Туре Туре	
Coercion Coercion Used for coercion apps	
Cast Expr Coercion Type-safe cast	
data Var = Id Name Type Term variable	
TyVar Name Kind Type variable	
CoVar Name Type Type Coercion var	

Evidence terms

T1 :: $\forall a$. (a~Bool) -> Bool -> T a

- Consider the call: T1 Bool <Bool> True : T Bool
- Here $\langle Bool \rangle$: Bool ~ Bool γ ::= $\langle \tau \rangle$ | ...
- Can I call T1 Char γ True : T Char?
- No: that would need (γ : Char ~ Bool) and there are no such terms γ

Composing evidence terms

data T a where T1 :: Bool -> T Bool T2 :: T a g :: T a -> Maybe a $g = \Lambda a. \lambda(x:T a).$ case x of T1 (c:a~Bool) (z:Bool) $-> Just a (z \triangleright sym c)$ T2 -> Nothing

$$\gamma ::= \langle \tau \rangle | sym \gamma | ...$$
If $\gamma : \tau \sim \sigma$ then $sym \gamma : \sigma \sim \tau$

Composing evidence terms

$$\gamma ::= \langle \tau \rangle | \operatorname{sym} \gamma | T \gamma_1 \dots \gamma_n | \dots$$

$$If \gamma_i : \tau_i \sim \sigma_i$$

$$\operatorname{then} T \gamma_1 \dots \gamma_n : T \tau_1 \dots \tau_n \sim T \sigma_1 \dots \sigma_n$$

Evidence terms

Coercion values

 γ, δ

=	x
	$C \overline{\gamma}$
	$\gamma_1 \gamma_2$
	$\langle \varphi \rangle$
	$\gamma_1;\gamma_2$
	$sym\gamma$
	$nth \ k \ \gamma$
	$\forall a:\eta.\gamma$
	$\gamma@arphi$

Variables Axiom application Application Reflexivity Transitivity Symmetry Injectivity Polymorphic coercion Instantiation

- Coercions are computationally irrelevant
- Coercion abstractions, applications, and casts are erased at runtime

Bottom line

- Just like type abstraction/application, evidence abstraction/application provides a simple, elegant, consistent way to
 - express programs that use local type equalities
 - in a way that is fully robust to program transformation
 - and can be typechecked in an absolutely straightforward way
- Cost model: coercion abstractions, applications, and casts are erased at runtime

AXIOMS

Haskell newtype Age = MkAge Int

bumpAge :: Age -> Int -> Age bumpAge (MkAge a) n = MkAge (a+n)

- No danger of confusing Age with Int
- Type abstraction by limiting visibility of MkAge
- Cost model: Age and Int are represented the same way

In Core?

newtype Age = MkAge Int

bumpAge :: Age -> Int -> Age bumpAge (MkAge a) n = MkAge (a+n)

axiom ageInt :: Age ~ Int

- Newtype constructor/pattern matching turn into casts
- (New) Top-level axiom for equivalence between Age and Int
- Everything else as before

Parameterised newtypes

type GenericQ r = GQ (forall a. Data a => a -> r)

axiom axGQ r :: GenericQ r ~ \forall a. Data a => a -> r

Axioms can be parameterised, of course
No problem with having a polytype in s~t

type instance Add Z b = b
type instance Add (S a) b = S (Add a b)

axiom axAdd1 b :: Add Z b ~ b axiom axAdd2 a b :: Add (S a) b ~ S (Add a b)

More about this on Saturday

OPTIMISING EVIDENCE

Another worry

 $(\lambda (x:Int).x)$ 3 ==> 3 -- Beta reduction

 $(\lambda (x:Int).x) \triangleright g) (3 \triangleright sym ageInt) ==> ???$ where g :: (Int->Int) ~ (Age->Int)

- We do not want casts to interfere with optimisation
- And the very same issue comes up when proving the progress lemma

Decomposing

$$g :: (\sigma_1 \rightarrow \sigma_2) \sim (\tau_1 \rightarrow \tau_2)$$

 $nth[1] g :: \sigma_1 \sim \tau_1$
 $nth[2] g :: \sigma_2 \sim \tau_2$
 $F \vdash^{co} \gamma : H \overline{\sigma} \sim_{\#} H \overline{\tau}$
 $\Gamma \vdash^{co} nth k \gamma : \sigma_k \sim_{\#} \tau_k$

 $(e_1 \triangleright g) e_2$ ==> $(e_1 (e_2 \triangleright sym (nth[1] g)) \triangleright nth[2] g$

Push the cast out of the way

- Something similar for (case (K e) \triangleright g of ...)
- NB: consistency needed for progress lemma

A worry

- All this pushing around just makes the coercions bigger! Compiler gets slower, debugging the compiler gets harder.
- Solution: rewrite the coercions to simpler form

A worry

```
Assume g :: (Int->Int)~(Age->Int) = sym ageInt -> <Int>
```

More simplifications

sym (sym g) = g
e ▷ g1 ▷ g2 = e ▷ (g1;g2)
e ▷ <t> = e

A worry

Assume g :: (Int->Int)~(Age->Int) = sym ageInt -> <Int>

A worry (fixed)

```
Assume g :: (Int->Int)~(Age->Int) = sym ageInt -> <Int>
```

```
(\lambda(x:Int).x) (3 \triangleright (sym ageInt ; ageInt))
```

 $(\lambda(\mathbf{x}:Int).\mathbf{x})$ 3 -- Hurrah

==>

- See paper in proceedings for a terminating (albeit not confluent) rewrite system to optimise coercions
- Lack of confluence doesn't matter; it's just to keep the compiler from running out of space/time

CONSISTENCY

A worry

What if you have stupid top-level axioms?

axiom bogus :: Int ~ Bool

- Then "well typed programs don't go wrong" would be out of the window
- Standard solution: insist that the axioms are consistent:

Consistency

If g : $T_1 \tau_1 \sim T_2 \tau_2$, where T_1 , T_2 are data types, then $T_1=T_2$

But how to guarantee consistency of axioms? Hard to check, so instead guarantee by construction.

Guaranteeing consistency

Consistency If $g: T_1 \tau_1 \sim T_2 \tau_2$, where T_1, T_2 are data types, then $T_1=T_2$

Axioms in Core are not freely written by user; they are generated from Haskell source code

e.g. Newtypes: the axioms are never inconsistent

newt	ype	Age	= 1	MkAge	e :	Int	
→	axi	.om a	lge]	Int :	::	Age ~	~ Int
		Age	is	not	а	data	type

Guaranteeing consistency

Consistency If $g: T_1 \tau_1 \sim T_2 \tau_2$, where T_1, T_2 are data types, then $T_1=T_2$

What about type functions?

type instance F Int y = Bool
type instance F x Int = Char

 These generate axioms that would allow us to prove
 Bool ~ F Int Int ~ Char

- Obvious solution: prohibit overlap.
- Two equations overlap if their LHSs unify.

Guaranteeing consistency

Consistency If $g: T_1 \tau_1 \sim T_2 \tau_2$, where T_1, T_2 are data types, then $T_1=T_2$

What about type functions?

type instance F Int y = Bool
type instance F x Int = Char

 These generate axioms that would allow us to prove Bool ~ F Int Int
 Obvious solur, Wrong verlap.

Two equations overlap it menu LHSs unify.

Overlap is tricky

type instance Loop = [Loop] -- (A)

type instance F a a= Bool-- (B)type instance F b [b]= Char-- (C)

The LHSs of the F equations don't unify

Eeek! The combination of non-left-linear LHSs and non-termination type families is tricky. Very tricky. Actually very tricky indeed.

Conjecture

- All is well if replace "unify" by "unify_w".
 Roughly, unify allowing infinite types in the solving substitution.
- Then unify_∞((a,a),(b,[b])) succeeds, and hence these two equations overlap, and are rejected

type instance	F	a	a	=	Bool	(B)
type instance	F	b	[b]	=	Char	(C)

Conjecture If all the LHSs of axioms don't overlap using unify_∞, then the axioms are consistent.

- We think it's true
- GHC uses this criterion
- But we have not been able to prove it
- Obvious approach: treat axioms as left-to-right rewrite rules, and prove confluence
- Alas: if rules are (a) non-left-linear and (b) nonterminating, confluence doesn't hold!

Confluence does not hold [Klopp]

type instance A = C Atype instance C x = D x (C x)type instance D x x = Int

(1) $A \rightarrow C A \rightarrow D A$ (C A) $\rightarrow D$ (C A) (C A) \rightarrow Int (2) $A \rightarrow C A \rightarrow C$ Int

But C Int does not reduce to Int!

Notice that this counter-example depends on

- non-linear left-hand sides
- non-terminating rewrite rules

Coercing newtypes

data Maybe a = Nothing | Just a

newtype Age = Int -- axAge :: Age ~ Int

Confluence does not hold [Klopp]

newtype Age = Int -- axAge :: Age ~ Int

```
type family F a :: *
type instance F Age = Bool -- axF1 :: F Age ~ Bool
type instance F Int = Char -- asF2 :: F Int ~ Char
```

data T a = MkT (F a)

f :: T Age \rightarrow T Int f xs = xs \triangleright T axAge

Confluence does not hold [Klopp]

newtype Age = Int -- axAge :: Age ~ Int

```
type family F a :: *
type instance F Age = Bool -- axF1 :: F Age ~ Bool
type instance F Int = Char -- asF2 :: F Int ~ Char
```

data T a = MkT (F a)

f :: T Age \rightarrow T Int f xs = xs \triangleright T axAge

bad :: Bool -> Char bad b = case y of { MkT fi -> fi ▷ axF2 } where x :: T Age = MkT (b ▷ sym axF1)) y :: T Int = f x

Key ideas [POPL11]

newtype Age = Int	axAge :: Age ~ _R Int
type instance F Age = Bool	axF1 :: F Age ~ _N Bool
type instance F Int = Char	asF2 :: F Int <mark>~_N</mark> Char

- Two different equalities:
 - representational equality (R)
 - nominal equality (N)
- Nominal implies representational, but vice versa; nominal makes more distinctions
- Cast (e \triangleright g) takes a representational equality

Key ideas [POPL11]

data Maybe a = Nothing | Just a data W a = MkT (F a) data K a = MkP Int

Three different argument "roles" for type constructors:

- Maybe uses its argument parametrically (role R)
- W dispatches on its argument (role N)
- K ignores its argument (role P)
- To get (T s \sim_N T t), we need (s \sim_N t)
- To get (Ts \sim_R Tt), we need
 - s ~_R t for T=Maybe
 - s ~_Nt for T=W
 - nothing for T=K

WRAP UP

Wrap up

Many more aspects not covered in this talk

 "Closed" type families with non-linear patterns, and proving consistency thereof

> type family Eq a b where Eq a a = True Eq a b = False

POPL submission

- Heterogeneous equalities; coercions at the type level
- A more complicated and interesting design space than we had at first imagined

Wrap up

- Main "new" idea: programs manipulate evidence along with types and values
- This single idea in Core explains multiple sourcelanguage concepts:
 - GADTs
 - Newtypes
 - Type and data families (both open and closed)
- Typed evidence-manipulating calculi perhaps worthy of more study
 - E.g. McBride/Gundry: lambda-cube-like idea applied to types/terms/evidence
 - Open problems of establishing consistent axiom sets (e.g. non-linear patterns + non-terminating functions... help!)