CIS 624: Structure of Programming Languages

Lecture 2 — Syntax

Boyana Norris
2015
Finally, some formal PL content

For our first *formal language*, let’s leave out functions, objects, records, threads, exceptions, ...

What’s left: integers, mutable variables, control-flow

(Abstract) syntax using a common *metalanguage*:

“A program is a statement \(s \), which is defined as follows”

\[
\begin{align*}
 s & ::= \text{skip} \mid x := e \mid s; s \mid \text{if} \ e \ s \ s \mid \text{while} \ e \ s \\
 e & ::= c \mid x \mid e + e \mid e \ast e \\
 (c & \in \{\ldots, -2, -1, 0, 1, 2, \ldots \}) \\
 (x & \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots \})
\end{align*}
\]
Syntax Definition

\[
\begin{align*}
s & ::= \text{skip} \mid x ::= e \mid s; s \mid \text{if} e s s \mid \text{while} e s \\
e & ::= c \mid x \mid e + e \mid e \ast e \\
& \quad (c \in \{\ldots, -2, -1, 0, 1, 2, \ldots \}) \\
& \quad (x \in \{x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots \})
\end{align*}
\]

- Blue is metanotation: ::= for “can be a” and | for “or”
- Metavariables represent “anything in the syntax class”
- By abstract syntax, we mean that this defines a set of trees
 - Node has some label for “which alternative”
 - Children are more abstract syntax (subtrees) from the appropriate syntax class
Examples

\[
\begin{align*}
 s &::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \text{ s s } \mid \text{while } e \text{ s} \\
 e &::= c \mid x \mid e + e \mid e \ast e
\end{align*}
\]

\[
\text{if} \quad \begin{array}{c}
 x \\
 \text{skip} \\
 :='
\end{array} \quad ; \quad
\begin{array}{c}
 :='
\end{array}
\]

\[
\text{if} \quad \begin{array}{c}
 x \\
 \text{skip} \quad := \quad x \\
 \quad := \quad y \\
 \quad := \quad y \quad 42
\end{array} \quad \begin{array}{c}
 :='
\end{array}
\]

\[
\text{if} \quad \begin{array}{c}
 x \\
 \text{skip} \quad := \quad x \quad y \\
 \quad := \quad y \quad 42
\end{array}
\]
Comparison to ML

```
if x
skip
:= y 42
x y
```

Very similar to trees built with ML datatypes

- ML needs “extra nodes” for, e.g., “e can be a c”
- Also pretending ML’s int is an integer
We are used to writing programs in concrete syntax, i.e., strings

That can be ambiguous: \texttt{if x skip y := 42 ; x := y}

Since writing strings is such a convenient way to represent trees, we allow ourselves parentheses (or defaults) for disambiguation

Trees are our “truth” with strings as a “convenient notation”

\texttt{if x skip (y := 42 ; x := y) versus (if x skip y := 42) ; x := y}
Last word on concrete syntax

Converting a string into a tree is *parsing*

Creating concrete syntax such that parsing is unambiguous is one challenge of *grammar design*

- Always trivial if you require enough parentheses or keywords
 - Extreme case: LISP, 1960s; Scheme, 1970s
 - Extreme case: XML, 1990s
- Very well studied in 1970s and 1980s, now typically the least interesting part of a compilers course

For the rest of this course, we start with abstract syntax

- Using strings only as a convenient shorthand and asking if it’s ever unclear what tree we mean
Inductive definition

\[
\begin{align*}
 s &::= \text{skip} \mid x ::= e \mid s; s \mid \text{if } e \text{ } s \text{ } s \mid \text{while } e \text{ } s \\
 e &::= c \mid x \mid e + e \mid e * e
\end{align*}
\]

This grammar is a finite description of an infinite set of trees.

The apparent self-reference is not a problem, provided the definition uses well-founded induction.

▶ Just like an always-terminating recursive function uses self-reference but is not a circular definition!

Can give precise meaning to our metanotation & avoid circularity:

▶ Let \(E_0 = \emptyset \)

▶ For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c, x, e_1 + e_2, \) or \(e_1 * e_2 \) where \(e_1, e_2 \in E_{i-1} \)”

▶ Let \(E = \bigcup_{i \geq 0} E_i \)

The set \(E \) is what we mean by our compact metanotation.
Inductive definition

\[
\begin{align*}
 s & ::= \text{skip} \mid x ::= e \mid s ; s \mid \text{if } e s s \mid \text{while } e s \\
 e & ::= c \mid x \mid e + e \mid e \ast e
\end{align*}
\]

- Let \(E_0 = \emptyset \).
- For \(i > 0 \), let \(E_i \) be \(E_{i-1} \) union “expressions of the form \(c \), \(x \), \(e_1 + e_2 \), or \(e_1 \ast e_2 \) where \(e_1, e_2 \in E_{i-1} \)”.
- Let \(E = \bigcup_{i \geq 0} E_i \).

The set \(E \) is what we mean by our compact metanotation.

To get it: What set is \(E_1 \)? \(E_2 \)?
Could explain statements the same way: What is \(S_1 \)? \(S_2 \)? \(S \)?
Proving Obvious Stuff

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...
A proof by induction that the property $P(n)$ holds for $n \in \mathbb{N}$ involves these steps:

- Prove directly that P is correct for the initial value of n (for most examples you will see this is zero or one). This is called the **base case**.

- Assume for some value k that $P(k)$ is correct. This is called the **induction hypothesis (IH)**. We will now prove directly that $P(k) \Rightarrow P(k + 1)$. That means prove directly that $P(k + 1)$ is correct by using the fact that $P(k)$ is correct. This is called the **induction step**.
Our First Theorem

All we have is syntax (sets of abstract-syntax trees), but let’s get the idea of proving things carefully...

There exist expressions with three constants.

Pedantic Proof: Consider \(e = 1 + (2 + 3) \). Showing \(e \in E_3 \) suffices because \(E_3 \subseteq E \). Showing \(2 + 3 \in E_2 \) and \(1 \in E_2 \) suffices...

PL-style proof: Consider \(e = 1 + (2 + 3) \) and definition of \(E \).

Theorem 2: All expressions have at least one constant or variable.
Our Second Theorem

All expressions have at least one constant or variable.

Pedantic proof: By induction on \(i > 0 \), for all \(e \in E_i \), \(e \) has \(\geq 1 \) constant or variable.

- **Base**: \(i = 1 \) implies \(E_i = c, x \), which has at least one constant or variable.

- **Inductive**: \(i > 1 \). Consider arbitrary \(e \in E_i \) by cases:
 - \(e \in E_{i-1} \) ...
 - \(e = c \) ...
 - \(e = x \) ...
 - \(e = e_1 + e_2 \) where \(e_1, e_2 \in E_{i-1} \) ...
 - \(e = e_1 \ast e_2 \) where \(e_1, e_2 \in E_{i-1} \) ...
A “Better” Proof

All expressions have at least one constant or variable.

PL-style proof: By *structural induction* on (rules for forming an expression) e. Cases:

- c . . .
- x . . .
- $e_1 + e_2$. . .
- $e_1 * e_2$. . .

Structural induction invokes the induction hypothesis on *smaller* terms. It is equivalent to the pedantic proof, and more convenient in PL.