Objectives
The objectives of this laboratory are:
1. Design various combinational circuits in Verilog and prepare testbeds for them
2. Implement these circuits in Multisim

Multiplexer
Multiplexer is a device that selects one of several input signals and forwards the selected input to the output. Typical multiplexers come in 2:1, 4:1, 8:1 and 16:1 forms. A multiplexer of 2^n inputs has n select lines. When you are generating MUXs, ensure that every possible value for the select signal is accounted for.

![Multiplexer Diagram]

Figure 1: Multiplexer

Deliverables:
1. Create an n bit wide 2:1 mux using the parameter statement.
2. Create a 4 bit wide 2:1 mux by instantiating the n bit wide mux designed above.
3. Simulate the design. Paste the results in the report.

module mux (out, sel, a, b);

//define the parameter
//define the inputs and outputs
//implement the algorithm

endmodule

Demultiplexer
Demultiplexer is in contrast to multiplexer. It takes the information from one line and distributes to number of output lines.
Deliverables
1. Create an n bit wide 1:4 demux using the parameter statement.
2. Create a 4 bit wide 1:4 demux by instantiating the n bit wide demux designed above.
3. Simulate the design. Paste the results in the report.

module demux(in, sel,out);
//define the parameters
//define the inputs and outputs
//implement the algorithm
endmodule

Decoder
A decoder converts N bit binary number to a 2^N bit one-hot encoded output such that only one of the output bits is active at one time.

Deliverables
1. Construct a decoder $N \times 2^N$ using the parameter statement
2. Construct a 3×8 decoder by instantiating the decoder designed above.
3. Simulate the design. Paste the results in the report.

module decoder(in,out);
//parameters defined here
input [n-1:0] in;
output [m-1:0] out;

//algorithm defined here
endmodule

Encoder
Encoder has the opposite functionality of a decoder. Of the n inputs exactly one is assumed to be 1. For example, a 4x2 encoder would have 4 inputs d3,d2,d1,d0 and two outputs e1, e0. For an input 0001, the output is 00, 0010 yields 01 and 1000 yields 11.

Deliverables

1. Construct an encoder nxlog2(n) using the parameter statement
2. Construct a 8x3 encoder by instantiating the encoder designed above.
3. Simulate the design. Paste the results in the report.

```verilog
module encoder(in,out);
    //parameters defined here

    input [m-1:0] in;
    output [n-1:0] out;

    //algorithm defined here
endmodule
```