FUN WITH
TYPE FUNCTIONS

Simon Peyton Jones (Microsoft Research)
Chung-Chieh Shan (Rutgers University)

Oleg Kiselyov (Fleet Numerical Meteorology and
Oceanography Center)

Class decl gives type

signature of each Type CIQSSZS

method

class Num a where
(+), (*) :: a -> a -> a
negate 1 a -> a

Instance decl gives a square :: Num a => a -> a
witness"” for each square x = x*x

method, matching the

sighature
instance Num Int where

(+) = plusInt
(*) mulInt
negate neglInt

test = square 4 + 5

Generalising Num

class GNum a b where
(+) :: a -> b -> ?2?2?

instance GNum Int Int where
(+) x y = plusInt x y

instance GNum Int Float where
(+) x y = plusFloat (intToFloat x) y

testl (4::Int) + (5::Int)
test2 (4::Int) + (5::Float)

Allowing more good
programs

Generalising Num

class GNum a b where

(+) :: a -=> b -> ?272°?

= Result type of (+) is a function of the

argumem' Types SumTy is an

associated type of
class GNum a b where class GNum

type SumTy a b :: *
(+) :: a -=> b -> SumTy a b

= Each method gets a type signature

= Each associated type gets a kind signature

Generalising Num

class GNum a b where

type SumTy a b :: *
(+) :: a -=> b -> SumTy a b

= Each instance declaration gives a "witness”
for SumTy, matching the kind signhature

instance GNum Int Int where
type SumTy Int Int = Int
(+) x y = plusInt x y

instance GNum Int Float where
type SumTy Int Float = Float
(+) x y = plusFloat (intToFloat x) y

Type functions

class GNum a b where
type SumTy a b ::
instance GNum Int Int where

*

type SumTy Int Int = Int ::
instance GNum Int Float where
type SumTy Int Float = Float

= SumTy is a type-level function

= The type checker simply rewrites
= SumTy Int Int --> Int
= SumTy Int Float --> Float
whenever it can

= But (SumTy t112) is still a perfectly good type,
even if it can't be rewritten. For example:

data T a b = MKkT a b (SumTy a b)

Eliminate bad programs

= Simply omit instances for incompatible types

newtype Dollars = MkD Int

instance GNum Dollars Dollars where
type SumTy Dollars Dollars = Dollars
(+) (MkD dl) (MkD d2) = MkD (dl+d2)

—-— No instance GNum Dollars Int

test = (MkD 3) + (4::Int) -— REJECTED'!

MAPS AND MEMO TABLES

Optimising data structures

= Consider a finite map, mapping keys to values

= Goal: the data representation of the map
depends on the type of the key
= Boolean key: store two values (for F,T resp)
= Tnt key: use a balanced tree

= Pair key (x,y): map x to a finite map fromy to
value; ie use a triel

m Cannot do this in Haskell...a good program
that the type checker rejects

Optimising data structures

Map is indexed by k,
class Key k where but parametric in its

data Map k :: * -> * second argument
empty :: Map k v

lookup :: k -> Map k v -> Maybe v
...lnsert, union, etc....

Optimising data structures

Optional value

class Key k where for False

data Map k :: * -> %

empty :: Map k v

lookup :: k -> Map k v -> /

...1lnsert, union, etc.... Optional value
for True

instance Key Bool where
data Map Bool v = MB (Maybe v) (Maybe v)
empty = MB Nothing Nothing
lookup True (MB _mt) mt
lookup False (MB mf) mf

Optimising data structures

class Key k where
data Map k :: * -> *
empty :: Map k v
lookup :: k -> Map k v -> Maybe v Two-level
..insert, union, etc.... lookup

Two-level
map

instance (Key a, Key b) => Key/Aa,b) where
data Map (a,b) v = MP (Map a (Map b wv)
empty = MP empty
lookup (ka,kb) (MP m) = case lookup ka m of
Nothing -> Nothing
Just m2 -> lookup kb m2

Optimising data structures

= Goal: the data representation of the map
depends on the type of the key

® Boolean key: SUM

data Map Bool v = MB (Maybe v) (Maybe v)

= Pair key (x,y): PRODUCT

data Map (a,b) v = MP (Map a (Map b v))

= What about List key [x]:
SUM of PRODUCT + RECURSION?

Lists

instance (Key a) => Key [a] where
data Map [a] v = ML (Maybe v) (Map (a,[a]) V)

empty = ML Nothing empty
lookup [] (ML mO) = mO
lookup (h:t) (ML ml) = lookup (h,t) ml

= Note the cool recursion: these Maps are
potentially infinite!

= Can use this to build a trie for (say) Int
toBits :: Int -> [Bit]

Types with special maps

= Easy to accommodate types with non-generic
maps: just make a type-specific instance

instance Key Int where
data Map Int elt = IM (Data.IntMap.Map elt)
empty = IM Data.IntMap.empty
lookup k (IM m) = Data.IntMap.lookup m k

module Data.IntMap where
data Map elt = ..
empty :: Map elt
lookup :: Map elt -> Int -> Maybe elt
..etc..

Memo functions

= One way: when you evaluate (f x) to give val,
add x -> val to f's memo table, by side effect.

= A nicer way: build a (lazy) table for all possible
values of x

class Memo k where
data Table k :: * -> *
toTable :: (k->r) -> Table k r
fromTable :: Table k r -> (k->r)

memo :: Memo k => (k->r) -> k -> r
memo f = fromTable (toTable f£f)

Memo tables for booleans

class Memo k where
data Table k :: * -> *
toTable :: (k->r) -> Table k r
fromTable :: Table k r -> (k->r)

instance Memo Bool where
data Table Bool w = TBool w w
toTable £ = TBool (f True) (f False)
fromTable (TBool x y) b = if b then x else y

= Table contains (lazily) pre-calculated results
for both True and False

Memo tables for lists

instance (Memo a) => Memo [a] where
data Table [a] w
= TList (Table a (Table [a] w))

Value for (f []) Values for (f (x:xs))

Making memo tables

instance (Memo a) => Memo [a] where
data Table [a] w = TList w (Table a (Table [a] w))

toTable £ = TList (f [])
(toTable (\x ->
toTable (\xs -> £ (x:xs))))

fromTable (TList t) [] =t
fromTable (TList t) (x:xs) = fromTable
(fromTable t x) xs

= As with Map, the memo table is infinite (second use
of laziness)

class Memo k where
data Table k :: * -> *
toTable :: (k->r) -> Table k r
fromTable :: Table k r -> (k->r)

Memo tables for Int (or Integer)

instance Memo Int where
data Table Int w = TInt (Table [Bool] w)

toTable £ = TInt (toTable (\bs ->
f (bitsToInt bs)))

fromTable (TInt t) n = fromTable t (intToBits n)

class Memo k where
data Table k :: * -> *
toTable :: (k->r) -> Table k r
fromTable :: Table k r -> (k->r)

Dynamic programming

fib :: Int -> Int
fib = fromTable (toTable fib')
where
fib' :: Int -> Int

fib' 1
fib' 1
fib' fib (n-1) + fib (n-2)

m Recursive calls are to the memo'd function

DATA PARALLEL
HASKELL

Data Parallel Haskell

[:Double:] Arrays of pointers to boxed
numbers are Much Too Slow

[: (a,b):] Arrays of pointers to pairs are
Much Too Slow

RN

Idea!
Representation of an
array depends on the

element type

Representing arrays
[POPLOS], [ICFPO5], [TLDIO7]

class Elem a where
data [:a:]
index :: [:a:] -> Int -> a

instance Elem Double where
data [:Double:] = AD ByteArray
index (AD ba) 1i

instance (Elem a, Elem b) => Elem (a,b) where
data [:(a,b):] = AP [:a:] [:b:]
index (AP a b) i = (index a i, index b 1i)

Nested arrays

We do not want this for [: [:Float:] :]

- i

ad

ag |]
ne

nd

nd

nd

- 1l

- 1l

ad
ad
- IHEEEEE

The flattening transformation

+ Concatenate sub-arrays into one big, flat array

- Operate in parallel on the big array

- Segment vector keeps track of where the sub-arrays
are

RNARRRN] INNRRNRRRRRRA{JUNR AR AR RRRR AN AR{ NN AN NEREN(RE

\

* Lots of tricksy book-keeping!

» Possible to do by hand (and done in
practice), but very hard to get right

» Blelloch showed it could be done
systematically

Nested arrays

instance Elem a => Elem [:a:] where
data [:[:a:]:] = AN [:Int:] [:a:]

concatP :: [:[:a:]:] -> [:a:] Shape
concatP (AN shape data) = data

segmentP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]
segmentP (AN shape) data = AN shape data

concatP, segmentP are constant time
And are important in practice

Flat data

CONSTRAINT KINDS

A long-standing problem

class Collection ¢ where
insert :: a -> c a -> c a

Does not

|
instance Collection [] where work!

insert x [] = [x]

We need
insert x (y:ys) Eq

| x==y y - ¥sS
| otherwise Yy : insert x ys

A long-standing problem

class Collection ¢ where
insert :: Eqa =>a ->ca->c a

instance Collection [] whe
insert x [] = [x]

insert x (y:ys)

| X==y =y : ys
| otherwise = y : 1nsert x ys

instance Collection BalancedTree where
insert = ..needs (>)..

BUT THIS
DOESN'T

Associated constraints!

= We want the constraint to vary with the
collection ¢!

An associated
type of the

class Collection ¢ where class
type X ¢ a :: Constraint
insert :: X ca=>a->ca->ca

instance Collection [] where
type X [] a For lists, use
insert x [] Eq

insert x (y:ys)
| X==
| otherwise : insert x ys

Associated constraints!

= We want the constraint to vary with the
collection ¢!

class Collection c where
type X ¢ a :: Constraint
insert :;: X ca=>a->ca->ca

instance Collection BalancedTree where
type X BalancedTree a = (Ord a, Hashable a)

insert = .. (>)..hash..

For balanced

trees use
(Ord,Hash)

Associated constraints!

= Lovely because, it is simply a combination of
m Associated types (existing feature)
= Having Constraint as a kind

= No changes at all to the intermediate
language!

Koz ¥ | k->x

| Vk. x| k

| Constraint

BABY SESSION TYPES

Baby session types (BST)

= —

m addServer :: In Int (In Int (Out Int End))
addClient :: Out Int (Out Int (In Int End))

" Type of the process expresses its protocol

m Client and server should have dual protocols:
run addServer addClient -- OK!
run addServer addServer -- BAD!

Baby session types

= —

m addServer :: In Int (In Int (Out Int End))
addClient :: Out Int (Out Int (In Int End))

data In v p
data Out v p
data End

NB punning

Baby session types

data In v p
data Out v p
data End

addServer :: In Int (In Int (Out Int End))
addServer = In (\x -> In (\y ->
Out (x + y) End))

= Nothing fancy here

m addClient is similar

But what about run???

class Process p where
type Co p
run :: p -> Co p -> End

= Same deal as before: Co is a type-level
function that transforms a process type into
its dual

Implementing run

instance Process p => Process (In v p) where
type Co (In v p) = Out v (Co p)
run (In vp) (Out v p) = run (vp v) p

instance Process p => Process (Out v p) where
type Co (Out v p) = In v (Co p)
run (Out v p) (In vp) = run p (vp V)

Just the obvious thing really

PRINTF

printf

= C: sprintf("Hello%s.", name)

= Format descriptor is a string; absolutely no
guarantee the number or types of the other
parameters match the string.

= Haskell: (sprintf "Hello%s." name)??

= No way to make the type of (sprintf f) depend on
the value of f

= But we can make the type of (sprintf f) depend on
the type of f!

sprintf :: F f -> SPrintf £

(Lit "Day") :: String
printf ("Day")

(Lit "Day " Cmp int) :: Int -> String
printf ("Day %n"

(Lit "Day " Cmp int Cmp Lit "Monnth" "Cmp string)
Int -> String -> String
printf ("Day %n Month %s")

Format descriptors

data F £ where
Lit :: String -> F L
Val :: Parser val -> Printer wval -> F (V wval)
Cmp :: F £f1 -> F £2 -> F (f1 C £2)

data L
data V a
data C a b

type Parser a String -> [(a,String)]
type Printer a = a -> String

int :: F (Val Int)
int = Val (..parser for Int..) (..printer for Int..)

Format descriptors

data F f where
Lit :: String -> F L
Val :: Parser val -> Printer val -> F (V val)
Cmp :: F £f1 -> F £2 -> F (f1 C £2)

int :: F (Val Int)

int = Val (..parser for Int..) (..printer for Int)

Lit "day" Pt L

Lit "day" Cmp Lit "s" s (L "C L)

Lit "day " Cmp int 1 (L "C° V Int)

int Cmp Lit " day" Cmp Lit "s" :: (VInt C L C L)

What we'd like to say

data F :: Fmt -> * where
Lit :: String -> F L
Val :: Parser val -> Printer val -> F (V wval)
Cmp :: F £f1 -> F £2 -> F (C f1 f£2)

But can't (quite)
data Fmt = L | V write this yet

type Parser a = String -> [(a,String)]
type Printer a a -> String

F L -— Well kinded
F (L C L) -- Well kinded
F Int -— Ill1l kinded
F (Int C L) -- Ill1l kinded

sprintf

= Now we can write the type of sprintf:

sprintf :: F £ -> SPraintf £

The type-level counterpart
to sprintf

SPrintf L

SPrintf (L 'C L)

SPrintf (L C V Int)

SPrintf (V Int C L 'C L)
SPrintf (V Int C° L C V Int)

String
String
Int -> String

No type classes here: we are just doing
type-level computation

Writing SPrintf "Type family’

declares a

type function
SPrintf f = TPrinter £ String without

involving a
family TPrinter £ x type class
instance TPrinter L X = X
instance TPrinter (V wval) X =
instance TPrinter (C f1 £2) x
TPrinter f1 (TPrinter £2 x)

= The "C constructor suggests a (type-level)
accumulating parameter

Back to sprintf

sprintf :: F f -> SPrintf £
sprintf (£1 Cmp £f2) = ?°?°?

-—- sprintf f1 :: Int -> Bool -> String (say)
-- sprintf f2 :: Int -> String
-—- These don’t compose!

Back to sprintf

= Use an accumulating parameter (a
continuation), just as we did at the type level

sprintf :: F £ -> SPrintf £
sprintf £ = print £ (\s -> s)

print :: F £ -> (String -> a) -> TPrinter f a
print (Lit s) k k s

print (Val _ show) k \v -> k (show v)

print (f1 "Cmp £f2) k print £1 (\sl ->
print £2 (\s2 ->
k (sl++s2)))

Same format descriptors for scan

sscanf :: F £ -> SScanf £

Result type

Same format computed by a

descripfor' differ'enT ‘I’ype
function (of

course)

EQUALITY CONSTRAINTS

Equality predicates

class Coll c where
type Elem c
insert :: ¢ -> Elem ¢ -> c

instance Coll BitSet where
type Elem BitSet = Char

insert = ...

instance Coll [a] where
type Elem [a] = a
insert = ...

= What is the type of union?

union:: Collc=>c->c->c

= But we could sensibly union any two collections
whose elements were the same type
eg cl:: BitSet, c2 :: [Char]

Equality predicates

= But we could sensibly union any two
collections whose elements were the same

Type
eg cl: BitSet, c2 :: [Char]

Elem is not injective

Equality predicates

An equality predicate

union :: (Coll cl, Coll c2, Elem cl ~ Elem c2)
=>cl -> c2 -> c2
union cl c2 = foldl insert c2 (elems cl)

insert :: Coll ¢ => ¢ -> Elem c -> c
elems :: Coll ¢ => ¢ -> [Elem c]

The paper: more examples
"Fun with type functions”

= Machine address computation
add :: Pointer n -> Offset m -> Pointer (GCD n m)

= Tracking state using Hoare triples

acquire :: (Get n p ~ Unlocked)
=> Lock n -> M p (Set n p Locked) ()

= Type level computation tracks some abstraction of value-
level computation; type checker assures that they “line

up”.
= Need strings, lists, sets, bags at type level

Summary

Type families let you do type-level
computation

Data families allow the data representation
to vary, depending on the type index

They fit together very naturally with type
classes. How else could you write
f:Fa->Int
f x=?2?2? -- Don't know what F a is!

Wildly popular in practice

"Program correctness is a basic
scientific ideal for Computer Science”

Theorem provers
Powerful, but
« Substantial manual

assistance required
* PhD absolutely essential
(100s of daily users)

Today’s
experiment
Type systems

Weak, but
 Automatically checked

* No PhD required
(1000,000s of daily users)

Types have made a huge contribution
to this ideal

More sophisticated type systems
threaten both Happy Properties:

1. Automation is harder

2. The types are more complicated
(MSc required)

Some complications (2) are exactly
due to ad-hoc restrictions to ensure
full automation

At some point it may be best to say

“enough fooling around: just use Coq".
But we aren't there yet

Haskell is a great place to play this
game

Equality predicates are nothing new

data F f£ where
Lit :: String -> F L
Val :: Parser val -> Printer val -> F (V val)
Cmp :: F £f1 -> F £2 -> F (C f1 £2)

sprintf £ = print £ (\s -> s)

print :: F £ -> (String -> a) -> TPrinter f a
print (Lit s) k =k s

In this RHS we know that f~L

Equality predicates are nothing new

data F f where
Lit :: String -> F L

Val Parser val -> Printer val -> F (V wval)

Cmp :: F f1 -> F £2 -> F (C £f1 £2)

sprintf £ = print £ (\s -> s)

print :: F £ -> (String -> a) -> TPrinter f a
print (Lit s) k =k s

In this RHS we know that f~L

data F f£ where
Lit :: (£ ~ L) => String -> F £
val :: (£ ~ V val) => .. > F £
Cmp :: (f ~C fl1l £2) => F f1 -> F £2 -> F £

Completely subsumes functional
dependencies

class C a b | a->b, b->a where...

If I have evidence for (C a b), then I
have evidence that F1 a ~ b,
and F2b ~a

class (F1l a ~ b, F2 b ~ a)
=> C a b where
type F1l a
type F2 b

