Assignment # 2 Solution

CIS 432/532 Fall 2015

Please do not redistribute!

The problem numbers are based on the 6th edition
Adapted from the instructor’s manual of the textbook (by J.F. Kurose and K.W. Ross)

8 problems, 100 points
<table>
<thead>
<tr>
<th>Problem#</th>
<th>Solution</th>
</tr>
</thead>
</table>
| **Problem 1**
(2-points each; total-10 Points) | a) F
b) T
c) F
d) F
e) F |
| **Problem 4**
(3-points each; total-15 points) | a) The document request was http://gaia.cs.umass.edu/cs453/index.html. The Host : field indicates the server's name and /cs453/index.html indicates the file name.
b) The browser is running HTTP version 1.1, as indicated just before the first <cr><lf> pair.
c) The browser is requesting a persistent connection, as indicated by the Connection: keep-alive.
d) This is a trick question. This information is not contained in an HTTP message anywhere. So there is no way to tell this from looking at the exchange of HTTP messages alone. One would need information from the IP datagrams (that carried the TCP segment that carried the HTTP GET request) to answer this question.
e) Mozilla/5.0. The browser type information is needed by the server to send different versions of the same object to different types of browsers. |
| **Problem 5**
(a,b,c-4 points each, d-3 points; total-15 points) | a) The status code of 200 and the phrase OK indicate that the server was able to locate the document successfully. The reply was provided on Tuesday, 07 Mar 2008 12:39:45 Greenwich Mean Time.
b) The document index.html was last modified on Saturday 10 Dec 2005 18:27:46 GMT.
c) There are 3874 bytes in the document being returned.
d) The first five bytes of the returned document are : <!doc. The server agreed to a persistent connection, as indicated by the Connection: Keep-Alive field |
<table>
<thead>
<tr>
<th>Problem#</th>
<th>Solution</th>
</tr>
</thead>
</table>
| **Problem 7**
(10 points) | The total amount of time to get the IP address is $RTT_1 + RTT_2 + \cdots + RTT_n$.
Once the IP address is known, RTT_o elapses to set up the TCP connection and another RTT_o elapses to request and receive the small object. The total response time is $2RTT_o + RTT_1 + RTT_2 + \cdots + RTT_n$. |
| **Problem 8**
(5 points each; total-15 points) | a) $RTT_1 + \cdots + RTT_n + 2RTT_o + 8 \cdot 2RTT_o$
$$= 18RTT_o + RTT_1 + \cdots + RTT_n.$$
b) $RTT_1 + \cdots + RTT_n + 2RTT_o + 2 \cdot 2RTT_o$
$$= 6RTT_o + RTT_1 + \cdots + RTT_n.$$
c) $RTT_1 + \cdots + RTT_n + 2RTT_o + RTT_o$
$$= 3RTT_o + RTT_1 + \cdots + RTT_n.$$ |
| **Problem 10**
(15 points) | Note that each downloaded object can be completely put into one data packet. Let Tp denote the one-way propagation delay between the client and the server.
First consider parallel downloads using non-persistent connections. Parallel downloads would allow 10 connections to share the 150 bits/sec bandwidth, giving each just 15 bits/sec. Thus, the total time needed to receive all objects is given by:
$$(200/150 + Tp + 200/150 + Tp + 200/150 + Tp + 100,000/150 + Tp)$$
$$+ (200/(150/10) + Tp + 200/(150/10) + Tp + 200/(150/10) + Tp + 100,000/(150/10) + Tp)$$
$$= 7377 + 8* Tp \text{ (seconds)}.$$
Now consider a persistent HTTP connection. The total time needed is given by:
$$(200/150 + Tp + 200/150 + Tp + 200/150 + Tp + 100,000/150 + Tp)$$
$$+ 10*(200/150 + Tp + 100,000/150 + Tp)$$ |
<table>
<thead>
<tr>
<th>Problem#</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>=7351 + 24*Tp (seconds)</td>
</tr>
<tr>
<td></td>
<td>Assuming the speed of light is 300×10^6 m/sec, then $T_p=\frac{10}{(300 \times 10^6)}=0.03$ microsec. T_p is therefore negligible compared with transmission delay.</td>
</tr>
<tr>
<td></td>
<td>Thus, we see that persistent HTTP is not significantly faster (less than 1 percent) than the non-persistent case with parallel download.</td>
</tr>
<tr>
<td>Problem 11 (10 points)</td>
<td>a) Yes, because Bob has more connections, he can get a larger share of the link bandwidth.</td>
</tr>
<tr>
<td></td>
<td>b) Yes, Bob still needs to perform parallel downloads; otherwise he will get less bandwidth than the other four users.</td>
</tr>
<tr>
<td>Problem 20 (10 points)</td>
<td>We can periodically take a snapshot of the DNS caches in the local DNS servers. The Web server that appears most frequently in the DNS caches is the most popular server. This is because if more users are interested in a Web server, then DNS requests for that server are more frequently sent by users. Thus, that Web server will appear in the DNS caches more frequently.</td>
</tr>
<tr>
<td></td>
<td>For a complete measurement study, see: Craig E. Wills, Mikhail Mikhailov, Hao Shang “Inferring Relative Popularity of Internet Applications by Actively Querying DNS Caches”, in IMC'03, October 27-29, 2003, Miami Beach, Florida, USA</td>
</tr>
</tbody>
</table>