
Simon Peyton Jones (Microsoft Research)

Chung-Chieh Shan (Rutgers University)

Oleg Kiselyov (Fleet Numerical Meteorology and
Oceanography Center)

class Num a where

 (+), (*) :: a -> a -> a

 negate :: a -> a

square :: Num a => a -> a

square x = x*x

instance Num Int where

 (+) = plusInt

 (*) = mulInt

 negate = negInt

test = square 4 + 5 :: Int

Class decl gives type
signature of each

method

Instance decl gives a
“witness” for each

method, matching the
signature

plusInt :: Int -> Int -> Int

mulInt :: Int -> Int -> Int

negInt :: Int -> Int

class GNum a b where

 (+) :: a -> b -> ???

instance GNum Int Int where

 (+) x y = plusInt x y

instance GNum Int Float where

 (+) x y = plusFloat (intToFloat x) y

test1 = (4::Int) + (5::Int)

test2 = (4::Int) + (5::Float)

plusInt :: Int -> Int -> Int

plusFloat :: Float -> Float -> Float

intToFloat :: Int -> Float

Allowing more good
programs

class GNum a b where

 (+) :: a -> b -> ???

 Result type of (+) is a function of the
argument types

 Each method gets a type signature

 Each associated type gets a kind signature

class GNum a b where

 type SumTy a b :: *

 (+) :: a -> b -> SumTy a b

SumTy is an
associated type of

class GNum

 Each instance declaration gives a “witness”
for SumTy, matching the kind signature

class GNum a b where

 type SumTy a b :: *

 (+) :: a -> b -> SumTy a b

instance GNum Int Int where

 type SumTy Int Int = Int

 (+) x y = plusInt x y

instance GNum Int Float where

 type SumTy Int Float = Float

 (+) x y = plusFloat (intToFloat x) y

 SumTy is a type-level function

 The type checker simply rewrites
 SumTy Int Int --> Int
 SumTy Int Float --> Float
whenever it can

 But (SumTy t1 t2) is still a perfectly good type,
even if it can’t be rewritten. For example:

class GNum a b where

 type SumTy a b :: *

instance GNum Int Int where

 type SumTy Int Int = Int :: *

instance GNum Int Float where

 type SumTy Int Float = Float

data T a b = MkT a b (SumTy a b)

 Simply omit instances for incompatible types

newtype Dollars = MkD Int

instance GNum Dollars Dollars where

 type SumTy Dollars Dollars = Dollars

 (+) (MkD d1) (MkD d2) = MkD (d1+d2)

-- No instance GNum Dollars Int

test = (MkD 3) + (4::Int) -- REJECTED!

 Consider a finite map, mapping keys to values

 Goal: the data representation of the map
depends on the type of the key
 Boolean key: store two values (for F,T resp)

 Int key: use a balanced tree

 Pair key (x,y): map x to a finite map from y to
value; ie use a trie!

 Cannot do this in Haskell...a good program
that the type checker rejects

class Key k where

 data Map k :: * -> *

 empty :: Map k v

 lookup :: k -> Map k v -> Maybe v

 ...insert, union, etc....

data Maybe a = Nothing | Just a

Map is indexed by k,
but parametric in its

second argument

class Key k where

 data Map k :: * -> *

 empty :: Map k v

 lookup :: k -> Map k v -> Maybe v

 ...insert, union, etc....

instance Key Bool where

 data Map Bool v = MB (Maybe v) (Maybe v)

 empty = MB Nothing Nothing

 lookup True (MB _ mt) = mt

 lookup False (MB mf _) = mf

data Maybe a = Nothing | Just a

Optional value
for False

Optional value
for True

class Key k where

 data Map k :: * -> *

 empty :: Map k v

 lookup :: k -> Map k v -> Maybe v

 ...insert, union, etc....

instance (Key a, Key b) => Key (a,b) where

 data Map (a,b) v = MP (Map a (Map b v))

 empty = MP empty

 lookup (ka,kb) (MP m) = case lookup ka m of

 Nothing -> Nothing

 Just m2 -> lookup kb m2

data Maybe a = Nothing | Just a

Two-level
lookup

Two-level
map

 Goal: the data representation of the map
depends on the type of the key
 Boolean key: SUM

 Pair key (x,y): PRODUCT

 What about List key [x]:
SUM of PRODUCT + RECURSION?

data Map (a,b) v = MP (Map a (Map b v))

data Map Bool v = MB (Maybe v) (Maybe v)

 Note the cool recursion: these Maps are
potentially infinite!

 Can use this to build a trie for (say) Int
 toBits :: Int -> [Bit]

instance (Key a) => Key [a] where

 data Map [a] v = ML (Maybe v) (Map (a,[a]) v)

 empty = ML Nothing empty

 lookup [] (ML m0 _) = m0

 lookup (h:t) (ML _ m1) = lookup (h,t) m1

 Easy to accommodate types with non-generic
maps: just make a type-specific instance

instance Key Int where

 data Map Int elt = IM (Data.IntMap.Map elt)

 empty = IM Data.IntMap.empty

 lookup k (IM m) = Data.IntMap.lookup m k

module Data.IntMap where

 data Map elt = …

 empty :: Map elt

 lookup :: Map elt -> Int -> Maybe elt

 …etc…

 One way: when you evaluate (f x) to give val,
add x -> val to f’s memo table, by side effect.

 A nicer way: build a (lazy) table for all possible
values of x

class Memo k where

 data Table k :: * -> *

 toTable :: (k->r) -> Table k r

 fromTable :: Table k r -> (k->r)

memo :: Memo k => (k->r) -> k -> r

memo f = fromTable (toTable f)

 Table contains (lazily) pre-calculated results
for both True and False

class Memo k where

 data Table k :: * -> *

 toTable :: (k->r) -> Table k r

 fromTable :: Table k r -> (k->r)

instance Memo Bool where

 data Table Bool w = TBool w w

 toTable f = TBool (f True) (f False)

 fromTable (TBool x y) b = if b then x else y

 instance (Memo a) => Memo [a] where

 data Table [a] w

 = TList w (Table a (Table [a] w))

Value for (f []) Values for (f (x:xs))

 As with Map, the memo table is infinite (second use
of laziness)

instance (Memo a) => Memo [a] where

 data Table [a] w = TList w (Table a (Table [a] w))

 toTable f = TList (f [])

 (toTable (\x ->

 toTable (\xs -> f (x:xs))))

 fromTable (TList t _) [] = t

 fromTable (TList _ t) (x:xs) = fromTable

 (fromTable t x) xs

class Memo k where

 data Table k :: * -> *

 toTable :: (k->r) -> Table k r

 fromTable :: Table k r -> (k->r)

 instance Memo Int where

 data Table Int w = TInt (Table [Bool] w)

 toTable f = TInt (toTable (\bs ->

 f (bitsToInt bs)))

 fromTable (TInt t) n = fromTable t (intToBits n)

class Memo k where

 data Table k :: * -> *

 toTable :: (k->r) -> Table k r

 fromTable :: Table k r -> (k->r)

 Recursive calls are to the memo’d function

fib :: Int -> Int

fib = fromTable (toTable fib')

 where

 fib' :: Int -> Int

 fib' 0 = 1

 fib' 1 = 1

 fib' n = fib (n-1) + fib (n-2)

[:Double:] Arrays of pointers to boxed
numbers are Much Too Slow

[:(a,b):] Arrays of pointers to pairs are
Much Too Slow

Idea!
Representation of an
array depends on the

element type

...

class Elem a where

 data [:a:]

 index :: [:a:] -> Int -> a

instance Elem Double where

 data [:Double:] = AD ByteArray

 index (AD ba) i = ...

instance (Elem a, Elem b) => Elem (a,b) where

 data [:(a,b):] = AP [:a:] [:b:]

 index (AP a b) i = (index a i, index b i)

AP

We do not want this for [: [:Float:] :]

...etc

• Concatenate sub-arrays into one big, flat array
• Operate in parallel on the big array
• Segment vector keeps track of where the sub-arrays

are

• Lots of tricksy book-keeping!
• Possible to do by hand (and done in

practice), but very hard to get right
• Blelloch showed it could be done

systematically

concatP, segmentP are constant time

And are important in practice

instance Elem a => Elem [:a:] where

 data [:[:a:]:] = AN [:Int:] [:a:]

concatP :: [:[:a:]:] -> [:a:]

concatP (AN shape data) = data

segmentP :: [:[:a:]:] -> [:b:] -> [:[:b:]:]

segmentP (AN shape _) data = AN shape data

Shape

Flat data

 class Collection c where

 insert :: a -> c a -> c a

instance Collection [] where

 insert x [] = [x]

 insert x (y:ys)

 | x==y = y : ys

 | otherwise = y : insert x ys

Does not
work!

We need
Eq!

 class Collection c where

 insert :: Eq a => a -> c a -> c a

instance Collection [] where

 insert x [] = [x]

 insert x (y:ys)

 | x==y = y : ys

 | otherwise = y : insert x ys

instance Collection BalancedTree where

 insert = …needs (>)…

This
works

BUT THIS
DOESN’T

 We want the constraint to vary with the
collection c!

class Collection c where

 type X c a :: Constraint

 insert :: X c a => a -> c a -> c a

instance Collection [] where

 type X [] a = Eq a

 insert x [] = [x]

 insert x (y:ys)

 | x==y = y : ys

 | otherwise = y : insert x ys

An associated
type of the

class

For lists, use
Eq

 We want the constraint to vary with the
collection c!

class Collection c where

 type X c a :: Constraint

 insert :: X c a => a -> c a -> c a

instance Collection BalancedTree where

 type X BalancedTree a = (Ord a, Hashable a)

 insert = …(>)…hash…

For balanced
trees use

(Ord,Hash)

 Lovely because, it is simply a combination of
 Associated types (existing feature)

 Having Constraint as a kind

 No changes at all to the intermediate
language!

 ::= * | ->
 | k. | k
 | Constraint

 addServer :: In Int (In Int (Out Int End))
addClient :: Out Int (Out Int (In Int End))

 Type of the process expresses its protocol

 Client and server should have dual protocols:

 run addServer addClient -- OK!

 run addServer addServer -- BAD!

Client Server

 addServer :: In Int (In Int (Out Int End))
addClient :: Out Int (Out Int (In Int End))

Client Server

data In v p = In (v -> p)

data Out v p = Out v p

data End = End

NB punning

 Nothing fancy here

 addClient is similar

data In v p = In (v -> p)

data Out v p = Out v p

data End = End

addServer :: In Int (In Int (Out Int End))

addServer = In (\x -> In (\y ->

 Out (x + y) End))

 Same deal as before: Co is a type-level
function that transforms a process type into
its dual

run :: ??? -> ??? -> End

class Process p where

 type Co p

 run :: p -> Co p -> End

A process A co-process

Just the obvious thing really

class Process p where

 type Co p

 run :: p -> Co p -> End

instance Process p => Process (In v p) where

 type Co (In v p) = Out v (Co p)

 run (In vp) (Out v p) = run (vp v) p

instance Process p => Process (Out v p) where

 type Co (Out v p) = In v (Co p)

 run (Out v p) (In vp) = run p (vp v)

data In v p = In (v -> p)

data Out v p = Out v p

data End = End

 C: sprintf(“Hello%s.”, name)

 Format descriptor is a string; absolutely no
guarantee the number or types of the other
parameters match the string.

 Haskell: (sprintf “Hello%s.” name)??
 No way to make the type of (sprintf f) depend on

the value of f

 But we can make the type of (sprintf f) depend on
the type of f!

sprintf :: F f -> SPrintf f

sprintf (Lit "Day") :: String

-- Like printf("Day")

sprintf (Lit "Day " `Cmp` int) :: Int -> String

-- Like printf("Day %n")

sprintf (Lit "Day " `Cmp` int `Cmp` Lit "Monnth" `Cmp` string)

 :: Int -> String -> String

-- Like printf("Day %n Month %s")

data F f where

 Lit :: String -> F L

 Val :: Parser val -> Printer val -> F (V val)

 Cmp :: F f1 -> F f2 -> F (f1 `C` f2)

data L

data V a

data C a b

type Parser a = String -> [(a,String)]

type Printer a = a -> String

int :: F (Val Int)

int = Val (..parser for Int..) (..printer for Int..)

data F f where

 Lit :: String -> F L

 Val :: Parser val -> Printer val -> F (V val)

 Cmp :: F f1 -> F f2 -> F (f1 `C` f2)

int :: F (Val Int)

int = Val (…parser for Int..) (..printer for Int)

f_ld = Lit "day" :: F L

f_lds = Lit "day" `Cmp` Lit "s" :: F (L `C` L)

f_dn = Lit "day " `Cmp` int :: F (L `C` V Int)

f_nds = int `Cmp` Lit " day" `Cmp` Lit "s" :: F (V Int `C` L `C` L)

data F :: Fmt -> * where

 Lit :: String -> F L

 Val :: Parser val -> Printer val -> F (V val)

 Cmp :: F f1 -> F f2 -> F (C f1 f2)

data Fmt = L | V * | C Fmt Fmt

type Parser a = String -> [(a,String)]

type Printer a = a -> String

F L -- Well kinded

F (L `C` L) -- Well kinded

F Int -- Ill kinded

F (Int `C` L) -- Ill kinded

But can’t (quite)
write this yet

 Now we can write the type of sprintf:

sprintf :: F f -> SPrintf f

The type-level counterpart
to sprintf

SPrintf L = String

SPrintf (L `C` L) = String

SPrintf (L `C` V Int) = Int -> String

SPrintf (V Int `C` L `C` L) = Int -> String

SPrintf (V Int `C` L `C` V Int) = Int -> Int -> String

No type classes here: we are just doing
type-level computation

 The `C` constructor suggests a (type-level)
accumulating parameter

type SPrintf f = TPrinter f String

type family TPrinter f x

type instance TPrinter L x = x

type instance TPrinter (V val) x = val -> x

type instance TPrinter (C f1 f2) x

 = TPrinter f1 (TPrinter f2 x)

“Type family”
declares a

type function
without

involving a
type class

sprintf :: F f -> SPrintf f

sprintf (f1 `Cmp` f2) = ???

-- sprintf f1 :: Int -> Bool -> String (say)

-- sprintf f2 :: Int -> String

-- These don’t compose!

 Use an accumulating parameter (a
continuation), just as we did at the type level

sprintf :: F f -> SPrintf f

sprintf f = print f (\s -> s)

print :: F f -> (String -> a) -> TPrinter f a

print (Lit s) k = k s

print (Val _ show) k = \v -> k (show v)

print (f1 `Cmp` f2) k = print f1 (\s1 ->

 print f2 (\s2 ->

 k (s1++s2)))

sscanf :: F f -> SScanf f

Same format
descriptor

Result type
computed by a
different type

function (of
course)

 What is the type of union?
 union :: Coll c => c -> c -> c

 But we could sensibly union any two collections
whose elements were the same type
eg c1 :: BitSet, c2 :: [Char]

class Coll c where

 type Elem c

 insert :: c -> Elem c -> c

instance Coll BitSet where

 type Elem BitSet = Char

 insert = ...

instance Coll [a] where

 type Elem [a] = a

 insert = ...

 But we could sensibly union any two
collections whose elements were the same
type
eg c1 :: BitSet, c2 :: [Char]

 Elem is not injective

BitSet [Char]

Char

Elem

union :: (Coll c1, Coll c2, Elem c1 ~ Elem c2)

 => c1 -> c2 -> c2

union c1 c2 = foldl insert c2 (elems c1)

An equality predicate

insert :: Coll c => c -> Elem c -> c

elems :: Coll c => c -> [Elem c]

 Machine address computation
add :: Pointer n -> Offset m -> Pointer (GCD n m)

 Tracking state using Hoare triples

 Type level computation tracks some abstraction of value-
level computation; type checker assures that they “line
up”.

 Need strings, lists, sets, bags at type level

acquire :: (Get n p ~ Unlocked)

 => Lock n -> M p (Set n p Locked) ()

Lock-state before Lock-state after

 Type families let you do type-level
computation

 Data families allow the data representation
to vary, depending on the type index

 They fit together very naturally with type
classes. How else could you write
 f :: F a -> Int
 f x = ??? -- Don’t know what F a is!

 Wildly popular in practice

 Types have made a huge contribution
to this ideal

 More sophisticated type systems
threaten both Happy Properties:

1. Automation is harder

2. The types are more complicated
(MSc required)

 Some complications (2) are exactly
due to ad-hoc restrictions to ensure
full automation

 At some point it may be best to say
“enough fooling around: just use Coq”.
But we aren’t there yet

 Haskell is a great place to play this
game

Type systems
Weak, but
• Automatically checked
• No PhD required

(1000,000s of daily users)

Theorem provers
Powerful, but
• Substantial manual

assistance required
• PhD absolutely essential

(100s of daily users)

Today’s
experiment

data F f where

 Lit :: String -> F L

 Val :: Parser val -> Printer val -> F (V val)

 Cmp :: F f1 -> F f2 -> F (C f1 f2)

sprintf f = print f (\s -> s)

print :: F f -> (String -> a) -> TPrinter f a

print (Lit s) k = k s

...

In this RHS we know that f~L

data F f where

 Lit :: String -> F L

 Val :: Parser val -> Printer val -> F (V val)

 Cmp :: F f1 -> F f2 -> F (C f1 f2)

sprintf f = print f (\s -> s)

print :: F f -> (String -> a) -> TPrinter f a

print (Lit s) k = k s

...

In this RHS we know that f~L

data F f where

 Lit :: (f ~ L) => String -> F f

 Val :: (f ~ V val) => … -> F f

 Cmp :: (f ~ C f1 f2) => F f1 -> F f2 -> F f

class C a b | a->b, b->a where...

If I have evidence for (C a b), then I
have evidence that F1 a ~ b,

and F2 b ~ a

class (F1 a ~ b, F2 b ~ a)

 => C a b where

 type F1 a

 type F2 b

 ...

