
Simon Peyton Jones, (Microsoft Research)

with lots of contributions from Dimitrios Vytiniotis,
Stephanie Weirich, Brent Yorgey, Julien Cretin, Pedro

Magalhaes

August 2013

Programmers

Programming
language

implementors

Theorists

 Type inference
Programmers

Programming
language

implementors

Theorists

 Lightweight (so programmers use them)

 Machine checked (fully automated, every
compilation)

 Ubiquitous (so programmers can‟t avoid them)

Static typing is by far the most
widely-used program verification

technology in use today: particularly
good cost/benefit ratio

 Types guarantee the absence of certain classes of
errors: “well typed programs don‟t go wrong”
 True + „c‟
 Seg-faults

 The static type of a function is a partial, machine-
checked specification: its says something (but not too
much), to a person, about what the function does
 reverse :: [a] -> [a]

 Types are a design language; types are the UML of
Haskell

 Types massively support interactive program
development (Intellisense, F# type providers)

 The BIGGEST MERIT (though seldom mentioned) of
types is their support for software maintenance

Sometimes the type system gets in the way

Now I want a list of Char, but I do not want to
duplicate all that code.

data IntList = Nil | Cons Int IntList

lengthI :: IntList -> Int

lengthI Nil = 0

lengthI (Cons _ xs) = 1 + lengthI xs

 Dynamically typed language

 More sophisticated type system

lengthI :: Value -> Value

lengthI Nil = 0

lengthI (Cons _ xs) = 1 + lengthI xs

data List a = Nil | Cons a (List a)

length :: List a -> Int

length Nil = 0

length (Cons _ xs) = 1 + length xs

All programs

Programs that
work

Programs that are
well typed

Region of
Abysmal Pain

All programs

Programs that
work

Programs that are
well typed

Smaller Region of Abysmal Pain

1970 1980 1990 2000

Simple
types

ML polymorphism +
algebraic data types

Type classes

GADTs

Type families, kind
polymorphism etc

ML

Haskell

2010

1970 1980 1990 2000

Simple
types

ML polymorphism +
algebraic data types

Type classes

GADTs

Type families, kind
polymorphism etc

ML

Haskell

2010

The spectrum of confidence

Increasing confidence
that the program does

what you want

Hammer
(cheap, easy

to use,
limited

effectivenes)

Tactical nuclear
weapon

(expensive, needs a
trained user, but

very effective
indeed)

No
types

Coq

Agda

Idris

ML

S
im

p
le

ty

p
e

s

H
aske

ll “Machine to
produce
papers”
David

Christiansen

Machine to
produce

programs

Power over
usability:
no PhD

Power over
usability:

 PhD required

 Build on the demonstrated success of static
types

 ...guided by type theory, dependent types

 ...so that more good programs are accepted
(and more bad ones rejected)

 ...without losing the Joyful Properties
(comprehensible to programmers)

 OrOrOr data Maybe a = Nothing | Just a

data Maybe a where
 Just :: a -> Maybe a
 Nothing :: Maybe a

Or

These two
declarations

mean the
same thing

data Term a where
 Lit :: Int -> Term Int
 Succ :: Term Int -> Term Int
 IsZero :: Term Int -> Term Bool
 If :: Term Bool -> Term a -> Term a -> Term a

eval :: Term a -> a
eval (Lit i) = i
eval (Succ t) = 1 + eval t
eval (IsZero i) = eval i == 0
eval (If b e1 e2) = if eval b then eval e1
 else eval e2

In here
a~Int

 What type should we infer for f?

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

f x y = case x of

 T1 z -> True

 T2 -> y

 f doesn‟t have a principal type
 f :: T a -> Bool -> Bool

 f :: T a -> a -> a

 So reject the definition; unless programmer supplies a
type signature for f

 Tricky to specify and implement (e.g. do not want to
require type signatures for all functions!)

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

f x y = case x of

 T1 z -> True

 T2 -> y

 data OC = Open | Closed

data Stmt in out where
 Label :: Label -> Stmt Closed Open
 Assign :: Reg -> Expr -> Stmt Open Open
 Call :: Expr -> [Expr] -> Stmt Open Open
 Goto :: Label -> Stmt Open Closed

data StmtSeq in out where
 Single :: Stmt in out -> StmtSeq in out
 Join :: StmtSeq in Open -> StmtSeq Open out
 -> StmtSeq in out

sf1 >>> sf2

data SF a b where
 -- A function from streams of a‟s to streams of b‟s

arr :: (a->b) -> SF a b
(>>>) :: SF a b -> SF b c -> SF a c

 Yampa is a DSL for describing stream
functions

SF a b Stream of a‟s Stream of b‟s

SF a b SF b c
Stream of a‟s Stream of c‟s

data SF a b where
 SF :: (a -> (b, SF a b)) -> SF a b

arr :: (a->b) -> SF a b
arr f = result
 where
 result = SF (\x -> (f x, result))

(>>>) :: SF a b -> SF b c -> SF a c
(SF f1) >>> (SF f2) = SF fr
 where
 fr x = let (r1, sf1) = f1 x
 (r2,sf2) = f2 r1
 in (r2, sf1 >>> sf2)

 GOAL:

 This optimisation (and some others like it) is
really really important in practice.

data SF a b where
 SF :: (a -> (b, SF a b)) -> SF a b
 SFId :: SF a a

sfId :: SF a a
sfId = SFId

(>>>) :: SF a b -> SF b c -> SF a c
SFId >>> sf = sf
sf >>> SFId = sf
(SF f1) >>> (SF f2) = …as before…

arr id >>> f = f

Absolutely essential
that we have a

GADT, so the result
type can be SF a a

Only well typed
because SFId : SF a a

Time without
optimisations

Time with
optimisations

 Which of these user-written
type signatures are ok?

data Maybe a = Nothing

 | Just a

data Either a b = Left a

 | Right b

f1 :: Maybe Int -> Maybe Bool

f2 :: Maybe -> Int

f3 :: Either Int -> Maybe Int

f4 :: Maybe Either -> Int

 Which of these user-written
type signatures are ok?

data Maybe a = Nothing

 | Just a

data Either a b = Left a

 | Right b

f1 :: Maybe Int -> Maybe Bool -- Yes

f2 :: Maybe -> Int -- No

f3 :: Either Int -> Maybe Int -- No

f4 :: Either Int (Maybe Bool) -- Yes

f4 :: Maybe Either -> Int -- No

 Which of these user-written
type signatures are ok?

data Maybe a = Nothing

 | Just a

data Either a b = Left a

 | Right b

f1 :: Maybe Int -> Maybe Bool -- Yes

f2 :: Maybe -> Int -- No

f3 :: Either Int -> Maybe Int -- No

f4 :: Either Int (Maybe Bool) -- Yes

f4 :: Maybe Either -> Int -- No

data Maybe a = Nothing | Just a

 -- Maybe :: * -> *

data Either a b = Left a | Right b

 -- Either :: * -> * -> *

-- Built-in definition for (->)

-- (->) :: * -> * -> *

f2 :: Maybe -> Int -- No

Kind error
(->) requires “*” as its first argument,

but Maybe has kind (* -> *)

* is the
kind of
types

 Just as
 Types classify terms

eg 3 :: Int, (\x.x+1) :: Int -> Int
 Kinds classify types

eg Int :: *, Maybe :: * -> *, Maybe Int :: *

 Just as
 Types stop you building nonsensical terms

eg (True + 4)
 Kinds stop you building nonsensical types

eg (Maybe Maybe)

 ::= *
 | ->

 Abstract out the common bits

sum :: [Int] -> Int

sum [] = 0

sum (x:xs) = x + sum xs

product :: [Float] -> Float

product [] = 1

product (x:xs) = x * product xs

foldr :: (a->b->b) -> b -> [a] -> b

foldr k z [] = z

foldr k z (x:xs) = x `k` foldr k z xs

sum = foldr (+) 0

product = foldr (*) 1

foldr :: (a->b->b) -> b -> [a] -> b

foldr k z [] = z

foldr k z (x:xs) = x `k` foldr k z xs

sum = foldr (+) 0

product = foldr (*) 1

 A first order language does not support
abstraction of functions. Sad. So sad.

 The language is “getting in the way”

 Higher order => same language with fewer
restrictions

Note that we abstract a
FUNCTION

 data RoseTree a = RLeaf a

 | RNode [RoseTree a]

data BinTree a = BLeaf a

 | BNode (Pair (BinTree a))

data Pair a = MkPair a a

Remove syntactic sugar

data RoseTree a = RLeaf a

 | RNode [RoseTree a]

data RoseTree a = RLeaf a

 | RNode ([] (RoseTree a))

data BinTree a = BLeaf a

 | BNode (Pair (BinTree a))

-- [] :: * -> * The list constructor

means exactly the same as

 „a‟ stands for a type

 „f‟ stands for a type constructor

data Tree f a = Leaf a

 | Node (f (Tree f a))

type RoseTree a = Tree [] a

type BinTree a = Tree Pair a

type AnnTree a = Tree AnnPair a

data Pair a = P a a

data AnnPair a = AP String a a

 „a‟ stands for a type

 „f‟ stands for a type constructor

 Abstracting over something of kind (*->*) is
very useful (cf foldr); same language, fewer
restrictions

 You can do this in Haskell (since the beginning),
but not in ML, Java, .NET etc

data Tree f a = Leaf a

 | Node (f (Tree f a))

 a :: *
 f :: * -> *
 Tree :: (*->*) -> * -> *

 ::= *
 | ->

 Being able to abstract over a higher-kinded „m‟
is utterly crucial to code re-use

 We can give a kind to Monad:
 Monad :: (*->*) -> Constraint

class Monad m where

 return :: a -> m a

 (>>=) :: m a -> (a -> m b) -> m b

sequence :: Monad m => [m a] -> m [a]

sequence [] = return []

sequence (a:as) = a >>= \x ->

 sequence as >>= \xs ->

 return (x:xs)

 But is this ok too?

 What kind does T have?
 T :: (* -> *) -> * -> *?
 T :: ((* -> *) -> *) -> (* -> *) -> *?

 Haskell 98 “defaults” to the first,
and hence rejects T2

data T f a = MkT (f a)

data F f = MkF (f Int)

type T2 = T F Maybe

data Maybe a = Nothing | Just a

type T1 = T Maybe Int

F :: (*->*) -> *

Maybe :: * -> *

 What kind does T have?
 T :: (* -> *) -> * -> *?

 T :: ((* -> *) -> *) -> (* -> *) -> *?

 Haskell 98 “defaults” to the first

 This is Obviously Wrong! We want...

data T f a = MkT (f a)

 What kind does T have?
 T :: (* -> *) -> * -> *?

 T :: ((* -> *) -> *) -> (* -> *) -> *?

 Haskell 98 “defaults” to the first

 This is obviously wrong! We want...

data T f a = MkT (f a)

T :: k. (k->*) -> k -> *

Kind polymorphism

Syntax of kinds

data T f a = MkT (f a)

T :: k. (k->*) -> k -> *

 ::= * | ->
 | k.
 | k

And hence:

So poly-kinded type constructors mean that
terms too must be poly-kinded.

data T f a = MkT (f a)

T :: k. (k->*) -> k -> *

MkT :: k. (f:k->*) (a:k).
 f a -> T f a

A kind

A type

 Just as we infer the most general type of a
function definition, so we should infer the
most general kind of a type definition

 Just like for functions, the type constructor
can be used only monomorphically its own
RHS.

T2 forces T‟s kind to be (*->*) -> *

data T f a = MkT (f a)

 | T2 (T Maybe Int)

 Haskell today:

data TypeRep = TyCon String

 | TyApp TypeRep TypeRep

class Typeable a where

 typeOf :: a -> TypeRep

instance Typeable Int where

 typeOf _ = TyCon “Int”

instance Typeable a

 => Typeable (Maybe a) where

 typeOf _ = TyApp (TyCon “Maybe”)

 (typeOf (undefined :: a))

instance Typeable a

 => Typeable (Maybe a) where

 typeOf _ = TyApp (TyCon “Maybe”)

 (typeOf (undefined :: a))

instance (Typeable f, Typeable a)

 => Typeable (f a) where

 typeOf _ = TyApp (typeOf (undefined :: f))

 (typeOf (undefined :: a))

No!

Yes!

But:

 Typeable :: * -> Constraint, but f :: *->*

 (undefined :: f) makes no sense, since f :: *->*

 Typeable :: k. k -> Constraint
typeOf :: k a:k. Typeable a =>
 (p:k->*). p a -> TypeRep
Proxy :: k. k -> *

 Now everything is cool:

class Typeable a where

 typeOf :: p a -> TypeRep

data Proxy a

instance (Typeable f, Typeable a)

 => Typeable (f a) where

 typeOf _

 = TyApp (typeOf (undefined :: Proxy f))

 (typeOf (undefined :: Proxy a))

 Type inference becomes a bit more tricky –
but not much.
 Instantiate f :: forall k. forall (a:k). tau

with a fresh kind unification variable for k,
and a fresh type unification variable for a

 When unifying (a ~ some-type), unify a‟s kind with
some-type‟s kind.

 Intermediate language (System F)
 Already has type abstraction and application

 Add kind abstraction and application

 What is Zero, Succ? Kind of Vec?

 Yuk! Nothing to stop you writing stupid types:
 f :: Vec Int a -> Vec Bool a

data Vec n a where

 Vnil :: Vec Zero a

 Vcons :: a -> Vec n a -> Vec (Succ n) a

data Zero

data Succ a

-- Vec :: * -> * -> *

 Haskell is a strongly typed language

 But programming at the type level is entirely
un-typed – or rather uni-typed, with one
type, *.

 How embarrassing is that?

data Zero

data Succ a

-- Vec :: * -> * -> *

 Now the type (Vec Int a) is ill-kinded; hurrah

 Nat is a kind, here introduced by „datakind‟

datakind Nat = Zero | Succ Nat

data Vec n a where

 Vnil :: Vec Zero a

 Vcons :: a -> Vec n a -> Vec (Succ n) a

 Vec :: Nat -> * -> *

 Nat is an ordinary type, but it is automatically
promoted to be a kind as well

 Its constuctors are promoted to be (uninhabited)
types

 Mostly: simple, easy

data Nat = Zero | Succ Nat

data Vec n a where

 Vnil :: Vec Zero a

 Vcons :: a -> Vec n a -> Vec (Succ n) a

 Vec :: Nat -> * -> *

Add :: Nat -> Nat -> Nat

data Nat = Zero | Succ Nat

type family Add (a::Nat) (b::Nat) :: Nat

type instance Add Z n = n

type instance Add (Succ n) m = Succ (Add n m)

 Where there is only one Foo (type or data constructor)
use that

 If both Foo‟s are in scope, “Foo” in a type means the type
constructor (backward compaitible)

 If both Foo‟s are in scope, „Foo means the data
constructor

data Foo = Foo Int

f :: T Foo -> Int

Type constructor

Data constructor

Which?

 Which data types are promoted?

 Keep it simple: only simple, vanilla, types with
kinds of form T :: * -> * -> … -> *

 Avoids the need for
 A sort system (to classify kinds!)
 Kind equalities (for GADTs)

data T where

 MkT :: a -> (a->Int) -> T

data S where

 MkS :: S Int

Existentials?

GADTs?

 Take lessons from term :: type
and apply them to type :: kind
 Polymorphism
 Constraint kind
 Data types

 Hopefully: no new concepts. Re-use
programmers intuitions abou how typing
works, one level up.

 Fits smoothly into the IL

 Result: world peace

