CIS 624: Structure of Programming Languages

Lecture 3 — Operational Semantics

Boyana Norris
2015
Where we are

- Done: OCaml tutorial, “IMP” syntax, structural induction
- Now: Operational semantics for our little “IMP” language
 - Most of what you need for Homework 1
 - (But Problem 4 requires proofs over semantics)
IMP’s abstract syntax is defined inductively:

\[
\begin{align*}
 s & ::= \text{skip} \mid x := e \mid s; s \mid \text{if } e \text{ s s} \mid \text{while } e \text{ s} \\
 e & ::= c \mid x \mid e + e \mid e * e \\
 (c & \in \{ \ldots, -2, -1, 0, 1, 2, \ldots \}) \\
 (x & \in \{ x_1, x_2, \ldots, y_1, y_2, \ldots, z_1, z_2, \ldots, \ldots \})
\end{align*}
\]

We haven’t yet said what programs mean! (Syntax is boring)

Encode our “social understanding” about variables and control flow
Outline

- Semantics for expressions
 1. Informal idea; the need for *heaps*
 2. Definition of heaps
 3. The evaluation *judgment* (a relation form)
 4. The evaluation *inference rules* (the relation definition)
 5. Using inference rules
 - *Derivation trees* as interpreters
 - Or as *proofs* about expressions
 6. *Metatheory*: Proofs about the semantics

- Then semantics for statements
 - ...
Informal idea

Given e, what c does e evaluate to?

\[1 + 2 \quad x + 2 \]

It depends on the values of variables (of course)

Use a heap H for a total function from variables to constants

- Could use partial functions, but then $\exists H$ and e for which there is no c

We’ll define a relation over triples of H, e, and c

- Will turn out to be function if we view H and e as inputs and c as output
- With our metalanguage, easier to define a relation and then prove it is a function (if, in fact, it is)
Heaps

\[H ::= \cdot \mid H, x \mapsto c \]

A lookup-function for heaps:

\[
H(x) = \begin{cases}
 c & \text{if } H = H', x \mapsto c \\
 H'(x) & \text{if } H = H', y \mapsto c' \text{ and } y \neq x \\
 0 & \text{if } H = \cdot
\end{cases}
\]

- Last case avoids “errors” (makes function total)

“What heap to use” will arise in the semantics of statements

- For expression evaluation, “we are given an H’”
The judgment

We will write: \(H ; e \Downarrow c \)

to mean, “\(e \) evaluates to \(c \) under heap \(H \)”

It is just a relation on triples of the form \((H, e, c)\)

We just made up metasyntax \(H ; e \Downarrow c \) to follow PL convention
and to distinguish it from other relations

We can write: \(., x \mapsto 3 ; x + y \Downarrow 3 \), which will turn out to be \textit{true}
(this triple will be in the relation we define)

Or: \(., x \mapsto 3 ; x + y \Downarrow 6 \), which will turn out to be \textit{false}
(this triple will not be in the relation we define)
Inference rules

CONST

\[
\begin{align*}
H & \vdash c \downarrow c
\end{align*}
\]

VAR

\[
\begin{align*}
H & \vdash x \downarrow H(x)
\end{align*}
\]

ADD

\[
\begin{align*}
H & \vdash e_1 \downarrow c_1 \quad H & \vdash e_2 \downarrow c_2 \\
H & \vdash e_1 + e_2 \downarrow c_1 + c_2
\end{align*}
\]

MULT

\[
\begin{align*}
H & \vdash e_1 \downarrow c_1 \quad H & \vdash e_2 \downarrow c_2 \\
H & \vdash e_1 \ast e_2 \downarrow c_1 \ast c_2
\end{align*}
\]

Top: *hypotheses*
Bottom: *conclusion* (read first)

By definition, if all hypotheses hold, then the conclusion holds

Each rule is a *schema* you “instantiate consistently”

- So rules “work” “for all” \(H, c, e_1 \), etc.
- But “each” \(e_1 \) has to be the “same” expression
Instantiating rules

Example instantiation:

\[
\begin{align*}
\cdot, y & \mapsto 4 ; 3 + y \downarrow 7 \quad \cdot, y \mapsto 4 ; 5 \downarrow 5 \\
\cdot, y & \mapsto 4 ; (3 + y) + 5 \downarrow 12
\end{align*}
\]

Instantiates:

\[
\text{ADD} \quad \begin{array}{c}
H; e_1 \downarrow c_1 \\
H; e_2 \downarrow c_2
\end{array} \quad \begin{array}{c}
H; e_1 + e_2 \downarrow c_1 + c_2
\end{array}
\]

with

\[
\begin{align*}
H &= \cdot, y \mapsto 4 \\
e_1 &= (3 + y) \\
c_1 &= 7 \\
e_2 &= 5 \\
c_2 &= 5
\end{align*}
\]
Derivations

A (complete) derivation is a tree of instantiations with axioms at the leaves

Example:

\[
\begin{align*}
\cdot, y \mapsto 4 \; 3 & \downarrow 3 \\
\cdot, y \mapsto 4 \; y & \downarrow 4 \\
\cdot, y \mapsto 4 \; 3 + y & \downarrow 7 \\
\cdot, y \mapsto 4 \; (3 + y) + 5 & \downarrow 12
\end{align*}
\]

By definition, \(H ; e \downarrow c \) if there exists a derivation with \(H ; e \downarrow c \) at the root
Back to relations

So what relation do our inference rules define?

- Start with empty relation (no triples) R_0

- Let R_i be R_{i-1} union all $H ; e \downarrow c$ such that we can instantiate some inference rule to have conclusion $H ; e \downarrow c$ and all hypotheses in R_{i-1}
 - So R_i is all triples at the bottom of height-j complete derivations for $j \leq i$

- R_∞ is the relation we defined
 - All triples at the bottom of complete derivations

For the math folks: R_∞ is the smallest relation closed under the inference rules
What are these things?

We can view the inference rules as defining an *interpreter*

- Complete derivation shows recursive calls to the “evaluate expression” function
 - Recursive calls from conclusion to hypotheses
 - *Syntax-directed* means the interpreter need not “search”

- See OCaml code in Homework 1

Or we can view the inference rules as defining a *proof system*

- Complete derivation proves facts from other facts starting with axioms
 - Facts established from hypotheses to conclusions
Some theorems

- Progress: For all H and e, there exists a c such that
 $H ; e \Downarrow c$

- Determinacy: For all H and e, there is at most one c such that
 $H ; e \Downarrow c$

We rigged it that way...
what would division, undefined-variables, or gettime() do?

Proofs are by induction on the the structure (i.e., height) of the expression e
On to statements

A statement does not produce a constant

It produces a new, possibly-different heap.

▶ If it terminates

We could define $H_1 \; s \downarrow H_2$

▶ Would be a partial function from H_1 and s to H_2

▶ Works fine; could be a homework problem

Instead we’ll define a “small-step” semantics and then “iterate” to “run the program”

$H_1 \; s_1 \rightarrow H_2 \; s_2$
Statement semantics

\[
H_1 \bowtie s_1 \rightarrow H_2 \bowtie s_2
\]

ASSIGN

\[
\frac{H \bowtie e \downarrow c}{H \bowtie x := e \rightarrow H, x \mapsto c \bowtie \text{skip}}
\]

SEQ1

\[
\frac{H \bowtie \text{skip}; s \rightarrow H \bowtie s}{H \bowtie \text{skip}; s \rightarrow H \bowtie s}
\]

SEQ2

\[
\frac{H \bowtie s_1 \rightarrow H' \bowtie s'_1}{H \bowtie s_1; s_2 \rightarrow H' \bowtie s'_1; s_2}
\]

IF1

\[
\frac{H \bowtie e \downarrow c \quad c > 0}{H \bowtie \text{if} \ e \ s_1 \ s_2 \rightarrow H \bowtie s_1}
\]

IF2

\[
\frac{H \bowtie e \downarrow c \quad c \leq 0}{H \bowtie \text{if} \ e \ s_1 \ s_2 \rightarrow H \bowtie s_2}
\]
What about \textbf{while} \(e \) \(s \) (do \(s \) and loop if \(e > 0 \))?

\[
\text{WHILE} \ \\
H \ ; \text{while} \ e \ s \rightarrow H \ ; \text{if} \ e \ (s; \text{while} \ e \ s) \text{ skip}
\]

Many other equivalent definitions possible
Program semantics

Defined $H ; s \rightarrow H' ; s'$, but what does “$s$” mean/do?

Our machine iterates: $H_1 ; s_1 \rightarrow H_2 ; s_2 \rightarrow H_3 ; s_3 \ldots$, with each step justified by a complete derivation using our single-step statement semantics

Let $H_1 ; s_1 \rightarrow^n H_2 ; s_2$ mean “becomes after n steps”

Let $H_1 ; s_1 \rightarrow^* H_2 ; s_2$ mean “becomes after 0 or more steps”

Pick a special “answer” variable ans

The program s produces c if $\cdot ; s \rightarrow^* H ; \text{skip}$ and $H(\text{ans}) = c$

Does every s produce a c?
Example program execution

\[x := 3; (y := 1; \textbf{while} x (y := y \times x; x := x - 1)) \]

Let’s write some of the state sequence. You can justify each step with a full derivation. Let \(s = (y := y \times x; x := x - 1) \).

\[
\begin{align*}
\cdot; x &:= 3; y := 1; \textbf{while} x \ s \\
\rightarrow &\quad \cdot, x \mapsto 3; \textbf{skip}; y := 1; \textbf{while} x \ s \\
\rightarrow &\quad \cdot, x \mapsto 3; y := 1; \textbf{while} x \ s \\
\rightarrow^2 &\quad \cdot, x \mapsto 3, y \mapsto 1; \textbf{while} x \ s \\
\rightarrow &\quad \cdot, x \mapsto 3, y \mapsto 1; \textbf{if} x (s; \textbf{while} x \ s) \textbf{skip} \\
\rightarrow &\quad \cdot, x \mapsto 3, y \mapsto 1; y := y \times x; x := x - 1; \textbf{while} x \ s
\end{align*}
\]
→^2 \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3; \ x := x - 1; \textbf{while} \ x \ s

→^2 \cdot, x \mapsto 3, y \mapsto 1, y \mapsto 3, x \mapsto 2; \textbf{while} \ x \ s

→ \ldots, y \mapsto 3, x \mapsto 2; \textbf{if} \ x (s; \textbf{while} \ x \ s) \textbf{skip}

\ldots

→ \ldots, y \mapsto 6, x \mapsto 0; \textbf{skip}
Where we are

Defined $H ; e \Downarrow c$ and $H ; s \rightarrow H' ; s'$ and extended the latter to give s a meaning

- The way we did expressions is “large-step operational semantics”
- The way we did statements is “small-step operational semantics”
- So now you have seen both

Definition by interpretation: program means what an interpreter (written in a metalanguage) says it means

- Interpreter represents a (very) abstract machine that runs code

Large-step does not distinguish errors and divergence

- But we defined IMP to have no errors
- And expressions never diverge
Establishing Properties

We can prove a property of a terminating program by “running” it

Example: Our last program terminates with \(x \) holding 0

We can prove a program diverges, i.e., for all \(H \) and \(n \),
\[\cdot ; s \rightarrow^n H ; \text{skip} \] cannot be derived

Example: \textbf{while 1 skip}

By induction on \(n \), but requires a \textit{stronger induction hypothesis}
More General Proofs

We can prove properties of executing all programs (satisfying another property)

Example: If H and s have no negative constants and $H ; s \rightarrow^* H' ; s'$, then H' and s' have no negative constants.

Example: If for all H, we know s_1 and s_2 terminate, then for all H, we know $H ; (s_1 ; s_2)$ terminates.