CIS 407/507

Programmable Logic Devices

Prof. Michel A. Kinsky
Programmable circuits

• Programmable Logic Devices (PLDs)
 ‣ They allow the user to implement the digital logic function of the device
 ‣ They can be reprogrammed for different functions or to resolve bugs
Programmable circuits

- Simple Programmable Logic Devices (PLDs)
 - Read-Only Memory (ROM)
 - Programmable Logic Arrays (PLA)
 - Programmable Array Logic (PAL)

- Structure
 - They have an input connection matrix, which connects the inputs of the device to an array of AND-gates
 - They have an output connection matrix, which connect the outputs of the AND-gates to the inputs of OR-gates which drive the outputs of the device
Read-Only Memory (ROM)

- The input connection matrix is hardwired
- The user can modify the output connection matrix
Programmable Array Logic

- The output connection matrix is hardwired
- The user can modify the input connection matrix
Programmable Logic Arrays

- The user can modify both the input connection matrix and the output connection matrix
PAL vs. PLA

- **PLA is the most flexible**
 - One PLA can implement a huge range of logic functions
 - But has large package and higher cost

- **PALs are more restricted**
 - Many device variations needed
 - Cheaper than a PLA
Complex PLDs typically combine PAL combinational logic with Flip-Flops

- Organized into logic blocks
- Fixed OR array size
- Combinational or registered output
- Some pins are inputs only

Usually enough logic for simple counters, state machines, decoders, etc.
Field Programmable Gate Arrays

• FPGAs have much more logic than CPLDs
 ‣ 2K to >10M equivalent gates
 ‣ Requires different architecture
 ‣ FPGAs can be RAM-based or Flash-based
 • RAM FPGAs must be programmed at power-on
 ‣ External memory needed for programming data
 ‣ May be dynamically reconfigured
 • Flash FPGAs store program data in non-volatile memory
 ‣ Reprogramming is more difficult
 ‣ Holds configuration when power is off
FPGA Structure

• Typical organization in 2-D array
 ‣ Configurable logic blocks (CLBs) contain functional logic
 • Combinational functions plus FFs
 • Complexity varies by device
 ‣ CLB interconnect is either local or long line
 • CLBs have connections to local neighbors
 • Horizontal and vertical channels use for long distance
 • Channel intersections have switch matrix
 ‣ IOBs (I/O logic Blocks) connect to pins
 • Usually have some additional C.L./FF in block
FPGA Structure

- Logic blocks
 - To implement combinational and sequential logic
- Interconnect
 - Wires to connect inputs and outputs to logic blocks
- I/O blocks
 - Special logic blocks at periphery of device for external connections
FPGA Structure
FPGA Structure

• Logic block architecture varies between different device families

• Each logic block or cell combines a few binary inputs
 ‣ Typically between 3 and 10
 ‣ With one or two outputs
 ‣ Depending on user specified Boolean logic function

• Cell's combinatorial logic may be physically implemented
 ‣ As a small look-up table memory (LUT)
 ‣ Or as a set of multiplexers and gates
FPGA Structure

• LUT devices tend to be a bit more flexible and provide more inputs per cell than multiplexer cells at the expense of propagation delay

• Logic cells are interconnected by a matrix of wires and programmable switches
Next Class

• System-On-Chip Design