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 Lightweight (so programmers use them) 

 Machine checked (fully automated, every 
compilation) 

 Ubiquitous (so programmers can‟t avoid them) 

Static typing is by far the most 
widely-used program verification 

technology in use today: particularly 
good cost/benefit ratio 



 Types guarantee the absence of certain classes of 
errors: “well typed programs don‟t go wrong” 
 True + „c‟ 
 Seg-faults 

 The static type of a function is a partial, machine-
checked specification: its says something (but not too 
much), to a person, about what the function does 
     reverse :: [a] -> [a]  

 Types are a design language; types are the UML of 
Haskell 

 Types massively support interactive program 
development (Intellisense, F# type providers) 

 The BIGGEST MERIT (though seldom mentioned) of 
types is their support for software maintenance 



Sometimes the type system gets in the way 

 

 

 

 

Now I want a list of Char, but I do not want to 
duplicate all that code. 

 

 

data IntList = Nil | Cons Int IntList 

 

lengthI :: IntList -> Int 

lengthI Nil         = 0 

lengthI (Cons _ xs) = 1 + lengthI xs 



 Dynamically typed language   
 

 

 

 

 More sophisticated type system 

 

lengthI :: Value -> Value 

lengthI Nil         = 0 

lengthI (Cons _ xs) = 1 + lengthI xs 

data List a = Nil | Cons a (List a) 

 

length :: List a -> Int 

length Nil         = 0 

length (Cons _ xs) = 1 + length xs 
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 Build on the demonstrated success of static 
types 

 ...guided by type theory, dependent types 

 ...so that more good programs are accepted 
(and more bad ones rejected) 

 ...without losing the Joyful Properties 
(comprehensible to programmers) 





 OrOrOr   data Maybe a  = Nothing | Just a 

data Maybe a where 
    Just :: a -> Maybe a 
    Nothing :: Maybe a 

Or 

These two 
declarations 

mean the 
same thing  



 
data Term a where 
 Lit  :: Int -> Term Int 
 Succ  :: Term Int -> Term Int 
 IsZero :: Term Int -> Term Bool  
 If  :: Term Bool -> Term a -> Term a -> Term a 

eval :: Term a -> a 
eval (Lit i)  = i 
eval (Succ t)  = 1 + eval t 
eval (IsZero i)  = eval i == 0 
eval (If b e1 e2)  = if eval b then eval e1  
                                           else eval e2 

In here 
a~Int 



 What type should we infer for f? 

data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f x y = case x of  

          T1 z -> True 

          T2   -> y 



 f doesn‟t have a principal type 
 f :: T a -> Bool -> Bool 

 f :: T a -> a -> a 

 So reject the definition; unless programmer supplies a 
type signature for f 

 Tricky to specify and implement (e.g. do not want to 
require type signatures for all functions!) 

data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f x y = case x of  

          T1 z -> True 

          T2   -> y 



 data OC = Open | Closed 
 
data Stmt in out where 
    Label  :: Label -> Stmt Closed Open 
 Assign  :: Reg -> Expr -> Stmt Open Open 
    Call  :: Expr -> [Expr] -> Stmt Open Open 
    Goto  :: Label -> Stmt Open Closed 
 
data StmtSeq in out where 
    Single :: Stmt in out -> StmtSeq in out 
    Join :: StmtSeq in Open -> StmtSeq Open out  
            -> StmtSeq in out 



sf1 >>> sf2 

data SF a b where 
   -- A function from streams of a‟s to streams of b‟s 
 
arr   :: (a->b) -> SF a b 
(>>>) :: SF a b -> SF b c -> SF a c 

 Yampa is a DSL for describing stream 
functions 

SF a b Stream of a‟s Stream of b‟s 

SF a b SF b c 
Stream of a‟s Stream of c‟s 



data SF a b where 
   SF :: (a -> (b, SF a b)) -> SF a b 
 
arr :: (a->b) -> SF a b 
arr f = result 
   where  
      result = SF (\x -> (f x, result)) 
 
(>>>) :: SF a b -> SF b c -> SF a c 
(SF f1) >>> (SF f2) = SF fr 
  where  
     fr x = let (r1, sf1) = f1 x 
                     (r2,sf2) = f2 r1 
               in (r2, sf1 >>> sf2)  



 GOAL: 

 This optimisation (and some others like it) is 
really really important in practice. 

data SF a b where 
   SF :: (a -> (b, SF a b)) -> SF a b 
   SFId :: SF a a  
 
sfId :: SF a a 
sfId = SFId 
 
(>>>) :: SF a b -> SF b c -> SF a c 
SFId >>> sf  = sf 
sf >>> SFId  = sf 
(SF f1) >>> (SF f2) = …as before… 

arr id >>> f = f 

Absolutely essential 
that we have a 

GADT, so the result 
type can be SF a a 

Only well typed 
because SFId : SF a a 



 
Time without 
optimisations 

Time with 
optimisations 





 Which of these user-written  
type signatures are ok? 

data Maybe a    = Nothing  

                | Just a 

 

data Either a b = Left a 

                | Right b 

f1 :: Maybe Int -> Maybe Bool 

f2 :: Maybe -> Int 

f3 :: Either Int -> Maybe Int 

f4 :: Maybe Either -> Int 



 Which of these user-written  
type signatures are ok? 

data Maybe a    = Nothing  

                | Just a 

 

data Either a b = Left a 

                | Right b 

f1 :: Maybe Int -> Maybe Bool -- Yes   

f2 :: Maybe -> Int -- No 

f3 :: Either Int -> Maybe Int -- No 

f4 :: Either Int (Maybe Bool) -- Yes 

f4 :: Maybe Either -> Int -- No 



 Which of these user-written  
type signatures are ok? 

data Maybe a    = Nothing  

                | Just a 

 

data Either a b = Left a 

                | Right b 

f1 :: Maybe Int -> Maybe Bool -- Yes   

f2 :: Maybe -> Int -- No 

f3 :: Either Int -> Maybe Int -- No 

f4 :: Either Int (Maybe Bool) -- Yes 

f4 :: Maybe Either -> Int -- No 



data Maybe a    = Nothing | Just a 

  -- Maybe :: * -> * 

 

data Either a b = Left a | Right b 

  -- Either :: * -> * -> * 

 

-- Built-in definition for (->) 

-- (->) :: * -> * -> * 

f2 :: Maybe -> Int -- No 

Kind error 
(->) requires “*” as its first argument, 

but Maybe has kind (* -> *) 

* is the 
kind of 
types 



 Just as  
 Types classify terms 

eg 3 :: Int, (\x.x+1) :: Int -> Int 
 Kinds classify types 

eg  Int :: *, Maybe :: * -> *, Maybe Int :: * 
 

 Just as  
 Types stop you building nonsensical terms  

eg (True + 4) 
 Kinds stop you building nonsensical types  

eg (Maybe  Maybe) 
 

 ::= *  
    |  ->   



 Abstract out the common bits 

sum :: [Int] -> Int 

sum [] = 0 

sum (x:xs) = x + sum xs 

 

product :: [Float] -> Float 

product [] = 1 

product (x:xs) = x * product xs 

foldr :: (a->b->b) -> b -> [a] -> b 

foldr k z [] = z 

foldr k z (x:xs) = x `k` foldr k z xs 

 

sum = foldr (+) 0 

product = foldr (*) 1 



foldr :: (a->b->b) -> b -> [a] -> b 

foldr k z [] = z 

foldr k z (x:xs) = x `k` foldr k z xs 

 

sum = foldr (+) 0 

product = foldr (*) 1 

 A first order language does not support 
abstraction of functions.  Sad.  So sad. 

 The language is “getting in the way” 

 Higher order => same language with fewer 
restrictions 

Note that we abstract a 
FUNCTION 



 data RoseTree a = RLeaf a  

 | RNode [RoseTree a] 

data BinTree a = BLeaf a 

               | BNode (Pair (BinTree a)) 

 

data Pair a = MkPair a a 



Remove syntactic sugar 

data RoseTree a = RLeaf a  

                | RNode [RoseTree a] 

data RoseTree a = RLeaf a  

 | RNode ([] (RoseTree a)) 

data BinTree a = BLeaf a 

               | BNode (Pair (BinTree a)) 

 

-- [] :: * -> *          The list constructor 

means exactly the same as 



 „a‟ stands for a type 

 „f‟ stands for a type constructor 

data Tree f a = Leaf a  

 | Node (f (Tree f a)) 

 

type RoseTree a = Tree []   a 

type BinTree  a = Tree Pair a 

type AnnTree  a = Tree AnnPair a 

 

data Pair a    = P a a 

data AnnPair a = AP String a a 



 „a‟ stands for a type 

 „f‟ stands for a type constructor 

 

 Abstracting over something of kind (*->*) is 
very useful (cf foldr); same language, fewer 
restrictions 

 You can do this in Haskell (since the beginning), 
but not in ML, Java, .NET etc 

 

data Tree f a = Leaf a  

 | Node (f (Tree f a)) 

      a :: * 
      f :: * -> * 
 Tree :: (*->*) -> * -> * 

 ::= *  
    |  ->   



 Being able to abstract over a higher-kinded „m‟ 
is utterly crucial to code re-use 

 We can give a kind to Monad: 
 Monad :: (*->*) -> Constraint 

class Monad m where 

  return :: a -> m a 

  (>>=) :: m a -> (a -> m b) -> m b 

 

sequence :: Monad m => [m a] -> m [a] 

sequence [] = return [] 

sequence (a:as) = a >>= \x -> 

                  sequence as >>= \xs ->  

                  return (x:xs) 





 But is this ok too? 

 

 

 What kind does T have? 
 T :: (* -> *) -> * -> *? 
 T :: ((* -> *) -> *) -> (* -> *) -> *? 

 Haskell 98 “defaults” to the first,  
and hence rejects T2 
 

data T f a = MkT (f a) 

data F f = MkF (f Int) 

type T2 = T F Maybe 

data Maybe a = Nothing | Just a 

type T1 = T Maybe Int 

F :: (*->*) -> * 

Maybe :: * -> * 



 What kind does T have? 
 T :: (* -> *) -> * -> *? 

 T :: ((* -> *) -> *) -> (* -> *) -> *? 

 Haskell 98 “defaults” to the first 

 This is Obviously Wrong!  We want... 
 

data T f a = MkT (f a) 



 What kind does T have? 
 T :: (* -> *) -> * -> *? 

 T :: ((* -> *) -> *) -> (* -> *) -> *? 

 Haskell 98 “defaults” to the first 

 This is obviously wrong!  We want... 
 

data T f a = MkT (f a) 

T :: k. (k->*) -> k -> * 

Kind polymorphism 



Syntax of kinds 

data T f a = MkT (f a) 

T :: k. (k->*) -> k -> * 

 ::= * |  ->  
        | k.  
        |  k 



And hence: 
 
 
 
 

So poly-kinded type constructors mean that 
terms too must be poly-kinded. 
 

data T f a = MkT (f a) 

T :: k. (k->*) -> k -> * 

MkT :: k. (f:k->*) (a:k). 
    f a -> T f a 

A kind 

A type 



 Just as we infer the most general type of a 
function definition, so we should infer the 
most general kind of a type definition 

 Just like for functions, the type constructor 
can be used only monomorphically its own 
RHS. 
 
 
 
T2 forces T‟s kind to be (*->*) -> * 

 

data T f a = MkT (f a) 

           | T2 (T Maybe Int) 



 Haskell today: 

data TypeRep = TyCon String 

             | TyApp TypeRep TypeRep 

 

class Typeable a where 

  typeOf :: a -> TypeRep 

 

instance Typeable Int where 

  typeOf _ = TyCon “Int” 

 

instance Typeable a  

      => Typeable (Maybe a) where 

  typeOf _ = TyApp (TyCon “Maybe”)  

                   (typeOf (undefined :: a)) 



instance Typeable a  

      => Typeable (Maybe a) where 

  typeOf _ = TyApp (TyCon “Maybe”)  

                   (typeOf (undefined :: a)) 

instance (Typeable f, Typeable a) 

      => Typeable (f a) where 

  typeOf _ = TyApp (typeOf (undefined :: f)) 

                   (typeOf (undefined :: a)) 

No! 

Yes! 

But: 

 Typeable  :: * -> Constraint,  but  f :: *->* 

 (undefined :: f) makes no sense, since f :: *->* 



 Typeable :: k.  k -> Constraint 
typeOf :: k a:k. Typeable a =>  
                      (p:k->*). p a -> TypeRep 
Proxy :: k.  k -> * 

 Now everything is cool: 

class Typeable a where 

  typeOf :: p a -> TypeRep 

 

data Proxy a 

instance (Typeable f, Typeable a) 

      => Typeable (f a) where 

  typeOf _  

    = TyApp (typeOf (undefined :: Proxy f)) 

            (typeOf (undefined :: Proxy a)) 



 Type inference becomes a bit more tricky –
but not much. 
 Instantiate f :: forall k. forall (a:k). tau 

with a fresh kind unification variable for k,  
and  a fresh type unification variable for a 

 When unifying (a ~ some-type), unify a‟s kind with 
some-type‟s kind. 

 Intermediate language (System F) 
 Already has type abstraction and application 

 Add kind abstraction and application 

 





 

 

 What is Zero, Succ? Kind of Vec? 

 
 

 

 Yuk!  Nothing to stop you writing stupid types: 
   f :: Vec Int a -> Vec Bool a 

data Vec n a where 

  Vnil  :: Vec Zero a 

  Vcons :: a -> Vec n a -> Vec (Succ n) a 

data Zero 

data Succ a 

-- Vec :: * -> * -> * 



 Haskell is a strongly typed language 

 But programming at the type level is entirely 
un-typed – or rather uni-typed, with one 
type, *. 

 How embarrassing is that? 

data Zero 

data Succ a 

-- Vec :: * -> * -> * 



 Now the type (Vec Int a) is ill-kinded; hurrah 

 Nat is a kind, here introduced by „datakind‟ 

datakind Nat = Zero | Succ Nat 

 

data Vec n a where 

  Vnil  :: Vec Zero a 

  Vcons :: a -> Vec n a -> Vec (Succ n) a 

 Vec :: Nat -> * -> * 



 Nat is an ordinary type, but it is automatically 
promoted to be a kind as well 

 Its constuctors are promoted to be (uninhabited) 
types 

 Mostly: simple, easy 

data Nat = Zero | Succ Nat 

 

data Vec n a where 

  Vnil  :: Vec Zero a 

  Vcons :: a -> Vec n a -> Vec (Succ n) a 

 Vec :: Nat -> * -> * 



Add :: Nat -> Nat -> Nat 

data Nat = Zero | Succ Nat 

 

type family Add (a::Nat) (b::Nat) :: Nat 

 

type instance Add Z        n = n 

type instance Add (Succ n) m = Succ (Add n m) 



 Where there is only one Foo (type or data constructor) 
use that 

 If both Foo‟s are in scope, “Foo” in a type means the type 
constructor (backward compaitible) 

 If both Foo‟s are in scope, „Foo means the data 
constructor 

data Foo = Foo Int 

 

f :: T Foo -> Int 

Type constructor 

Data constructor 

Which?   



 Which data types are promoted? 

 

 

 

 

 Keep it simple: only simple, vanilla, types with 
kinds of form T :: * -> * -> … -> * 

 Avoids the need for 
 A sort system (to classify kinds!) 
 Kind equalities (for GADTs) 

data T where 

  MkT :: a -> (a->Int) -> T 

 

data S where 

  MkS :: S Int 

Existentials?   

GADTs?   



 Take lessons from term :: type 
and apply them to  type :: kind 
 Polymorphism 
 Constraint kind 
 Data types 

 Hopefully: no new concepts.  Re-use 
programmers intuitions abou how typing 
works, one level up. 

 Fits smoothly into the IL 

 Result: world peace 


