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 Instantiate „reverse‟ with a unification variable 
, standing for an as-yet-unknown type.  So this 
occurrence of reverse has type [] -> []. 

 Constrain expected arg type [] equal to actual 
arg type [Bool], thus  ~ Bool.  

 Solve by unification:  := Bool 

 

reverse  :: a. [a] -> [a] 
xs :: [Bool] 
 
foo :: [Bool] 
foo = reverse xs 



 Instantiate „(>)‟ to  ->  -> Bool, and emit a 
wanted constraint (Ord ) 

 Constrain  ~ [a], since xs :: [a], and solve by 
unification 

 Solve wanted constraint (Ord ), i.e. (Ord [a]), 
from given constraint (Ord a) 

 Here „a‟ plays the role of a skolem constant. 

 

(>) :: a. Ord a => a -> a -> Bool 
instance Ord a => Ord [a] where ... 
 
foo :: a. Ord a => [a] -> [a] -> Bool 
foo xs ys = not (xs > ys) 



 Instantiate „(>)‟ to  ->  -> Bool, 
and emit a wanted constraint  
(Ord ) 

 Constrain  ~ [a], since xs :: [a], 
and solve by unification 

 Solve wanted constraint (Ord ) 
from given constraint (Ord a) 

 Here „a‟ plays the role of a skolem 
constant. 

 

(>) :: a. Ord a => a -> a -> Bool 
instance Ord a => Ord [a] where ... 
 
foo :: a. Ord a => [a] -> [a] -> Bool 
foo xs ys = not (xs > ys) 

 

 

a. Ord a =>  

Ord    ~ [a] 

Solve 
this 



 instance Ord a => Ord [a] where ... 
 
foo :: a. Ord a => [a] -> [a] -> Bool 
foo xs ys = not (xs > ys) 

dfOrdList :: a. Ord a -> Ord [a] 
 
foo :: a. Ord a -> [a] -> [a] -> Bool 
foo a (d::Ord a) (xs::[a]) (ys::[a])  
 = let d2::Ord [a] = dfOrdList a d 
    in not ((>) [a] d2 xs ys) 

Elaborate 
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Elaboration inserts 

 Type and dictionary applications 

 Type and dictionary abstractions 

 Dictionary bindings 

dfOrdList :: a. Ord a -> Ord [a] 
 
foo :: a. Ord a -> [a] -> [a] -> Bool 
foo a (d::Ord a) (xs::[a]) (ys::[a])  
 = let d2::Ord [a] = dfOrdList a d 
    in not ((>) [a] d2 xs ys) 



 Type and dictionary applications 
(inserted when we instantiate) 

 Type and dictionary abstractions 
(inserted when we generalise) 

 Dictionary bindings 
(inserted when we solve constraints) 

dfOrdList :: a. Ord a -> Ord [a] 
 
foo :: a. Ord a -> [a] -> [a] -> Bool 
foo a (d::Ord a) (xs::[a]) (ys::[a])  
 = let d2::Ord [a] = dfOrdList a d 
    in not ((>) [a] d xs ys) 



 Instantiate „(>)‟ to  ->  -> Bool, 
and emit a wanted constraint  
(Ord ) 

 Constrain  ~ [a], since xs :: [a], 
and solve by unification 

 Solve wanted constraint (Ord ) 
from given constraint (Ord a) 

 Here „a‟ plays the role of a skolem 
constant. 

 

 

 

a. d::Ord a =>  

d2::Ord    ~ [a] 

Solve this, creating a 
binding for d2, 
mentioning d 

dfOrdList :: a. Ord a -> Ord [a] 
 
foo :: a. Ord a -> [a] -> [a] -> Bool 
foo a (d::Ord a) (xs::[a]) (ys::[a])  
 = let d2::Ord [a] = dfOrdList a d 
    in not ((>) [a] d2 xs ys) 



 
type Id = Var 

data Var = Id Name Type | .... 

 

data HsExpr n  

  = HsVar n | HsApp (HsExpr n) (HsExpr n) | .. 

 

tcExpr :: HsExpr Name -> TcRhoType -> TcM (HsExpr Id) 

Term to 
typecheck 

Expected 
type 

Elaborated 
term 





 Old school 
 Find a unfication problem 

 Solve it 

 If fails, report error 

 Otherwise, proceed 

 This will not work any more 
 g :: F a -> a -> Int 

type instance F Bool = Bool 
 
f x = (g x x, not x) 



 x:: 

 Instantiate g at   

F  ~      
 ~     
 ~ Bool   

g x 

g x „v‟ 

not x 

g :: F a -> a -> Int 
type instance F Bool = Bool 
 
f x = (g x x, ....,  not x) 

We have to 
solve this 

first 

Order of 
encounter 



 Cannot solve constraint (C a ) until we 
“later” discover that ( ~ Bool) 

 Need to defer constraint solving, rather 
than doing it all “on the fly” 

op :: C a x => a -> x -> Int 
instance Eq a => C a Bool 
 
f x = let g :: a Eq a => a -> a 
              g a = op a x 
         in g (not x) 

x :  
Constraint: C a  



op :: C a x => a -> x -> Int 
instance Eq a => C a Bool 
 
f x = let g :: a Eq a => a -> a 
              g a = op a x 
         in g (not x) 

x :  
Constraint: C a  

(a. Eq a => C a )   
 

 ~ Bool 

Solve 
this 
first 

And 
then 
this 
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A constraint, W 
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Report errors 

Step 1: 
Easy 

Step 2: 
Hard 



Haskell source 
program 

 
Large syntax, 

with many 
many 

constructors 

A constraint, W 
 

Small syntax, 
with few 

constructors 

Constraint 
generation 

Residual 
constraint 

S
olve

 

Report errors 

F::= C t1..tn  | t1 ~ t2 | F1  F2 
 
W ::= F | W1  W2 | a1..an. FW 



 Modular: Totally separate  
 constraint generation (7 modules, 3000 loc) 

 constraint solving (5 modules, 3000 loc) 

 error message generation (1 module, 800 loc) 

 Independent of the order in which you 
traverse the source program.   

 Can solve the constraint however you like 
(outside-in is good), including iteratively. 



 Efficient: constraint generator does a bit of “on 
the fly” unification to solve simple cases, but 
generates a constraint whenever anything looks 
tricky 

 All type error messages generated from the 
final, residual unsolved constraint.  (And hence 
type errors  incorporate results of all solved 
constraints.  Eg “Can‟t match [Int] with Bool”, 
rather than “Can‟t match [a] with Bool”) 

 Cured a raft of type inference bugs 



F::= C t1..tn  Class constraint  
   | t1 ~ t2  Equality constraint 
   | F1  F2 Conjunction 

   | True 
 
W ::= F  Flat constraint 
   | W1  W2  Conjunction 

    | a1..an. FW Implication 



F::= d::C t1..tn  Class constraint  
   | c::t1 ~ t2  Equality constraint 
   | F1  F2 Conjunction 

   | True 
 
W ::= F  Flat constraint 
   | W1  W2  Conjunction 

    | a1..an. FW Implication 



 
data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f :: T a -> Maybe a 

f x = case x of  

          T1 z -> Just z 

          T2   -> False 

T1 :: a. (a~Bool) -> Bool -> T a 



 
f :: T a -> Maybe a 

f (a:*) (x:T a) 

   = case x of  

        T1 (c:a~Bool) (z:Bool)  

           -> let 

                  

              in Just z  c2 

        T2 -> False 

T1 :: a. (a~Bool) -> Bool -> T a 

(c :: a~Bool)  =>  c2 :: Maybe Bool ~ Maybe a 

Elaborated 
program 

plus 
constraint to 

solve 



 (c :: a~Bool)  =>  c2 :: Maybe Bool ~ Maybe a 

(c :: a~Bool)  =>  c3 :: Bool ~ a 

c2 = Maybe c3 

(c :: a~Bool)  =>  c4 :: a ~ Bool 

c3 = sym c4 

(c :: a~Bool)  =>  True 

c4 = c 



 f :: T a -> Maybe a 

f (a:*) (x:T a) 

  = case x of  

      T1 (c:a~Bool) (z:Bool)  

        -> let  c4:a~Bool               = c 

 c3:Bool~a               = sym c4 

 c2:Maybe Bool ~ Maybe a = Maybe c3 

           in Just z  c2 

      T2   -> False 



 Constraint solving takes place by successive 
rewrites of the constraint 

 Each rewrite generates a binding, for 
 a type variable (fixing a unification variable) 

 a dictionary (class constraints) 

 a coercion (equality constraint) 

as we go 

 Bindings record the proof steps 

 Bindings get injected back into the term 



What type shall we infer for f? 

data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f x y = case x of  

          T1 z -> True 

          T2   -> y 



What type shall we infer for f? 

 f :: b. T b -> b -> b 

 f :: b. T b -> Bool -> Bool 

Neither is more general than the other! 

data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f x y = case x of  

          T1 z -> True 

          T2   -> y 



data T a where 

  T1 :: Bool -> T Bool 

  T2 :: T a 

 

f x y = case x of  

          T1 z -> True 

          T2   -> y 

f :: T  ->  ->  
 
( ~ Bool =>  ~ Bool)  ( ~ )  

From T1 
branch 

From T2 
branch 



f :: T  ->  ->  
 
( ~ Bool =>  ~ Bool)  ( ~ )  

Two solutions, neither principal 

  := Bool 

  := a 

GHC’s conclusion 
No principal solution, 

so reject the 
program 



( ~ Bool =>  ~ Bool)  ( ~ )  

 Treat  as untouchable under the (~Bool) 

equality; i.e. (~Bool) is not solvable 

 Equality information propagates outside-in 

 So    ( ~ Bool =>  ~ Bool)  ( ~ )  
is  soluble 

 

 

 



 Generalises beautifully to more complex 
constraints: 
 Functional dependencies 
 Implicit parameters 
 Type families 
 Kind constraints 
 Deferred type errors and holes 

 Robust foundation for new crazy type stuff. 

 Provides a great “sanity check” for the type system: 
is it easy to generate constraints, or do we need a 
new form of constraint? 

 All brought together in an epic 80-page JFP paper 
“Modular type inference with local assumptions” 

 

Vive la France 





 The rise of dynamic languages 

 “The type errors are getting in my way” 

 Feedback to programmer 
 Static: type system 

 Dynamic: run tests 

“Programmer is denied dynamic feedback in the 
periods when the program is not globally type 
correct” [DuctileJ, ICSE‟11] 



 Underlying problem: forces programmer to 
fix all type errors before running any code.  

Goal: Damn the torpedos 
 

Compile even type-incorrect 
programs to executable code, 
without losing type soundness 



 Not just the command line: can load modules with 
type errors --- and run them 

 Type errors occur at run-time if (and only if) they 
are actually encountered 

bash$ ghci –fdefer-type-errors 

ghci> let foo = (True, ‘a’ && False) 

Warning: can’t match Char with Bool 

gici> fst foo 

True 

ghci> snd foo 

Error: can’t match Char with Bool 



 Quick, what type does the “_” have? 

 

 

 

 

 Agda does this, via Emacs IDE 

{-# LANGUAGE TypeHoles #-} 

module Holes where 

f x = (reverse . _) x 

Holes.hs:2:18: 

    Found hole ‘_’ with type: a -> [a1] 

    Relevant bindings include 

      f :: a -> [a1] (bound at Holes.hs:2:1) 

      x :: a (bound at Holes.hs:2:3) 

    In the second argument of (.), namely ‘_’    

    In the expression: reverse . _ 

    In the expression: (reverse . _) x 



f x = [_a, x::[Char], _b:_c ] 

Holes:2:12: 

    Found hole `_a' with type: [Char] 

    In the expression: _a 

    In the expression: [_a, x :: [Char], _b : _c] 

    In an equation for `f': f x = [_a, x :: [Char], _b : _c] 

 

Holes:2:27: 

    Found hole `_b' with type: Char 

    In the first argument of `(:)', namely `_b' 

    In the expression: _b : _c 

    In the expression: [_a, x :: [Char], _b : _c] 

 

Holes:2:30: 

    Found hole `_c' with type: [Char] 

    In the second argument of `(:)', namely `_c' 

    In the expression: _b : _c 

    In the expression: [_a, x :: [Char], _b : _c] 



 -XTypeHoles and –fdefer-type-errors work 
together 

 With both,  
 you get warnings for holes,  

 but you can still run the program 

 If you evaluate a hole you get a runtime 
error. 



 Presumably, we generate a program with 
suitable run-time checks. 

 How can we be sure that the run-time 
checks are in the right place, and stay  in 
the right places after optimisation? 

 Answer: not a hack at all, but a thing of 
beauty! 

 Zero runtime cost 



(True, „a‟ && False) 

(True, („a‟  c7) && False) c7 : Int ~ Bool 

Haskell term 

Constraints Elaborated program 
(mentioning constraint variables) 



let c7: Int~Bool  
= error “Can‟t match ...” 

(True, („a‟  c7) && False) c7 : Int ~ Bool 

Constraints Elaborated program 
(mentioning constraint variables) 

Solve 

 Use lazily evaluated “error” evidence 

 Cast evaluates its evidence 

 Error triggered when (and only when) „a‟ 
must have type Bool 



let c7: Int~Bool  
= error “Can‟t match ...” 

(True, („a‟  c7) && False) c7 : Int ~ Bool 

Constraints Elaborated program 
(mentioning constraint variables) 

Solve 

 Use lazily evaluated “error” evidence 

 Cast evaluates its evidence 

 Error triggered when (and only when) „a‟ 
must have type Bool 

Uh oh!  What 
became of coercion 

erasure? 



True && _ 

(True && h7) h7 : Hole  
 ~ Bool 

Haskell term 

Constraints 
Elaborated program 
(mentioning constraint variables) 



(True && h7) h7 : Hole Bool 

Constraints 
Elaborated program 
(mentioning constraint variables) 

let h7: Bool  
    = error “Evaluated hole” Solve 

 Again use lazily evaluated “error” evidence 

 Error triggered when (and only when) the 
hole is evaluated 





 We need to infer the most general type for 
 g :: a. Num a => a -> a 
so that it can be called at Int and Float 

 Generate constraints for g‟s RHS, simplify 
them, quantify over variables not free in the 
environment 

 BUT: what happened to “generate then solve”? 
   

f :: Int -> Float -> (Int,Float) 

f x y = let g v = v+v 

        in (g x, g y) 



 data T a where 
  C :: T Bool 
  D :: a -> T a 
 
f :: T a -> a -> Bool 
f v x = case v of 
 C -> let y = not x  
                       in y 
 D x -> True 

Should this 
typecheck? 

In the C 
alternative, we 

know a~Bool 



 data T a where 
  C :: T Bool 
  D :: a -> T a 
 
f :: T a -> a -> Bool 
f v x = let y = not x 
           in case v of 
 C -> y 
 D x -> True 

What about 
this? 

Constraint 
a~Bool arises 
from  RHS 



 data T a where 
  C :: T Bool 
  D :: a -> T a 
 
f :: T a -> a -> Bool 
f v x = let y () = not x 
           in case v of 
 C -> y () 
 D x -> True 

Or this? 



 data T a where 
  C :: T Bool 
  D :: a -> T a 
 
f :: T a -> a -> Bool 
f v x = let y :: (a~Bool) => () -> Bool  
                y () = not x 
           in case v of 
 C -> y () 
 D x -> True 

But this 
surely 
should! 

Here we 
abstract over 

the a~Bool 
constraint 



Abstract over all unsolved constraints from 
RHS 

 Big types, unexpected to programmer 

 Errors postponed to usage sites 

 Have to postpone ALL unification 

 (Serious) Sharing loss for thunks 

 (Killer) Can‟t abstract over implications 
  f :: (forall a. (a~[b]) => b~Int) => blah 

 



Do not generalise local let-bindings at all! 

 Simple, straightforward, efficient 

 Polymorphism is almost never used in local 
bindings (see “Modular type inference with 
local constraints”, JFP) 

 GHC actually generalises local bindings that 
could have been top-level, so there is no 
penalty for localising a definition. 





 Is this all this coercion faff efficient? 

 ML typechecking has zero runtime cost; so 
anything involving these casts and coercions 
looks inefficient, doesn‟t it? 



 Remember deferred type errors: cast must 
evaluate its coercion argument.   

 What became of erasure? 

let c7: Bool~Bool = refl Bool 
in (x  c7) && False) 



 Expose evaluation to optimiser 

data Int = I#  Int# 
 
plusInt :: Int -> Int -> Int 
plusInt x y  
  = case x of I# a -> 
     case y of I# b -> 
      I#  (a +# b) 

x `plusInt` x 
 
= case x of I# a -> 
   case x of I# b -> 
    I#  (a +# b) 
 
= case x of I# a -> 
    I#  (a +# a) 

Library code Inline + optimise 



 So (~#) is the primitive type constructor 

 (#) is the primitive language construct 

 And (#) is erasable 

data a ~ b = Eq#  (a ~# b) 
 
() :: (a~b) -> a -> b 
x  c = case c of 
                Eq# d -> x # d 
 
refl :: t~t 
refl = /\t. Eq# (refl# t) 

Library code 
Inline + optimise 

let c7 = refl Bool 
in (x  c7) && False 
 
 ...inline refl,  
=  (x #  (refl# Bool)) 
      && False 



A T1 value allocated in the heap looks like this  

 

 

 

Question: what is the  
representation for (a~#Bool)? 

data T where 

  T1 :: a. (a~#Bool) -> Double# -> Bool -> T a 

T1 3.8 

64 bits 32 bits 

??? 

True 



A T1 value allocated in the heap looks like this  

 

 

 

Question: what is the  
representation for (a~#Bool)? 

Answer: a 0-bit value 

data T where 

  T1 :: a. (a~#Bool) -> Double# -> Bool -> T a 

T1 3.8 

64 bits 32 bits 

True 

0 bits 



 User API and type inference deal exclusively in 
boxed equality (a~b) 

 Hence all evidence (equalities, type classes, implicit 
parameters...) is uniformly boxed 

 Ordinary, already-implemented optimisation unwrap 
almost all boxed equalities. 

 Unboxed equality (a~#b) is represented by 0-bit 
values.  Casts are erased. 

 Possibility of residual computations to check 
termination 

data a ~ b = Eq#  (a ~# b) 



 Modular type inference with local 
assumptions (JFP 2011).  Epic paper. 

 Practical type inference for arbitrary-rank 
types (JFP 2007).  Full executable code; but 
does not use the Glorious French Approach 


