
Simon Peyton Jones

Microsoft Research

August 2013

 Instantiate „reverse‟ with a unification variable
, standing for an as-yet-unknown type. So this
occurrence of reverse has type [] -> [].

 Constrain expected arg type [] equal to actual
arg type [Bool], thus ~ Bool.

 Solve by unification: := Bool

reverse :: a. [a] -> [a]
xs :: [Bool]

foo :: [Bool]
foo = reverse xs

 Instantiate „(>)‟ to -> -> Bool, and emit a
wanted constraint (Ord)

 Constrain ~ [a], since xs :: [a], and solve by
unification

 Solve wanted constraint (Ord), i.e. (Ord [a]),
from given constraint (Ord a)

 Here „a‟ plays the role of a skolem constant.

(>) :: a. Ord a => a -> a -> Bool
instance Ord a => Ord [a] where ...

foo :: a. Ord a => [a] -> [a] -> Bool
foo xs ys = not (xs > ys)

 Instantiate „(>)‟ to -> -> Bool,
and emit a wanted constraint
(Ord)

 Constrain ~ [a], since xs :: [a],
and solve by unification

 Solve wanted constraint (Ord)
from given constraint (Ord a)

 Here „a‟ plays the role of a skolem
constant.

(>) :: a. Ord a => a -> a -> Bool
instance Ord a => Ord [a] where ...

foo :: a. Ord a => [a] -> [a] -> Bool
foo xs ys = not (xs > ys)

a. Ord a =>

Ord ~ [a]

Solve
this

 instance Ord a => Ord [a] where ...

foo :: a. Ord a => [a] -> [a] -> Bool
foo xs ys = not (xs > ys)

dfOrdList :: a. Ord a -> Ord [a]

foo :: a. Ord a -> [a] -> [a] -> Bool
foo a (d::Ord a) (xs::[a]) (ys::[a])
 = let d2::Ord [a] = dfOrdList a d
 in not ((>) [a] d2 xs ys)

Elaborate

Source
Haskell

Rest of GHC

Source
language

Typed
intermediate

language

T
yp

e
ch

ec
k

D
e
su

ga
r

Elaborated
source

Elaboration inserts

 Type and dictionary applications

 Type and dictionary abstractions

 Dictionary bindings

dfOrdList :: a. Ord a -> Ord [a]

foo :: a. Ord a -> [a] -> [a] -> Bool
foo a (d::Ord a) (xs::[a]) (ys::[a])
 = let d2::Ord [a] = dfOrdList a d
 in not ((>) [a] d2 xs ys)

 Type and dictionary applications
(inserted when we instantiate)

 Type and dictionary abstractions
(inserted when we generalise)

 Dictionary bindings
(inserted when we solve constraints)

dfOrdList :: a. Ord a -> Ord [a]

foo :: a. Ord a -> [a] -> [a] -> Bool
foo a (d::Ord a) (xs::[a]) (ys::[a])
 = let d2::Ord [a] = dfOrdList a d
 in not ((>) [a] d xs ys)

 Instantiate „(>)‟ to -> -> Bool,
and emit a wanted constraint
(Ord)

 Constrain ~ [a], since xs :: [a],
and solve by unification

 Solve wanted constraint (Ord)
from given constraint (Ord a)

 Here „a‟ plays the role of a skolem
constant.

a. d::Ord a =>

d2::Ord ~ [a]

Solve this, creating a
binding for d2,
mentioning d

dfOrdList :: a. Ord a -> Ord [a]

foo :: a. Ord a -> [a] -> [a] -> Bool
foo a (d::Ord a) (xs::[a]) (ys::[a])
 = let d2::Ord [a] = dfOrdList a d
 in not ((>) [a] d2 xs ys)

type Id = Var

data Var = Id Name Type |

data HsExpr n

 = HsVar n | HsApp (HsExpr n) (HsExpr n) | ..

tcExpr :: HsExpr Name -> TcRhoType -> TcM (HsExpr Id)

Term to
typecheck

Expected
type

Elaborated
term

 Old school
 Find a unfication problem

 Solve it

 If fails, report error

 Otherwise, proceed

 This will not work any more
 g :: F a -> a -> Int

type instance F Bool = Bool

f x = (g x x, not x)

 x::

 Instantiate g at

F ~
 ~
 ~ Bool

g x

g x „v‟

not x

g :: F a -> a -> Int
type instance F Bool = Bool

f x = (g x x,, not x)

We have to
solve this

first

Order of
encounter

 Cannot solve constraint (C a) until we
“later” discover that (~ Bool)

 Need to defer constraint solving, rather
than doing it all “on the fly”

op :: C a x => a -> x -> Int
instance Eq a => C a Bool

f x = let g :: a Eq a => a -> a
 g a = op a x
 in g (not x)

x :
Constraint: C a

op :: C a x => a -> x -> Int
instance Eq a => C a Bool

f x = let g :: a Eq a => a -> a
 g a = op a x
 in g (not x)

x :
Constraint: C a

(a. Eq a => C a)

 ~ Bool

Solve
this
first

And
then
this

Haskell source
program

Large syntax,

with many
many

constructors

A constraint, W

Small syntax,
with few

constructors

Constraint
generation

Residual
constraint

S
olve

Report errors

Step 1:
Easy

Step 2:
Hard

Haskell source
program

Large syntax,

with many
many

constructors

A constraint, W

Small syntax,
with few

constructors

Constraint
generation

Residual
constraint

S
olve

Report errors

F::= C t1..tn | t1 ~ t2 | F1 F2

W ::= F | W1 W2 | a1..an. FW

 Modular: Totally separate
 constraint generation (7 modules, 3000 loc)

 constraint solving (5 modules, 3000 loc)

 error message generation (1 module, 800 loc)

 Independent of the order in which you
traverse the source program.

 Can solve the constraint however you like
(outside-in is good), including iteratively.

 Efficient: constraint generator does a bit of “on
the fly” unification to solve simple cases, but
generates a constraint whenever anything looks
tricky

 All type error messages generated from the
final, residual unsolved constraint. (And hence
type errors incorporate results of all solved
constraints. Eg “Can‟t match [Int] with Bool”,
rather than “Can‟t match [a] with Bool”)

 Cured a raft of type inference bugs

F::= C t1..tn Class constraint
 | t1 ~ t2 Equality constraint
 | F1 F2 Conjunction

 | True

W ::= F Flat constraint
 | W1 W2 Conjunction

 | a1..an. FW Implication

F::= d::C t1..tn Class constraint
 | c::t1 ~ t2 Equality constraint
 | F1 F2 Conjunction

 | True

W ::= F Flat constraint
 | W1 W2 Conjunction

 | a1..an. FW Implication

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

f :: T a -> Maybe a

f x = case x of

 T1 z -> Just z

 T2 -> False

T1 :: a. (a~Bool) -> Bool -> T a

f :: T a -> Maybe a

f (a:*) (x:T a)

 = case x of

 T1 (c:a~Bool) (z:Bool)

 -> let

 in Just z c2

 T2 -> False

T1 :: a. (a~Bool) -> Bool -> T a

(c :: a~Bool) => c2 :: Maybe Bool ~ Maybe a

Elaborated
program

plus
constraint to

solve

 (c :: a~Bool) => c2 :: Maybe Bool ~ Maybe a

(c :: a~Bool) => c3 :: Bool ~ a

c2 = Maybe c3

(c :: a~Bool) => c4 :: a ~ Bool

c3 = sym c4

(c :: a~Bool) => True

c4 = c

 f :: T a -> Maybe a

f (a:*) (x:T a)

 = case x of

 T1 (c:a~Bool) (z:Bool)

 -> let c4:a~Bool = c

 c3:Bool~a = sym c4

 c2:Maybe Bool ~ Maybe a = Maybe c3

 in Just z c2

 T2 -> False

 Constraint solving takes place by successive
rewrites of the constraint

 Each rewrite generates a binding, for
 a type variable (fixing a unification variable)

 a dictionary (class constraints)

 a coercion (equality constraint)

as we go

 Bindings record the proof steps

 Bindings get injected back into the term

What type shall we infer for f?

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

f x y = case x of

 T1 z -> True

 T2 -> y

What type shall we infer for f?

 f :: b. T b -> b -> b

 f :: b. T b -> Bool -> Bool

Neither is more general than the other!

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

f x y = case x of

 T1 z -> True

 T2 -> y

data T a where

 T1 :: Bool -> T Bool

 T2 :: T a

f x y = case x of

 T1 z -> True

 T2 -> y

f :: T -> ->

(~ Bool => ~ Bool) (~)

From T1
branch

From T2
branch

f :: T -> ->

(~ Bool => ~ Bool) (~)

Two solutions, neither principal

 := Bool

 := a

GHC’s conclusion
No principal solution,

so reject the
program

(~ Bool => ~ Bool) (~)

 Treat as untouchable under the (~Bool)

equality; i.e. (~Bool) is not solvable

 Equality information propagates outside-in

 So (~ Bool => ~ Bool) (~)
is soluble

 Generalises beautifully to more complex
constraints:
 Functional dependencies
 Implicit parameters
 Type families
 Kind constraints
 Deferred type errors and holes

 Robust foundation for new crazy type stuff.

 Provides a great “sanity check” for the type system:
is it easy to generate constraints, or do we need a
new form of constraint?

 All brought together in an epic 80-page JFP paper
“Modular type inference with local assumptions”

Vive la France

 The rise of dynamic languages

 “The type errors are getting in my way”

 Feedback to programmer
 Static: type system

 Dynamic: run tests

“Programmer is denied dynamic feedback in the
periods when the program is not globally type
correct” [DuctileJ, ICSE‟11]

 Underlying problem: forces programmer to
fix all type errors before running any code.

Goal: Damn the torpedos

Compile even type-incorrect
programs to executable code,
without losing type soundness

 Not just the command line: can load modules with
type errors --- and run them

 Type errors occur at run-time if (and only if) they
are actually encountered

bash$ ghci –fdefer-type-errors

ghci> let foo = (True, ‘a’ && False)

Warning: can’t match Char with Bool

gici> fst foo

True

ghci> snd foo

Error: can’t match Char with Bool

 Quick, what type does the “_” have?

 Agda does this, via Emacs IDE

{-# LANGUAGE TypeHoles #-}

module Holes where

f x = (reverse . _) x

Holes.hs:2:18:

 Found hole ‘_’ with type: a -> [a1]

 Relevant bindings include

 f :: a -> [a1] (bound at Holes.hs:2:1)

 x :: a (bound at Holes.hs:2:3)

 In the second argument of (.), namely ‘_’

 In the expression: reverse . _

 In the expression: (reverse . _) x

f x = [_a, x::[Char], _b:_c]

Holes:2:12:

 Found hole `_a' with type: [Char]

 In the expression: _a

 In the expression: [_a, x :: [Char], _b : _c]

 In an equation for `f': f x = [_a, x :: [Char], _b : _c]

Holes:2:27:

 Found hole `_b' with type: Char

 In the first argument of `(:)', namely `_b'

 In the expression: _b : _c

 In the expression: [_a, x :: [Char], _b : _c]

Holes:2:30:

 Found hole `_c' with type: [Char]

 In the second argument of `(:)', namely `_c'

 In the expression: _b : _c

 In the expression: [_a, x :: [Char], _b : _c]

 -XTypeHoles and –fdefer-type-errors work
together

 With both,
 you get warnings for holes,

 but you can still run the program

 If you evaluate a hole you get a runtime
error.

 Presumably, we generate a program with
suitable run-time checks.

 How can we be sure that the run-time
checks are in the right place, and stay in
the right places after optimisation?

 Answer: not a hack at all, but a thing of
beauty!

 Zero runtime cost

(True, „a‟ && False)

(True, („a‟ c7) && False) c7 : Int ~ Bool

Haskell term

Constraints Elaborated program
(mentioning constraint variables)

let c7: Int~Bool
= error “Can‟t match ...”

(True, („a‟ c7) && False) c7 : Int ~ Bool

Constraints Elaborated program
(mentioning constraint variables)

Solve

 Use lazily evaluated “error” evidence

 Cast evaluates its evidence

 Error triggered when (and only when) „a‟
must have type Bool

let c7: Int~Bool
= error “Can‟t match ...”

(True, („a‟ c7) && False) c7 : Int ~ Bool

Constraints Elaborated program
(mentioning constraint variables)

Solve

 Use lazily evaluated “error” evidence

 Cast evaluates its evidence

 Error triggered when (and only when) „a‟
must have type Bool

Uh oh! What
became of coercion

erasure?

True && _

(True && h7) h7 : Hole
 ~ Bool

Haskell term

Constraints
Elaborated program
(mentioning constraint variables)

(True && h7) h7 : Hole Bool

Constraints
Elaborated program
(mentioning constraint variables)

let h7: Bool
 = error “Evaluated hole” Solve

 Again use lazily evaluated “error” evidence

 Error triggered when (and only when) the
hole is evaluated

 We need to infer the most general type for
 g :: a. Num a => a -> a
so that it can be called at Int and Float

 Generate constraints for g‟s RHS, simplify
them, quantify over variables not free in the
environment

 BUT: what happened to “generate then solve”?

f :: Int -> Float -> (Int,Float)

f x y = let g v = v+v

 in (g x, g y)

 data T a where
 C :: T Bool
 D :: a -> T a

f :: T a -> a -> Bool
f v x = case v of
 C -> let y = not x
 in y
 D x -> True

Should this
typecheck?

In the C
alternative, we

know a~Bool

 data T a where
 C :: T Bool
 D :: a -> T a

f :: T a -> a -> Bool
f v x = let y = not x
 in case v of
 C -> y
 D x -> True

What about
this?

Constraint
a~Bool arises
from RHS

 data T a where
 C :: T Bool
 D :: a -> T a

f :: T a -> a -> Bool
f v x = let y () = not x
 in case v of
 C -> y ()
 D x -> True

Or this?

 data T a where
 C :: T Bool
 D :: a -> T a

f :: T a -> a -> Bool
f v x = let y :: (a~Bool) => () -> Bool
 y () = not x
 in case v of
 C -> y ()
 D x -> True

But this
surely
should!

Here we
abstract over

the a~Bool
constraint

Abstract over all unsolved constraints from
RHS

 Big types, unexpected to programmer

 Errors postponed to usage sites

 Have to postpone ALL unification

 (Serious) Sharing loss for thunks

 (Killer) Can‟t abstract over implications
 f :: (forall a. (a~[b]) => b~Int) => blah

Do not generalise local let-bindings at all!

 Simple, straightforward, efficient

 Polymorphism is almost never used in local
bindings (see “Modular type inference with
local constraints”, JFP)

 GHC actually generalises local bindings that
could have been top-level, so there is no
penalty for localising a definition.

 Is this all this coercion faff efficient?

 ML typechecking has zero runtime cost; so
anything involving these casts and coercions
looks inefficient, doesn‟t it?

 Remember deferred type errors: cast must
evaluate its coercion argument.

 What became of erasure?

let c7: Bool~Bool = refl Bool
in (x c7) && False)

 Expose evaluation to optimiser

data Int = I# Int#

plusInt :: Int -> Int -> Int
plusInt x y
 = case x of I# a ->
 case y of I# b ->
 I# (a +# b)

x `plusInt` x

= case x of I# a ->
 case x of I# b ->
 I# (a +# b)

= case x of I# a ->
 I# (a +# a)

Library code Inline + optimise

 So (~#) is the primitive type constructor

 (#) is the primitive language construct

 And (#) is erasable

data a ~ b = Eq# (a ~# b)

() :: (a~b) -> a -> b
x c = case c of
 Eq# d -> x # d

refl :: t~t
refl = /\t. Eq# (refl# t)

Library code
Inline + optimise

let c7 = refl Bool
in (x c7) && False

 ...inline refl,
= (x # (refl# Bool))
 && False

A T1 value allocated in the heap looks like this

Question: what is the
representation for (a~#Bool)?

data T where

 T1 :: a. (a~#Bool) -> Double# -> Bool -> T a

T1 3.8

64 bits 32 bits

???

True

A T1 value allocated in the heap looks like this

Question: what is the
representation for (a~#Bool)?

Answer: a 0-bit value

data T where

 T1 :: a. (a~#Bool) -> Double# -> Bool -> T a

T1 3.8

64 bits 32 bits

True

0 bits

 User API and type inference deal exclusively in
boxed equality (a~b)

 Hence all evidence (equalities, type classes, implicit
parameters...) is uniformly boxed

 Ordinary, already-implemented optimisation unwrap
almost all boxed equalities.

 Unboxed equality (a~#b) is represented by 0-bit
values. Casts are erased.

 Possibility of residual computations to check
termination

data a ~ b = Eq# (a ~# b)

 Modular type inference with local
assumptions (JFP 2011). Epic paper.

 Practical type inference for arbitrary-rank
types (JFP 2007). Full executable code; but
does not use the Glorious French Approach

