CIS 624: Structure of Programming Languages

Lecture 18 — Recursive Types

Boyana Norris
2015
Where are we

- System F gave us type abstraction
 - code reuse
 - strong abstractions
 - different from real languages (like ML), but the right foundation

- This lecture: Recursive Types (different use of type variables)
 - For building unbounded data structures
 - Turing-completeness without a fix primitive

- Future lecture (?): Existential types (dual to universal types)
 - First-class abstract types
 - Closely related to closures and objects

- Future lecture (?): Type-and-effect systems
Recursive Types

We could add list types (list(\(\tau\))) and primitives ([], ::, match), but we want user-defined recursive types.

Intuition:

\[
\text{type intlist = } \text{Empty} \mid \text{Cons int} \ast \text{intlist}
\]

Which is roughly:

\[
\text{type intlist = unit + (int} \ast \text{intlist)}
\]

- Seems like a named type is unavoidable
 - But that’s what we thought with let rec and we used fix

- Analogously to \textbf{fix} \(\lambda x. e\), we’ll introduce \(\mu \alpha. \tau\)
 - Each \(\alpha\) “stands for” entire \(\mu \alpha. \tau\)
Mighty μ

In τ, type variable α stands for $\mu\alpha.\tau$, bound by μ

Examples (of many possible encodings):

- int list (finite or infinite): $\mu\alpha.\text{unit} + (\text{int} \times \alpha)$
- int list (infinite “stream”): $\mu\alpha.\text{int} \times \alpha$
 - Need laziness (thunking) or mutation to build such a thing
 - Under CBV, can build values of type $\mu\alpha.\text{unit} \rightarrow (\text{int} \times \alpha)$
- int list list: $\mu\alpha.\text{unit} + ((\mu\beta.\text{unit} + (\text{int} \times \beta)) \times \alpha)$

Examples where type variables appear multiple times:

- int tree (data at nodes): $\mu\alpha.\text{unit} + (\text{int} \times \alpha \times \alpha)$
- int tree (data at leaves): $\mu\alpha.\text{int} + (\alpha \times \alpha)$
Using \(\mu \) types

How do we build and use int lists \((\mu \alpha. \text{unit} + (\text{int} \times \alpha))\)?

We would like:

- empty list = \(A((())) \)
 Has type: \(\mu \alpha. \text{unit} + (\text{int} \times \alpha) \)
- cons = \(\lambda x : \text{int}. \lambda y : (\mu \alpha. \text{unit} + (\text{int} \times \alpha)). B((x, y)) \)
 Has type:
 \[\text{int} \rightarrow (\mu \alpha. \text{unit} + (\text{int} \times \alpha)) \rightarrow (\mu \alpha. \text{unit} + (\text{int} \times \alpha)) \]
- head =
 \[\lambda x : (\mu \alpha. \text{unit} + (\text{int} \times \alpha)). \text{match } x \text{ with } A_. \ A((())) | B y. \ B(y.1) \]
 Has type: \((\mu \alpha. \text{unit} + (\text{int} \times \alpha)) \rightarrow (\text{unit} + \text{int}) \)
- tail =
 \[\lambda x : (\mu \alpha. \text{unit} + (\text{int} \times \alpha)). \text{match } x \text{ with } A_. \ A((())) | B y. \ B(y.2) \]
 Has type:
 \[(\mu \alpha. \text{unit} + (\text{int} \times \alpha)) \rightarrow (\text{unit} + \mu \alpha. \text{unit} + (\text{int} \times \alpha)) \]

But our typing rules allow none of this (yet)
Using μ types (continued)

For empty list $= \textbf{A}(())$, one typing rule applies:

$$\begin{align*}
\Delta; \Gamma & \vdash e : \tau_1 \\
\Delta & \vdash \tau_2 \\
\hline
\Delta; \Gamma & \vdash \textbf{A}(e) : \tau_1 + \tau_2
\end{align*}$$

So we could show

$$\Delta; \Gamma \vdash \textbf{A}(()) : \text{unit} + (\text{int} \ast (\mu \alpha. \text{unit} + (\text{int} \ast \alpha)))$$

(since $FTV(\text{int} \ast \mu \alpha. \text{unit} + (\text{int} \ast \alpha)) = \emptyset \subseteq \Delta$)

But we want $\mu \alpha. \text{unit} + (\text{int} \ast \alpha)$

Notice: $\text{unit} + (\text{int} \ast (\mu \alpha. \text{unit} + (\text{int} \ast \alpha)))$ is

$$(\text{unit} + (\text{int} \ast \alpha))[(\mu \alpha. \text{unit} + (\text{int} \ast \alpha))/\alpha]$$

The key: Subsumption — recursive types are equal to their “unfolding” or “unfolding” (equi-recursive).
Return of subtyping

\[\Gamma \vdash e : \tau' \quad \tau' \leq \tau \]

and these subtyping rules:

Fold

\[\tau[(\mu \alpha.\tau)/\alpha] \leq \mu \alpha.\tau \]

Unfold

\[\mu \alpha.\tau \leq \tau[(\mu \alpha.\tau)/\alpha] \]

Subtyping can “fold” or “unfold” a recursive type
Folding and unfolding (cont.)

The fold and unfold maps are provided as primitives by the language.

Can now give empty-list, cons, and head the types we want: Constructors use fold, destructors use unfold

Notice how little we did: One new form of type \((\mu\alpha.\tau)\) and two new subtyping rules.
Metatheory

What is the relation between the type $\mu \alpha. \tau$ and its one-step unfolding?

- Equi-recursive (implicit) approach (subsumption): takes a recursive type and its unfolding as \textit{definitionally equal} – interchangeable in all contexts (it’s the type checker’s responsibility to make sure that a term of one type will be allowed as an argument to a function expecting the other). Example: \url{http://whiley.org/2011/02/16/minimising-recursive-data-types/}.

- Iso-recursive (explicit) approach: takes a recursive type and its unfolding as different, but \textit{isomorphic}.
Metatheory (cont.)

Despite additions being minimal, must reconsider how recursive types change STLC and System F:

- Erasure (no run-time effect): unchanged

- Termination: changed!
 - $(\lambda x: \mu \alpha. \alpha \to \alpha. x \ x)(\lambda x: \mu \alpha. \alpha \to \alpha. x \ x)$
 - In fact, we’re now Turing-complete without fix (actually, can type-check every closed λ term)

- Safety: still safe, but Canonical Forms harder

- Inference: Shockingly efficient for “STLC plus μ” (A great contribution of PL theory with applications in OO and XML-processing languages)
(Equi-recursive) recursive types via subsumption “seem magical”

Instead, we can make programmers tell the type-checker
where/how to fold and unfold

“Iso-recursive” types: remove subtyping and add expressions:

\[\tau ::= \ldots | \mu \alpha. \tau \]
\[e ::= \ldots | \text{fold}_{\mu \alpha. \tau} e | \text{unfold} e \]
\[v ::= \ldots | \text{fold}_{\mu \alpha. \tau} v \]

\[
\begin{align*}
\frac{e \rightarrow e'}{\text{fold}_{\mu \alpha. \tau} e \rightarrow \text{fold}_{\mu \alpha. \tau} e'} & \quad \quad \frac{e \rightarrow e'}{\text{unfold} e \rightarrow \text{unfold} e'} \\
\frac{\text{unfold} (\text{fold}_{\mu \alpha. \tau} v) \rightarrow v}{\Delta; \Gamma \vdash e : \tau[(\mu \alpha. \tau)/\alpha]} & \quad \quad \frac{\Delta; \Gamma \vdash e : \mu \alpha. \tau}{\Delta; \Gamma \vdash \text{fold}_{\mu \alpha. \tau} e : \mu \alpha. \tau} & \quad \quad \frac{\Delta; \Gamma \vdash e : \tau[(\mu \alpha. \tau)/\alpha]}{\Delta; \Gamma \vdash \text{unfold} e : \tau[(\mu \alpha. \tau)/\alpha]}
\end{align*}
\]
Syntax-directed, continued

Type-checking is syntax-directed / No subtyping necessary

Canonical Forms, Preservation, and Progress are simpler

This is an example of a key trade-off in language design:

- Implicit typing can be impossible, difficult, or confusing
- Explicit coercions can be annoying and clutter language with no-ops
- Most languages do some of each

Anything is decidable if you make the code producer give the implementation enough “hints” about the “proof”
ML datatypes revealed

How is $\mu\alpha.\tau$ related to type $t = \text{Foo of int | Bar of int * t}$

Constructor use is a “sum-injection” followed by an *implicit fold*

- So Foo e is really $\text{fold}_t \text{Foo}(e)$
- That is, Foo e has type t (the folded type)

A pattern-match has an *implicit unfold*

- So match e with... is really match $\text{unfold } e$ with...

This “trick” works because different recursive types use different tags – so the type-checker knows *which* type to fold to