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class Num a where 

  (+), (*) :: a -> a -> a 

  negate   :: a -> a 

 

square :: Num a => a -> a 

square x = x*x 

 

instance Num Int where 

  (+)    = plusInt 

  (*)    = mulInt 

  negate = negInt 

 

test = square 4 + 5 :: Int 

Class decl gives type 
signature of each 

method 

Instance decl gives a 
“witness” for each 

method, matching the 
signature 

plusInt :: Int -> Int -> Int 

mulInt  :: Int -> Int -> Int 

negInt  :: Int -> Int 



class GNum a b where 

  (+) :: a -> b -> ??? 

 

instance GNum Int Int where 

  (+) x y = plusInt x y 

 

instance GNum Int Float where 

  (+) x y = plusFloat (intToFloat x) y 

 

test1 = (4::Int) + (5::Int) 

test2 = (4::Int) + (5::Float) 

plusInt    :: Int -> Int -> Int 

plusFloat  :: Float -> Float -> Float 

intToFloat :: Int -> Float 

Allowing more good 
programs 



class GNum a b where 

  (+) :: a -> b -> ??? 

 Result type of (+) is a function of the 
argument types  

 

 

 Each method gets a type signature 

 Each associated type gets a kind signature 

 

class GNum a b where 

  type SumTy a b :: * 

  (+) :: a -> b -> SumTy a b 

SumTy is an 
associated type of 

class GNum 



 Each instance declaration gives a “witness” 
for SumTy, matching the kind signature 

 

 

 

class GNum a b where 

  type SumTy a b :: * 

  (+) :: a -> b -> SumTy a b 

instance GNum Int Int where 

  type SumTy Int Int = Int 

  (+) x y = plusInt x y 

 

instance GNum Int Float where 

  type SumTy Int Float = Float 

  (+) x y = plusFloat (intToFloat x) y 



 SumTy is a type-level function 

 The type checker simply rewrites 
 SumTy Int Int -->  Int 
 SumTy Int Float --> Float 
whenever it can 

 But (SumTy t1 t2) is still a perfectly good type, 
even if it can’t be rewritten.   For example: 

 

 

class GNum a b where 

  type SumTy a b :: * 

instance GNum Int Int where 

  type SumTy Int Int = Int :: * 

instance GNum Int Float where 

  type SumTy Int Float = Float 

data T a b = MkT a b (SumTy a b) 



 Simply omit instances for incompatible types 

newtype Dollars = MkD Int 

 

instance GNum Dollars Dollars where 

  type SumTy Dollars Dollars = Dollars 

  (+) (MkD d1) (MkD d2) = MkD (d1+d2) 

 

-- No instance GNum Dollars Int 

 

test = (MkD 3) + (4::Int) -- REJECTED! 





 Consider a finite map, mapping keys to values 

 Goal: the data representation of the map 
depends on the type of the key 
 Boolean key: store two values (for F,T resp) 

 Int key: use a balanced tree 

 Pair key (x,y): map x to a finite map from y to 
value; ie use a trie! 

 Cannot do this in Haskell...a good program 
that the type checker rejects 



class Key k where 

  data Map k :: * -> * 

  empty  :: Map k v 

  lookup :: k -> Map k v -> Maybe v 

  ...insert, union, etc.... 

data Maybe a = Nothing | Just a 

Map is indexed by k, 
but parametric in its 

second argument 



class Key k where 

  data Map k :: * -> * 

  empty  :: Map k v 

  lookup :: k -> Map k v -> Maybe v 

  ...insert, union, etc.... 

 

instance Key Bool where 

  data Map Bool v = MB (Maybe v) (Maybe v) 

  empty = MB Nothing Nothing 

  lookup True  (MB _ mt) = mt 

  lookup False (MB mf _) = mf   

data Maybe a = Nothing | Just a 

Optional  value 
for False 

Optional value 
for True 



class Key k where 

  data Map k :: * -> * 

  empty  :: Map k v 

  lookup :: k -> Map k v -> Maybe v 

  ...insert, union, etc.... 

 

instance (Key a, Key b) => Key (a,b) where 

  data Map (a,b) v = MP (Map a (Map b v)) 

  empty = MP empty 

  lookup (ka,kb) (MP m) = case lookup ka m of 

        Nothing -> Nothing 

        Just m2 -> lookup kb m2 

data Maybe a = Nothing | Just a 

Two-level 
lookup 

Two-level 
map 



 Goal: the data representation of the map 
depends on the type of the key 
 Boolean key: SUM 

 

 Pair key (x,y): PRODUCT 

 

 What about List key [x]:  
SUM of PRODUCT + RECURSION? 

data Map (a,b) v = MP (Map a (Map b v)) 

data Map Bool v = MB (Maybe v) (Maybe v) 



 Note the cool recursion: these Maps are 
potentially infinite! 

 Can use this to build a trie for (say) Int 
 toBits :: Int -> [Bit] 

instance (Key a) => Key [a] where 

  data Map [a] v = ML (Maybe v) (Map (a,[a]) v) 

  empty = ML Nothing empty 

  lookup [] (ML m0 _) = m0 

  lookup (h:t) (ML _ m1) = lookup (h,t) m1 



 Easy to accommodate types with non-generic 
maps: just make a type-specific instance 

instance Key Int where 

  data Map Int elt = IM (Data.IntMap.Map elt) 

  empty = IM Data.IntMap.empty 

  lookup k (IM m) = Data.IntMap.lookup m k 

module Data.IntMap where 

  data Map elt = … 

  empty :: Map elt 

  lookup :: Map elt -> Int -> Maybe elt 

  …etc… 



 One way: when you evaluate (f x) to give val,  
add x -> val to f’s memo table, by side effect. 

 A nicer way: build a (lazy) table for all possible 
values of x 

class Memo k where 

  data Table k :: * -> * 

  toTable :: (k->r) -> Table k r 

  fromTable :: Table k r -> (k->r) 

 

memo :: Memo k => (k->r) -> k -> r 

memo f = fromTable (toTable f) 



 Table contains (lazily) pre-calculated results 
for both True and False 

class Memo k where 

  data Table k :: * -> * 

  toTable :: (k->r) -> Table k r 

  fromTable :: Table k r -> (k->r) 

 

instance Memo Bool where 

  data Table Bool w = TBool w w 

  toTable f = TBool (f True) (f False) 

  fromTable (TBool x y) b = if b then x else y 



 instance (Memo a) => Memo [a] where 

  data Table [a] w  

     = TList w (Table a (Table [a] w))   

Value for (f []) Values for (f (x:xs)) 



 As with Map, the memo table is infinite (second use 
of laziness)  

instance (Memo a) => Memo [a] where 

  data Table [a] w = TList w (Table a (Table [a] w)) 
 

  toTable f = TList (f [])  

                    (toTable (\x ->  

                       toTable (\xs -> f (x:xs)))) 
   

  fromTable (TList t _) []     = t 

  fromTable (TList _ t) (x:xs) = fromTable  

                                   (fromTable t x) xs 

class Memo k where 

  data Table k :: * -> * 

  toTable :: (k->r) -> Table k r 

  fromTable :: Table k r -> (k->r) 



 instance Memo Int where 

  data Table Int w = TInt (Table [Bool] w) 

 

  toTable f = TInt (toTable (\bs ->  

                       f (bitsToInt bs))) 

 

  fromTable (TInt t) n = fromTable t (intToBits n) 

class Memo k where 

  data Table k :: * -> * 

  toTable :: (k->r) -> Table k r 

  fromTable :: Table k r -> (k->r) 



 Recursive calls are to the memo’d function 

fib :: Int -> Int 

fib = fromTable (toTable fib') 

  where 

    fib' :: Int -> Int 

    fib' 0 = 1 

    fib' 1 = 1 

    fib' n = fib (n-1) + fib (n-2) 





[:Double:] Arrays of pointers to boxed 
numbers are Much Too Slow 

[:(a,b):] Arrays of pointers to pairs are 
Much Too Slow 

 

Idea! 
Representation of an 
array depends on the 

element type 

... 



class Elem a where 

  data [:a:] 

  index :: [:a:] -> Int -> a 

 

instance Elem Double where 

  data [:Double:] = AD ByteArray 

  index (AD ba) i = ... 

 

instance (Elem a, Elem b) => Elem (a,b) where 

  data [:(a,b):] = AP [:a:] [:b:] 

  index (AP a b) i = (index a i, index b i) 

AP 



We do not want this for [: [:Float:] :] 



...etc 

• Concatenate sub-arrays into one big, flat array 
• Operate in parallel on the big array 
• Segment vector keeps track of where the sub-arrays 

are 

• Lots of tricksy book-keeping! 
• Possible to do by hand (and done in 

practice), but very hard to get right 
• Blelloch showed it could be done 

systematically 



concatP, segmentP are constant time   

And are important in practice 

instance Elem a => Elem [:a:] where 

  data [:[:a:]:] = AN [:Int:] [:a:] 

 

concatP  :: [:[:a:]:] -> [:a:] 

concatP (AN shape data) = data 

 

segmentP :: [:[:a:]:] -> [:b:] -> [:[:b:]:] 

segmentP (AN shape _) data = AN shape data 

Shape 

Flat data 





 class Collection c where 

  insert :: a -> c a -> c a 

 

 

instance Collection [] where 

  insert x [] = [x] 

  insert x (y:ys)  

    | x==y      = y : ys 

    | otherwise = y : insert x ys 

Does not 
work!  

We need 
Eq! 



 class Collection c where 

  insert :: Eq a => a -> c a -> c a 

 

instance Collection [] where 

  insert x [] = [x] 

  insert x (y:ys)  

    | x==y      = y : ys 

    | otherwise = y : insert x ys 

 

instance Collection BalancedTree where 

  insert = …needs (>)… 

This 
works 

BUT THIS 
DOESN’T 



 We want the constraint to vary with the 
collection c! 

class Collection c where 

  type X c a :: Constraint 

  insert :: X c a => a -> c a -> c a 

 

instance Collection [] where 

  type X [] a = Eq a 

  insert x [] = [x] 

  insert x (y:ys)  

    | x==y      = y : ys 

    | otherwise = y : insert x ys 

An associated 
type of the 

class  

For lists, use 
Eq 



 We want the constraint to vary with the 
collection c! 

class Collection c where 

  type X c a :: Constraint 

  insert :: X c a => a -> c a -> c a 

 

instance Collection BalancedTree where 

  type X BalancedTree a = (Ord a, Hashable a)   

  insert = …(>)…hash… 

For balanced 
trees use 

(Ord,Hash) 



 Lovely because, it is simply a combination of 
 Associated types (existing feature) 

 Having Constraint as a kind 

 

 No changes at all to the intermediate 
language! 

 ::= * |  ->  
     | k.  |  k 
     | Constraint 





 addServer :: In Int (In Int (Out Int End)) 
addClient   :: Out Int (Out Int (In Int End)) 

 Type of the process expresses its protocol 

 Client and server should have dual protocols: 

  run addServer addClient  -- OK! 

  run addServer addServer  -- BAD! 

 

Client Server 



 addServer :: In Int (In Int (Out Int End)) 
addClient   :: Out Int (Out Int (In Int End)) 

 

Client Server 

data In v p  = In (v -> p) 

data Out v p = Out v p 

data End     = End 

NB punning 



 Nothing fancy here 

 addClient is similar 

data In v p  = In (v -> p) 

data Out v p = Out v p 

data End     = End 

addServer :: In Int (In Int (Out Int End)) 

addServer = In (\x -> In (\y -> 

            Out (x + y) End)) 



 Same deal as before: Co is a type-level 
function that transforms a process type into 
its dual 

run :: ??? -> ??? -> End 

class Process p where 

  type Co p 

  run :: p -> Co p -> End 

A process A co-process 



Just the obvious thing really 

class Process p where 

  type Co p 

  run :: p -> Co p -> End 

instance Process p => Process (In v p) where 

  type Co (In v p) = Out v (Co p) 

  run (In vp) (Out v p) = run (vp v) p 

 

instance Process p => Process (Out v p) where 

  type Co (Out v p) = In v (Co p) 

  run (Out v p) (In vp) = run p (vp v) 

data In v p  = In (v -> p) 

data Out v p = Out v p 

data End     = End 





 C:  sprintf( “Hello%s.”, name ) 

 Format descriptor is a string; absolutely no 
guarantee the number or types of the other 
parameters match the string. 

 Haskell: (sprintf “Hello%s.” name)?? 
 No way to make the type of (sprintf f) depend on 

the value of f 

 But we can make the type of (sprintf f) depend on 
the type of f! 



 
sprintf :: F f -> SPrintf f 

sprintf (Lit "Day") :: String 

-- Like printf("Day")  

 

sprintf (Lit "Day " `Cmp` int) :: Int -> String 

-- Like printf("Day %n")  

 

sprintf (Lit "Day " `Cmp` int `Cmp` Lit "Monnth" `Cmp` string)  

     :: Int -> String -> String 

-- Like printf("Day %n Month %s")  



 
data F f where 

  Lit :: String -> F L 

  Val :: Parser val -> Printer val -> F (V val) 

  Cmp :: F f1 -> F f2 -> F (f1 `C` f2) 

 

data L 

data V a 

data C a b 

 

type Parser  a = String -> [(a,String)] 

type Printer a = a -> String 

 

int :: F (Val Int) 

int = Val (..parser for Int..) (..printer for Int..) 



 

data F f where 

  Lit :: String -> F L 

  Val :: Parser val -> Printer val -> F (V val) 

  Cmp :: F f1 -> F f2 -> F (f1 `C` f2) 

 

int :: F (Val Int) 

int = Val (…parser for Int..) (..printer for Int) 

f_ld  = Lit "day"                          :: F L 

f_lds = Lit "day" `Cmp` Lit "s"            :: F (L `C` L) 

f_dn  = Lit "day " `Cmp` int               :: F (L `C` V Int) 

f_nds = int `Cmp` Lit " day" `Cmp` Lit "s" :: F (V Int `C` L `C` L) 



 
data F :: Fmt -> * where 

  Lit :: String -> F L 

  Val :: Parser val -> Printer val -> F (V val) 

  Cmp :: F f1 -> F f2 -> F (C f1 f2) 

 

data Fmt = L | V * | C Fmt Fmt 

 

type Parser  a = String -> [(a,String)] 

type Printer a = a -> String 

F L -- Well kinded 

F (L `C` L) -- Well kinded 

F Int -- Ill kinded 

F (Int `C` L) -- Ill kinded  

But can’t (quite) 
write this yet 



 Now we can write the type of sprintf: 

sprintf :: F f -> SPrintf f 

The type-level counterpart 
to sprintf 

SPrintf L                       = String 

SPrintf (L `C` L)               = String 

SPrintf (L `C` V Int)           = Int -> String 

SPrintf (V Int `C` L `C` L)     = Int -> String 

SPrintf (V Int `C` L `C` V Int) = Int -> Int -> String 

No type classes here: we are just doing 
type-level computation  



 The `C` constructor suggests a (type-level) 
accumulating parameter 

type SPrintf f = TPrinter f String 

 

type family TPrinter f x 

type instance TPrinter L         x = x 

type instance TPrinter (V val)   x = val -> x 

type instance TPrinter (C f1 f2) x  

   = TPrinter f1 (TPrinter f2 x) 

“Type family” 
declares a 

type function 
without 

involving a 
type class 



 
sprintf :: F f -> SPrintf f 

sprintf (f1 `Cmp` f2) = ??? 

 

-- sprintf f1 :: Int -> Bool -> String (say) 

-- sprintf f2 :: Int -> String 

-- These don’t compose!  



 Use an accumulating parameter (a 
continuation), just as we did at the type level 

sprintf :: F f -> SPrintf f 

sprintf f = print f (\s -> s) 

 

print :: F f -> (String -> a) -> TPrinter f a 

print (Lit s)       k = k s 

print (Val _ show)  k = \v -> k (show v) 

print (f1 `Cmp` f2) k = print f1 (\s1 -> 

                        print f2 (\s2 ->  

                        k (s1++s2))) 



sscanf :: F f -> SScanf f 

Same format 
descriptor 

Result type 
computed by a 
different type 

function (of 
course) 





 What is the type of union? 
 union :: Coll c => c -> c -> c 

 But we could sensibly union any two collections 
whose elements were the same type 
eg   c1 :: BitSet, c2 :: [Char] 

class Coll c where 

  type Elem c 

  insert :: c -> Elem c -> c 

 

instance Coll BitSet where 

  type Elem BitSet = Char 

  insert = ... 

 

instance Coll [a] where 

  type Elem [a] = a 

  insert = ... 



 But we could sensibly union any two 
collections whose elements were the same 
type 
eg   c1 :: BitSet, c2 :: [Char] 

 Elem is not injective 

BitSet [Char] 

Char 

Elem 



 

union :: (Coll c1, Coll c2, Elem c1 ~ Elem c2) 

      => c1 -> c2 -> c2 

union c1 c2 = foldl insert c2 (elems c1) 

An equality predicate 

insert :: Coll c => c -> Elem c -> c 

elems  :: Coll c => c -> [Elem c]  



 Machine address computation 
add :: Pointer n -> Offset m -> Pointer (GCD n m) 

 Tracking state using Hoare triples 

 

 

 

 Type level computation tracks some abstraction of value-
level computation; type checker assures that they “line 
up”. 

 Need strings, lists, sets, bags at type level 
 

acquire :: (Get n p ~ Unlocked)  

        => Lock n -> M p (Set n p Locked) () 

Lock-state before Lock-state after 



 Type families let you do type-level 
computation 

 Data families allow the data representation 
to vary, depending on the type index 

 They fit together very naturally with type 
classes.  How else could you write 
   f :: F a -> Int 
   f x = ???   -- Don’t know what F a is! 

 Wildly popular in practice  



 Types have made a huge contribution 
to this ideal 

 More sophisticated type systems 
threaten both Happy Properties: 

1. Automation is harder 

2. The types are more complicated 
(MSc required) 

 Some complications (2) are exactly 
due to ad-hoc restrictions to ensure 
full automation 

 At some point it may be best to say 
“enough fooling around: just use Coq”.  
But we aren’t there yet 

 Haskell is a great place to play this 
game 

Type systems 
Weak, but 
• Automatically checked 
• No PhD required 

(1000,000s of daily users) 

Theorem provers 
Powerful, but 
• Substantial manual 

assistance required  
• PhD absolutely essential 

(100s of daily users) 

Today’s 
experiment 



 
data F f where 

  Lit :: String -> F L 

  Val :: Parser val -> Printer val -> F (V val) 

  Cmp :: F f1 -> F f2 -> F (C f1 f2) 

sprintf f = print f (\s -> s) 

 

print :: F f -> (String -> a) -> TPrinter f a 

print (Lit s) k = k s 

... 

In this RHS we know that f~L 



 
data F f where 

  Lit :: String -> F L 

  Val :: Parser val -> Printer val -> F (V val) 

  Cmp :: F f1 -> F f2 -> F (C f1 f2) 

sprintf f = print f (\s -> s) 

 

print :: F f -> (String -> a) -> TPrinter f a 

print (Lit s) k = k s 

... 

In this RHS we know that f~L 

data F f where 

  Lit :: (f ~ L) => String -> F f 

  Val :: (f ~ V val) => … -> F f 

  Cmp :: (f ~ C f1 f2) => F f1 -> F f2 -> F f 



class C a b | a->b, b->a where... 

If I have evidence for (C a b), then I 
have evidence that  F1 a ~ b,  

and F2 b ~ a 

class (F1 a ~ b, F2 b ~ a)  

      => C a b where 

  type F1 a 

  type F2 b 

  ... 


