For your reference (page 1 of 2):

\[e ::= \lambda x. e \mid x \mid e \circ e \mid \{ l_1 = e_1, \ldots, l_n = e_n \} | e \cdot l_i | \text{fix } e \]

\[v ::= \lambda x. e \mid e \mid \{ l_1 = e_1, \ldots, l_n = e_n \} \]

\[\tau ::= \text{int} \mid \tau \rightarrow \tau \mid \{ l_1 : \tau_1, \ldots, l_n : \tau_n \} \]

\[e \rightarrow e' \]

\[(\lambda x. e) v \rightarrow e[v/x] \]

\[\frac{e \rightarrow e'}{e_1 e_2 \rightarrow e_1' e_2'} \]

\[\frac{e \rightarrow e'}{e \circ e_2 \rightarrow v e_2' \tau} \]

\[\frac{e \rightarrow e'}{e \rightarrow e'[\tau]} \]

\[\frac{\text{fix } e \rightarrow \text{fix } e'}{\text{fix } \lambda x. e \rightarrow e[(\text{fix } \lambda x. e)/x]} \]

\[\{ l_1 = v_1, \ldots, l_n = v_n \}. l_i \rightarrow v_i \]

\[\frac{e_i \rightarrow e_i'}{\{ l_1 = v_1, \ldots, l_i-1 = v_{i-1}, l_i = e_i, \ldots, l_n = e_n \} \rightarrow \{ l_1 = v_1, \ldots, l_i = v_i, l_{i+1} = e_i', \ldots, l_n = e_n \} \]

\[\frac{\Gamma \vdash e : \tau}{\Gamma \vdash c : \text{int}} \]

\[\frac{\Gamma \vdash \lambda x : \tau. e \vdash \tau_1}{\Gamma \vdash \lambda x. e : \tau_1 \rightarrow \tau} \]

\[\frac{\Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 e_2 : \tau} \]

\[\frac{\Gamma \vdash e : \tau \rightarrow \tau}{\Gamma \vdash \text{fix } e : \tau} \]

\[\frac{\Gamma \vdash e_2 : \tau_2}{\Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2} \]

\[\frac{\Gamma \vdash e : \tau_1 \rightarrow \tau_2 \rightarrow \tau}{\Gamma \vdash e : \tau} \]

\[\frac{\Gamma \vdash v : \tau_1 \rightarrow \tau_2 \rightarrow \tau_3}{\Gamma \vdash e : \tau_1 \rightarrow \tau_2 \rightarrow \tau_3 \rightarrow \tau_4} \]

\[\frac{\Gamma \vdash e : \tau}{\Gamma \vdash \text{fix } e : \tau} \]

\[e ::= c \mid x \mid \lambda x : \tau. e \mid e \circ e \mid \{ l_1 = e_1, \ldots, l_n = e_n \} \]

\[\tau ::= \text{int} \mid \tau \rightarrow \tau \mid \alpha \mid \forall \alpha . \tau \]

\[v ::= c \mid \lambda x : \tau. e \mid \Lambda \alpha. e \]

\[\Gamma ::= \cdot | \Gamma , x : \tau \]

\[\Delta ::= \cdot | \Delta , \alpha \]

\[e \rightarrow e' \]

\[\frac{e_1 \rightarrow e_1'}{e_1 e_2 \rightarrow e_1' e_2'} \]

\[\frac{e \rightarrow e'}{v e_2 \rightarrow v e_2'} \]

\[\frac{e \rightarrow e'[\tau]}{e[\tau i] \rightarrow e'[\tau]} \]

\[\frac{(\lambda x : \tau. e) v \rightarrow e[v/x]}{(\Lambda \alpha. e)[\tau] \rightarrow e[\tau /\alpha]} \]

\[\Delta ; \Gamma \vdash e : \tau \]

\[\frac{\Delta ; \Gamma \vdash (x : \tau_1 \rightarrow e) \vdash \tau_1}{\Delta ; \Gamma \vdash \lambda x : \tau_1. e : \tau_1 \rightarrow \tau_2} \]

\[\frac{\Delta ; \Gamma \vdash e_2 : \tau_2}{\Delta ; \Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2} \]

\[\frac{\Delta \vdash (\forall \alpha . e)[\tau_1]}{\Delta ; \Gamma \vdash \forall \alpha . e : \forall \alpha . \tau_1} \]

\[\frac{\Delta ; \Gamma \vdash e : \tau_1}{\Delta ; \Gamma \vdash \text{fix } e : \tau_1} \]

\[\frac{\Delta ; \Gamma \vdash e [\tau_i] : \tau_i [\tau_i/\alpha]}{\Delta ; \Gamma \vdash \text{fix } e [\tau_i] : \tau_i [\tau_i/\alpha]} \]
For your reference (page 2 of 2):

\[
\begin{align*}
e & ::= \ldots | \text{A}(e) | \text{B}(e) | (\text{match } e \text{ with } \text{Ax} \cdot e | \text{Bx} \cdot e) | (e, e) | e.1 | e.2 \\
\tau & ::= \ldots | \tau_1 + \tau_2 | \tau_1 \ast \tau_2 \\
v & ::= \ldots | \text{A}(v) | \text{B}(v) | (v, v)
\end{align*}
\]

\[e \rightarrow e'\]

\[
\begin{array}{c}
A(e) \rightarrow A(e') \\
B(e) \rightarrow B(e') \\
\text{match } e \text{ with } \text{Ax} \cdot e_1 | \text{By} \cdot e_2 \rightarrow \text{match } e' \text{ with } \text{Ax} \cdot e_1 | \text{By} \cdot e_2
\end{array}
\]

\[
\begin{array}{c}
\text{match } A(v) \text{ with } \text{Ax} \cdot e_1 | \text{By} \cdot e_2 \rightarrow e_1[v/x] \\
\text{match } B(v) \text{ with } \text{Ax} \cdot e_1 | \text{By} \cdot e_2 \rightarrow e_2[v/y]
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash e : \tau \\
\Gamma \vdash e : \tau_1 + \tau_2, \Gamma, x : \tau_1 \vdash e_1 : \tau, \Gamma, y : \tau_2 \vdash e_2 : \tau \\
\Gamma \vdash \text{match } e \text{ with } \text{Ax} \cdot e_1 | \text{By} \cdot e_2 : \tau \\
\Gamma \vdash \text{match } A(e) : \tau_1 + \tau_2, \Gamma \vdash \text{match } B(e) : \tau_1 + \tau_2
\end{array}
\]

\[
\begin{array}{c}
\Gamma \vdash e : \tau_1, \Gamma \vdash e_2 : \tau_2, \Gamma \vdash (e_1, e_2) : \tau_1 \ast \tau_2 \\
\Gamma \vdash e_1 : \tau_1, \Gamma \vdash e_2 : \tau_2, \Gamma \vdash e : \tau_1, \Gamma \vdash e_2 : \tau_2
\end{array}
\]

\[
\begin{array}{c}
\frac{e \vdash e'}{E[e] \rightarrow E[e']} \\
\frac{e \vdash e'}{E[\text{letcc} \ x \cdot e] \rightarrow E[\text{letcc} \ x \cdot e]} \\
\frac{e \vdash e'}{E[\text{throw } E \cdot e] \rightarrow E[\text{throw } E \cdot e]} \\
\frac{e \vdash e'}{E[\text{cont } E \cdot e] \rightarrow E[\text{cont } E \cdot e]}
\end{array}
\]

\[
\begin{array}{c}
\frac{(\lambda x \cdot e) v \vdash e[v/x]}{(v_1, v_2).1 \vdash v_1} \\
\frac{(v_1, v_2).2 \vdash v_2}{E[\text{throw } E \cdot e] \rightarrow E'[v]}
\end{array}
\]

Module Thread:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>'a promise</td>
<td>'a promise</td>
</tr>
<tr>
<td>create : ('a -> 'b) -> 'a -> t</td>
<td>val future : (unit -> 'a) -> 'a promise</td>
<td></td>
</tr>
<tr>
<td>join : t -> unit</td>
<td>val force : 'a promise -> 'a</td>
<td></td>
</tr>
</tbody>
</table>

Module Mutex:

<table>
<thead>
<tr>
<th>Type</th>
<th>Value 1</th>
<th>Value 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>'a channel</td>
<td>'a event</td>
</tr>
<tr>
<td>create : unit -> t</td>
<td>new_channel : unit -> 'a channel</td>
<td></td>
</tr>
<tr>
<td>lock : t -> unit</td>
<td>send : 'a channel -> 'a -> unit event</td>
<td></td>
</tr>
<tr>
<td>unlock : t -> unit</td>
<td>receive : 'a channel -> 'a event</td>
<td></td>
</tr>
<tr>
<td>choose : 'a event list -> 'a event</td>
<td>wrap : 'a event -> ('a -> 'b) -> 'b event</td>
<td></td>
</tr>
<tr>
<td>sync : 'a event -> 'a</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2
1. Suppose you design a new type system for Java to prevent null-pointer dereferences. However, due to poor design, your type system has the strange property that it does not accept any programs that are more than 12 lines long (it accepts some but not all shorter programs).

Explain your answers briefly.

(a) Is it definitely the case given just the information above that your type system is *sound* with respect to null-pointer dereferences?

(b) Is it possible that your type system is *sound* with respect to null-pointer dereferences?

(c) Is it definitely the case given just the information above that your type system is *complete* with respect to null-pointer dereferences?

(d) Is it possible that your type system is *complete* with respect to null-pointer dereferences?

Solution:

(a) No, it might accept a program less than 12 lines long that on some inputs dereferences null.

(b) Yes, soundness means the type system accepts no programs that dereference null. That might be the case for all the accepted programs.

(c) No, it is not even possible (see part (d)).

(d) No, completeness means the type system rejects no programs that definitely do not dereference null. There are an infinite number of such programs, some of which are longer than 12 lines.
2. Consider a typed-lambda calculus with subtyping. Assume:

- The types are $\mathcal{T} ::= \text{int} \mid \mathcal{T} \to \mathcal{T} \mid \{l_1 : \mathcal{T}_1, \ldots, l_n : \mathcal{T}_n\}$.
- The subtyping judgment has exactly the six inference rules on page 1 (under $\mathcal{T}_1 \leq \mathcal{T}_2$).

For each of the following claims, if it is true, prove it. If it is false, provide a counterexample by giving a \mathcal{T}_1 and \mathcal{T}_2.

(a) If $\mathcal{T}_1 \neq \mathcal{T}_2$ and there is a complete derivation of $\mathcal{T}_1 \leq \mathcal{T}_2$ that has no use of the rule for function subtyping, then there is a complete derivation of $\mathcal{T}_1 \leq \mathcal{T}_2$ that does not use the rule for reflexivity.

(b) If $\mathcal{T}_1 \neq \mathcal{T}_2$ and there is a complete derivation of $\mathcal{T}_1 \leq \mathcal{T}_2$ that has no use of the rule for width subtyping on records, then there is a complete derivation of $\mathcal{T}_1 \leq \mathcal{T}_2$ that does not use the rule for reflexivity.

Solution:

(a) True. Proof is by induction on the derivation of $\mathcal{T}_1 \leq \mathcal{T}_2$ assuming $\mathcal{T}_1 \neq \mathcal{T}_2$ and the derivation does not use function subtyping. Proceed by cases on the rule used in the bottommost step of the derivation:

- Reflexivity: This case holds vacuously because $\mathcal{T}_1 \neq \mathcal{T}_2$, but the rule requires $\mathcal{T}_1 = \mathcal{T}_2$.
- Function: This case holds vacuously because the assumed derivation does not use this rule.
- Permutation: This case holds trivially because the derivation does not use reflexivity.
- Width: This case holds trivially because the derivation does not use reflexivity.
- Depth: First notice $\mathcal{T}_1 \neq \mathcal{T}_2$ implies $\mathcal{T}_1 \neq \mathcal{T}'_2$. Second notice the derivation of $\mathcal{T}_1 \leq \mathcal{T}'_2$ does not use function subtyping since the derivation of $\mathcal{T}_1 \leq \mathcal{T}_2$ does not. So by induction there exists a derivation of $\mathcal{T}_1 \leq \mathcal{T}_2'$ that does not use reflexivity. So we can use that derivation and depth subtyping to show $\mathcal{T}_1 \leq \mathcal{T}_2$ without using reflexivity.
- Transitivity: We know there exists a τ such that $\mathcal{T}_1 \leq \tau$ and $\tau \leq \mathcal{T}_2$ and there are derivations of both facts that do not use function subtyping. Consider these exhaustive cases:
 - If $\mathcal{T}_1 = \tau$, then $\mathcal{T}_1 \neq \mathcal{T}_2$ ensures $\mathcal{T} \neq \mathcal{T}_2$. So by induction on the derivation of $\tau \leq \mathcal{T}_2$, there exists a derivation of $\tau \leq \mathcal{T}_2$ without using reflexivity. Since $\mathcal{T}_1 = \tau$, this suffices.
 - If $\mathcal{T} = \mathcal{T}_2$, then $\mathcal{T}_1 \neq \mathcal{T} \neq \mathcal{T}_2$. So by induction on the derivation of $\mathcal{T}_1 \leq \tau$, there exists a derivation of $\mathcal{T}_1 \leq \tau$ without using reflexivity. Since $\mathcal{T} = \mathcal{T}_2$, this suffices.
 - If $\mathcal{T}_1 \neq \mathcal{T}$ and $\mathcal{T} \neq \mathcal{T}_2$, then by induction (twice) on the derivations of $\mathcal{T}_1 \leq \mathcal{T}$ and $\mathcal{T} \leq \mathcal{T}_2$, there exist derivations of $\mathcal{T}_1 \leq \mathcal{T}$ and $\mathcal{T} \leq \mathcal{T}_2$ without using reflexivity. We can use these derivations and transitivity to derive $\mathcal{T}_1 \leq \mathcal{T}_2$ without using reflexivity.

(b) False. Let $\mathcal{T}_1 = \text{int} \to \{l_1 : \text{int}, l_2 : \text{int}\}$ and $\mathcal{T}_2 = \text{int} \to \{l_2 : \text{int}, l_1 : \text{int}\}$.

Additional unnecessary explanation: Note $\mathcal{T}_1 \neq \mathcal{T}_2$ and we can derive $\mathcal{T}_1 \leq \mathcal{T}_2$ as follows:

\[
\begin{align*}
\text{int} \leq \text{int} & \quad \{l_1 : \text{int}, l_2 : \text{int}\} \leq \{l_2 : \text{int}, l_1 : \text{int}\} \\
\text{int} \to \{l_1 : \text{int}, l_2 : \text{int}\} & \leq \text{int} \to \{l_2 : \text{int}, l_1 : \text{int}\}
\end{align*}
\]

This derivation does not use width subtyping. Any derivation of $\mathcal{T}_1 \leq \mathcal{T}_2$ must show at some point $\text{int} \leq \text{int}$ and doing so requires reflexivity at some point.
3. This problem considers System F (extended with constants, addition, and multiplication).

(a) Consider the type \(\forall \alpha_1. \forall \alpha_2. \forall \alpha_3. (\alpha_1 \to \alpha_2) \to (\alpha_2 \to \alpha_3) \to \alpha_1 \to \alpha_3\).

i. Give a (closed) term with this type.

ii. Letting \(e_1\) be your answer to part (i), what does \(e_1\ [\text{int}] \ [\text{int}] \ [\text{int}] \ (\lambda x: \text{int}. x + 1) \ (\lambda x: \text{int}. x \times 2) 17\) evaluate to?

iii. Is there a term \(e_2\) with this type that is not equivalent to your answer to part (i)? If so, give such a term and what \(e_2\ [\text{int}] \ [\text{int}] \ [\text{int}] \ (\lambda x: \text{int}. x + 1) \ (\lambda x: \text{int}. x \times 2) 17\) evaluates to. If not, explain briefly.

(b) Consider the type \(\forall \alpha_1. \forall \alpha_2. (\alpha_1 \to \alpha_2) \to (\alpha_1 \to \alpha_2) \to \alpha_1 \to \alpha_2\).

i. Give a (closed) term with this type.

ii. Letting \(e_1\) be your answer to part (i), what does \(e_1\ [\text{int}] \ [\text{int}] \ (\lambda x: \text{int}. x + 1) \ (\lambda x: \text{int}. x \times 2) 17\) evaluate to?

iii. Is there a term \(e_2\) with this type that is not equivalent to your answer to part (i)? If so, give such a term and what \(e_2\ [\text{int}] \ [\text{int}] \ (\lambda x: \text{int}. x + 1) \ (\lambda x: \text{int}. x \times 2) 17\) evaluates to. If not, explain briefly.

Solution:

(a) i. \(\Lambda \alpha_1. \Lambda \alpha_2. \Lambda \alpha_3. \lambda f: \alpha_1 \to \alpha_2. \lambda g: \alpha_2 \to \alpha_3. \lambda x: \alpha_1. g \ (f \ x)\)

ii. 36

iii. No, due to parametricity, the only terms with this type are equivalent to computing \(g(f(x))\) — there are no side-effects and no other way to convert an \(\alpha_1\) to an \(\alpha_3\).

(b) i. \(\Lambda \alpha_1. \Lambda \alpha_2. \lambda f: \alpha_1 \to \alpha_2. \lambda g: \alpha_1 \to \alpha_2. \lambda x: \alpha_1. g \ (f \ x)\)

ii. 36

iii. Yes, consider \(\Lambda \alpha_1. \Lambda \alpha_2. \lambda f: \alpha_1 \to \alpha_1. \lambda g: \alpha_1 \to \alpha_2. \lambda x: \alpha_1. g \ (f \ (f \ x))\) which produces 38. Another example is \(\Lambda \alpha_1. \Lambda \alpha_2. \lambda f: \alpha_1 \to \alpha_1. \lambda g: \alpha_1 \to \alpha_2. \lambda x: \alpha_1. g \ x\) which produces 34.
4. Consider this Caml code, which purposely uses unilluminating names. Assume `max3` is a provided library function that returns the maximum of three `int` arguments:

```caml
type t1 = A of int | B of int * t1 * t1
type t2 = C of string | D of string * t2 * t2
type t3 = E of t1 | F of t2

let foo x =
  match x with
  | E e ->
    let rec f y =
      match y with
      | A z -> z
      | B(z,a,b) -> max3 z (f a) (f b)
    in f e
  | F _ -> 505

(a) `t3` describes a simple if slightly unusual data structure. Describe the data structure in 1–2 English sentences.

(b) Give the type of `foo` and the type of the helper function `f`.

(c) Describe what `foo` computes in 1–2 English sentences.

(d) Write a Caml function `bar` that (1) is equivalent to `foo` (same type and behavior) and (2) never uses more than a small, constant amount of call-stack space when executed.

(e) Your solution to part (d) needed a recursive helper function. What type does this helper function have?

**Solution:**

(a) A data structure of type `t3` holds either a binary tree of ints (with ints at leaves and interior nodes) or a binary tree of strings (with strings at leaves and interior nodes)

(b) `foo` has type `t3->int` and `f` has type `t1->int`.

(c) Given a `t3`, `foo` returns the largest `int` in the tree or `505` if the tree has no ints.

(d) The hoped-for solution uses continuation-passing style, but an explicit work-stack also satisfies the constraints of the problem:

```caml
let bar x =
 match x with
 | E e ->
 let rec f y k =
 match y with
 | A z -> k z
 | B(z,a,b) -> f a (fun i -> f b (fun j -> k (max3 z i j)))
 in f e (fun x -> x)
 | F _ -> 505

let bar x = (* uses a 2-argument max *)
 match x with
 | E (B(z,a,b)) ->
```

6
let rec f m stk =  
    match stk with  
    | [] -> m  
    | (A z)::tl -> f (max m z) tl  
    | (B(z,a,b))::tl -> f (max m z) (a::b::tl)  
    | (E A z) -> z  
    | F _ -> 505  

(c) For the hoped-for solution: f has type t1 -> (int -> 'a) -> 'a.  
   For the explicit work-stack solution: f has type int -> t1 list -> int.
5. In this problem, you are given an implementation of a functional queue and you will use Concurrent ML to implement an imperative queue. Your solution should not use any mutable features (e.g., references). Assume the functional queue given to you has this interface:

```ocaml
type 'a queue
val empty_queue : 'a queue (* create a queue *)
val is_empty : 'a queue -> bool (* return true iff queue is empty *)
val enqueue : 'a queue -> 'a -> 'a queue (* add 'a to queue; return result *)
val peek : 'a queue -> 'a (* return element that was added to the queue the longest ago; raises an exception if the queue is empty *)
val drop: 'a queue -> 'a queue (* result is like the argument but the element first added is no longer in the queue; raises an exception if the queue is empty *)
```

The queue you will implement will differ in that (1) it is imperative (a queue has state and enqueuing and dequeuing update this state), (2) it supports only enqueue and dequeue operations, and (3) it never raises an exception; instead dequeue operations should block as necessary to wait for another thread to perform an enqueue. Also note you must use the type definition of `‘a mqueue` given below. Provide definitions for `new_mqueue`, `m_enqueue`, and `m_dequeue`:

```ocaml
type ‘a mqueue = ‘a channel * ‘a channel
val new_mqueue : unit -> ‘a mqueue
val m_enqueue : ‘a mqueue -> ‘a -> unit
val m_dequeue : ‘a mqueue -> ‘a
```

Solution:

```ocaml
open Event

let new_mqueue () =
 let enq_ch = new_channel() in
 let deq_ch = new_channel() in
 let rec loop q =
 if is_empty q
 then loop (enqueue q (sync (receive enq_ch)))
 else sync (choose [
 wrap (receive enq_ch) (fun v -> loop (enqueue q v));
 wrap (send deq_ch (peek q)) (fun () -> loop (drop q))])
 in
 let _ = Thread.create loop empty_queue in
 (enq_ch,deq_ch)

let m_enqueue (e,_) v = sync (send e v)
let m_dequeue (_,d) = sync (receive d)
```
6. Assume a class-based OOP language like we discussed in class, with single inheritance and types (and subtypes) that correspond to classes (and subclasses). Assume `assert` raises an exception if its argument evaluates to false. Assume there are no threads. Consider this code:

```java
class A {
 int x;
}
class B extends A {
 void m() { x = 7; }
}
class C extends B {
 void m() { x = 4; }
 void f() {
 m();
 assert(x==4); // (*)
 }
}
```

(a) Is it possible to make (only) a change to class B such that class B still type-checks but class C no longer type-checks? If so, explain how and if not, explain why not.

(b) Is it possible to make (only) a change to class B such that class B and class C type-check but there are programs where the assertion at the line marked (*) raises an exception? If so, explain how and if not, explain why not.

(c) Is it possible to create (only) a subclass D that extends class C such that class D type-checks but class C no longer type-checks? If so, explain how and if not, explain why not.

(d) Is it possible to create (only) a subclass D that extends class C such that class C and class D type-check but there are programs where the assertion at the line marked (*) raises an exception? If so, explain how and if not, explain why not.

**Solution:**

(a) Yes, assuming using the same method name means overriding, then changing class B to have `m` take an argument would suffice. With static overloading like in Java or C++, we instead need to change the return type to something other than `void`, such as `int`.

(b) No, no change in class B can affect how `f()` executes because late-binding of `m` will always resolve the call to the method defined in class C or some subclass, so without creating a subclass, x will be 4 and the assertion will succeed.

(c) No, type-checking any class depends only on the definition of that class and any superclasses.

(d) Yes, we can override `m` to set `x` to a value other than 4. With late-binding, the call to `f` on an instance of `D` will then execute the new `m` and then the old assertion, which will fail.
7. This problem considers static overloading and multimethods. Consider this code skeleton:

```java
class A {}
class B extends A {}
class C extends B {}
class D {
 void m(B x, A y) { } // 1
 void m(A x, B y) { } // 2
 void m(A x, A y) { } // 3
 void main() {
 ...
 }
}
```

Replace the ... with a few lines of code such that:

- If the language uses static overloading, then each of the three `m` methods is called exactly once. Indicate which line of code calls which method.

- If the language uses multimethods, then every method call is ambiguous because there is “no best match” (where we assume the “goodness” of a match is the number of subsumptions to immediate supertypes and fewer is better). Indicate for each call, which methods are tied for the best match.

Note the same code should satisfy both these requirements.

**Solution:**

One possible answer is below; note it also works to bind both `o1` and `o2` to instances of `B`.

```java
B o1 = new C();
A o2 = new C();
m(o1, o2); // (static: 1, multi: 1 and 2)
m(o2, o1); // (static: 2, multi: 1 and 2)
m(o2, o2); // (static: 3, multi: 1 and 2)
```