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1 Introduction

Previously, my research has focused on studying Peer-to-Peer File Transfer mechanisms through simulation under
Professor Daniel Zappala. This formed the basis for my DRP and a paper currently under submission to a
conference. More recently, I have focused on measurement studies of the Gnutella file-sharing network, working
with Professor Reza Rejaie. Based on that work, we have a workshop paper under submission describing new
measurement techniques and tools, and a conference paper under submission presenting an analysis of the Gnutella
topology and its properties. We also have an additional workshop paper under submission exploring the dynamics
of peer session length and arrival rate.

This is my position paper for the Oral Comprehensive Exam requirement of the Ph.D. program of the Computer
and Information Science Department at the University of Oregon. In recent years, peer-to-peer file sharing
applications have witnessed explosive growth. With millions of simultaneous users1 and, in one University of
Washington study [SGD+02], generating three times as much traffic as the Web, this is an important component
of the Internet. In this paper, I explore three related topics: Peer-to-Peer Search, Peer-to-Peer File Transfer, and
Peer-to-Peer Streaming.

Search From a users point of view, all file-sharing applications—Kazaa, eDonkey 2000, Gnutella—operate in
basically the same way. The user types in what they’re looking for, the application does a simple substring match
on other users’ filenames, and displays the results. Users can then select which files they’d like to download.
Under-the-hood, these applications use different techniques to perform the search. The bulk of this position
paper surveys measurement studies on existing file-sharing networks (Section 3) and simulation-driven studies
that explore more efficient search techniques (Section 4). While the existing work in this area is considerable, as
we shall see, there are some significant gaps.

Transfer Early file-sharing applications, such as Napster and the original Gnutella, used a simple HTTP-like
protocol for the download. In effect, this was a client-server transfer between two peers that were located using the
peer-to-peer search. Modern systems bring peer-to-peer techniques to the transfer mechanism with a technique
known as swarming , which allows peers to use several sources in parallel and share fragments of the file before
they’ve completed their download. There has been relatively little published work on this aspect of file-sharing
systems. Section 5 covers the design of file transfer in peer-to-peer systems.

While file-sharing applications include two major pieces of functionality, search and transfer, a few applications
take a component-based approach and implement only one of these features. The most notable example is
BitTorrent, a pure swarming application that includes no search functionality.

1As reported by www.slyck.com
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Streaming Closely related to swarming is peer-to-peer streaming, which shares many of the same technical
problems and solutions. It introduces the additional constraint that packets need to arrive promptly to be useful.
On the other hand, with Multiple Descriptor Coding, it relaxes the condition that every packet from the source
must reach every destination. Because there are no major deployed peer-to-peer streaming systems, this papers
examines work that characterize the load and user-behavior of client-server streaming systems, in addition to the
few research papers that propose peer-to-peer streaming mechanisms (Section 6).

Search

Transfer Streaming

Similar Functions

Components of File Sharing

Figure 1: Components Covered

Search Transfer Streaming

Examples
Gnutella
Kazaa
Gia

Slurpie
Bullet
BitTorrent

CoopNet
PRO

Signaling
Keyword Search
Overlay Maintenance

Locating and Selecting Blocks
Overlay Maintenance

Selecting Layers or Frames
Overlay Maintenance

Overlay
Flat, Ad-hoc Mesh
Ultrapeers & Leaves

Flat, Ad-hoc Mesh
Block-seeking Mesh

Delay-optimized Tress
Bandwidth-optimized Mesh

Data Units Best-effort Queries over TCP Reliable Blocks over TCP Best-effort Frames over UDP

Table 1: Topics in this paper

Relationship Figure 1 shows the relationship between the topics in this paper. Search and Transfer are both
part of file-sharing applications, while Peer-to-Peer Transfer and Peer-to-Peer Streaming solve similar problems
and operate in similar ways. Table 1 shows these three topics and illustrates some ways in which they are similar
and different.

2 Measurement Techniques

Researchers have conducted several measurement studies on peer-to-peer file sharing systems over the last few
years. These studies employ one of five basic techniques, each offering a different view with certain advantages and
disadvantages. Before examining the measurement results in detail, it’s useful to briefly examine these techniques.

Intercept These studies eavesdrop on peer-to-peer sessions passing through a router at an ISP or university.

Participate These studies instrument peer-to-peer software and allow it to run in its usual manner.

Crawl These studies walk the peer-to-peer network, capturing its topology.

Probe These studies select a subset of the peers in the network and probe them at regular intervals.

Centralize These studies rely on logs maintained by a central server.
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Intercept Participate Crawl Probe Centralize

[GDS+03] (K)
[LBBSS02] (K)
[LRW03] (K)
[SGD+02] (K,G)
[SW04] (K,G,DC)
[CWVL01] (S)

[HA04] (G)
[KAD+04] (G)
[KLVW04] (G)
[Mar02] (G)
[Sri01] (G)
[AH00] (G)
[EIPN04] (B)

[cli00] (G)
[ABJ01] (G)
[RFI02] (G)

[CLL02] (N,G)
[SGG02] (N,G)
[BSV03] (O)
[FHKM04] (D)

[IUKB+04] (B)
[VAM+02] (S)
[SMZ03] (S)
[hCGR+04] (S)

Table 2: File sharing measurement studies, grouped by technique. The system under study is shown in parenthe-
sis. B=BitTorrent, D=eDonkey 2000, DC=Direct Connect, G=Gnutella, K=Kazaa, N=Napster, S=Streaming,
O=Overnet

Table 2 summarizes the peer-reviewed studies in each category, and lists the particular systems that were
examined. Studies which intercept data tend to prefer to examine Kazaa, one of the most popular peer-to-
peer system in use today. [SGD+02] shows that in 2002, Kazaa traffic was between one and two orders of
magnitude larger than Gnutella traffic. However, others studies tend to focus on Gnutella, which has several
open source implementations available and open protocol specifications. Over the past few years, Gnutella has
gained considerable market share relative to Kazaa, and currently has about half as many concurrently active
users, according to www.slyck.com. Other popular file-sharing communities such eDonkey 2000, Warez, and
Overnet remain largely unstudied.

Intercept Studies which intercept peer-to-peer traffic suffer from two fundamental limitations. First, because
they look at only a cross-section of network traffic, usage patterns may differ compared to other user populations.
For example, [GDS+03] and [SGD+02] both examine peer-to-peer traffic at the University of Washington. Because
these users have exceptionally high bandwidth and an uneven age distribution, they may have different usage
characteristics than, for example, a typical home broadband user. [LBBSS02] and [LRW03] provide measurements
from an Israeli Internet Service Provider (ISP). Interestingly, the University of Washington users mostly upload
content while the Israeli users mostly download it. [SW04] overcomes this limitation by capturing data at several
routers in a Tier-1 ISP.

Second, interception only provides information about peers which are actively sending or receiving data. It
cannot reveal any information about peers which are up but idle, and it is not possible to tell with certainty when
the user has opened or closed the application. These caveats aside, these studies are quite useful in providing
insight into file sharing usage patterns.

This technique is predominantly used to study bulk data movement such as HTTP-like file transfers and
streaming, where it is relatively easy to identify a flow when it starts and just count the bytes.

Participate Several studies have instrumented open-source Gnutella clients to log information to disk for later
analysis. While the studies in the previous section focused on file transfers, these studies focus on the overlay
construction and keyword search features. These studies use a small number of vantage points into the network,
relying on the knowledge that Gnutella does not construct its overlay in a topologically-aware fashion. Queries
pass through these monitoring peers where observations are made.

Crawl A crawler is a program which walks a peer-to-peer network, asking each node for a list of its neighbors,
similar to the way a web-spider operates. This is the only technique for capturing a full snapshot of the topology,
which is important for simulation. However, capturing the whole topology is tricky, particularly for modern, large
networks with millions of peers. If the crawler is too slow, it captures a distorted picture of the topology.

Probe With probing, a miniature crawl of the network is performed to collect a set of peers, then the peers are
probed at regular intervals for several hours or days. This technique has the advantage of being straightforward.
The primary problem with this approach is ensuring that the chosen peers are selected uniformly at random.
Unfortunately, none of the papers address this critical issue. It is likely that their samples are inheritly biased
towards peers with high uptime, since they are more likely to be around during the initial crawl.
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Centralize The final measurement technique is to use the logs from a centralized source. For obvious reasons,
this technique is of limited usefulness in peer-to-peer systems. The only case where this technique has proven
useful is BitTorrent, which uses a centralized rendezvous point called a tracker .

3 Measurement Results

In the following subsections, we will examine what is known about peer-to-peer systems in the real world. We
divide the different measurable aspects of peer-to-peer systems into six broad categories:

Churn affects the performance of all peer-to-peer systems, as they need to adjust as peers come and go. Mea-
surements of churn examine the distribution of session lifetimes, downtimes, peer availability, and related
characteristics.

File Characteristics are an important element of file sharing and streaming systems. They describe how the
popularity of objects is distributed, how large the objects are, how many files each peer shares, etc.

Peer Characteristics include qualities such as the distribution of bandwidth and latency.

Query Characteristics describe the nature of the queries that users enter. This includes the relative popularity
of queries, the frequency at which users enter queries, and how common duplicate queries are.

Topology is the way that peers are connected to one another. From this raw data, analysis leads to graph
properties such as the node degree distribution, path lengths, and the clustering coefficient.

Implementation Characteristics are ways in which different vendors have chosen to implement the same
protocol. Studying these in the real world allows for a true comparison between different algorithms on real
data.

3.1 Churn

Churn is composed of several related concepts. Session duration or uptime is the length of time a peer is connected
to a peer-to-peer network. Lifetime is the duration from the first time a peer connects to a peer-to-peer network—
ever—to the very last time it disconnects. Availability is the percentage of time that a peer and its resources are
connected to the peer-to-peer network; in other words, availability is the sum of all of a peer’s uptime divided by
the peer’s lifetimes. Downtime is the duration between two successive sessions.

Prior work [RGK04] has summarized measurements of session length; their table is adapted as Table 3. The
results for the median session time are conflicting, ranging from as low as one minute to as long as one hour. This
may be due to genuine differences in user behavior, or it may be due to problems with some or all of the studies.
All of these studies rely on probing, which can be biased, or interception, which misses quiet peers.

Citation Systems Observed Session Time
[SGG02] Gnutella, Napster 50% ≤ 60 min.
[CLL02] Gnutella, Napster 31% ≤ 10 min.
[SW04] Kazaa 50% ≤ 1 min.
[BSV03] Overnet 50% ≤ 60 min.
[GDS+03] Kazaa 50% ≤ 2.4 min.

Table 3: Observed session lengths in various peer-to-peer file sharing systems. Adapted from [RGK04].

The median, however, does not tell the full story. Examination of the distribution of session lengths reveals
that while many sessions are short, some sessions are very long. One study [CLL02] found around 20% of sessions
last longer than two hours, and fit session lengths to a log-quadratic distribution.

Availability Another angle to churn is examining the availability of peers: what percentage of the time a
particular peer is up, regardless of how long those periods are. [BSV03] examines availability in the Overnet
peer-to-peer system2, using data from January 2003. Peers in Overnet are assigned unique identifiers, so they

2Overnet is a second-generation system made by the creators of eDonkey 2000.
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measure the presence of particular nodes, rather than a particular IP address. In their measurements, they find
that the ratio of host identifiers to IP addresses is roughly 1:4, suggesting that IP-address based measurements
may dramatically overcount the total number of hosts in the system over time. Almost 40% of probed hosts use
more than one IP address in a single day. The availability of hosts is heavily dependant on the time of day, and
therefore cannot be modeled as independent random events. However, when they examine the interdependence
between hosts, they find that there is little direct correlation between the availability of one host and another.
The availability itself proved difficult to measure and the results vary depending on the size of the measurement
window, due to the significant fraction of hosts with very low availability that can only be observed in a large
window.

BitTorrent As a somewhat different application, BitTorrent is worth examining separately. Users start the
BitTorrent application to download a particular file, rather than to search and perhaps download several files.
Also, BitTorrent is typically used for very large files that may take hours to complete even with a high-speed
connection. [IUKB+04] examines the five-month tracker log for the RedHat 9 ISO images. 81% of peers leave
before the download completes, with 60% of those peers remaining for less than 1000 seconds (16.7 minutes).
However, peers that complete the download linger for six and a half hours, on average. These peers are known as
seeds , while those still downloading are known as leeches . The seeds contribute more than twice the amount of
data sent by leeches, with the portion of seeds was regularly more than 20% of all active peers, peaking at 40%
during the first 5 days. This suggests that the performance of BitTorrent may rely heavily on peers remaining in
the system long after their downloads complete.

Streaming Examining a Brazilian “reality television” show, [VAM+02] find that client inter-arrivals follow a
Pareto distribution. However, further analysis shows that it can also be modeled as a series of Poisson processes
which shift over time, which matches the Poisson distribution observed by other researchers [CWVL01, hCGR+04].
Session lengths fit a log-normal distribution and downtimes fit an exponential distribution. This is significantly
different from the distribution of heavy-tailed session-lengths of file-sharing applications.

However, in a study of Akamai between October 2003 and January 2004, [SMZ04] show that session durations
are heavy-tailed, and using interception [CWVL01] shows that more than 90% of streams have a total length
less than 10 minutes, but the remaining streams have lengths ranging from 10 minutes to 6 weeks. This suggests
that session durations may vary depending on the nature of the content. Moreover, since a television show has a
relatively short duration, it isn’t possible for the session durations to be heavy-tailed.

Surges in popularity are common, and virtually all short-duration streams experienced a burst of traffic on
start-up [CWVL01].

Client turnover is very high. Roughly half of new clients to a stream are “one-timers” [SMZ04]. They tune in
once, leave soon thereafter, and never access the stream again. However, many of the other clients are long-lived.
This reflects user’s viewing habits; they tune in to see if they like a program, and either decide to continue viewing
it, or they leave.

Open Issues There are noticeable discrepancies in the measurements of session durations, and the implications
of very short sessions on network stability are not well understood. The downtime distribution and any correlations
between uptime, downtime, and future uptime also have not been studied.

3.2 File Characteristics

File characteristics in file-sharing systems can be examined from two different angles: files stored and files trans-
ferred. Although these two things are related, they have slightly different properties.

Files Stored The distribution of stored files in file-sharing systems is heavily skewed, following a Zipf distribu-
tion [FHKM04]. In fact, the 10% most popular files make up 50% of all stored bytes! [CLL02] The most popular
files are around 4 megabytes in size; however, the 3% of files which are videos make up 21% of all stored bytes.

Users have noticeable interests, with 30% of files having a correlation of at least 60% with at least one other
file. When two peers have 10 files in common, there’s an 80% chance they have at least one more file in common.
The probability is close to 100% if they have at least 50 files in common [FHKM04]. In fact, generating a graph
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by treating users as nodes and assigning an edge when two users have more than N files in common, results in a
small world [LRW03].

The number of stored files per user is also heavily skewed, with two studies finding around 67% of all users
sharing no files at all [AH00, FHKM04]. However, [SGG02] found this number to be much smaller, at just 25%,
though their results agree that most users share few files, and that a relatively small fraction of users share the
majority of files.

Files Transferred The characteristics of files being transferred are even more lopsided. Comparing Kazaa
traffic characteristics with web traffic, Kazaa has a request rate two orders of magnitude lower, but objects which
are three orders of magnitude larger. In one study [SGD+02], peer-to-peer traffic accounts for three-quarters of
all HTTP data, and the number of simultaneously open Kazaa connections is twice that of the Web. Likewise,
Kazaa accounts for more than twice as much traffic overall compared to the Web.

More than 90% of file transfers are of small files (less than 10 MB), while most bytes are part of large files
(larger than 100 MB). File sizes are also unevenly distributed. They tend to be around 100 KB (pictures), 2 MB to
5 MB (music), or larger than 700 MB (movies, games) [GDS+03]. These long transfers are significantly different
from the Web which is inheritly interactive.

The most popular 10% of transferred files account for 60% of all transfers, and the most popular 5% account for
50% of all transfers. That’s approximately 45,000 songs which can be stored in 175 GB [GDS+03], suggesting that
caches would be extremely effective for file-sharing applications. Several studies [SGD+02, LBBSS02, LRW03]
support this conclusion with observations that users frequently download files from distant parts of the Internet
that have already been downloaded by a nearby user. [GDS+03] shows that 86% of bytes were already available
locally. [LBBSS02] takes this a step further and implements a transparent cache, achieving a 67% savings using
a 300 GB disk drive.

[GDS+03] makes the interesting observation that preferences for files, measured by transfers, do not follow
a Zipf distribution. Instead, popular files are of roughly equal popularity, while unpopular files are Zipf. This
contrasts with both the Web and the files stored on each peer. They explore this further and attribute this
difference to the fact that Web users will access the same object repeatedly, while Kazaa users typically download
an object at most once. They validate this hypothesis by showing that if repeated access from the same user are
removed from web data (such as if a cache is in use), then the Web access distribution has approximately the
same shape as the Kazaa distribution. However, this does not explain why stored files, which are a product of
transfers, follow a Zipf distribution. Perhaps this is a result of some files being popular for a long time, while
others dwindle.

Roughly 30% of transfers are recurrently popular over the course of a few days, while many other files
experience brief popularity, then fade [LRW03]. Over the course of a month, 15% of transfers remain steadily
popular.

Streaming [VAM+02] examine the workload imposed by a Brazilian “reality television” show from a 28-day
period in early 2002 and including 1.5 million sessions and 8 terabytes of data. They were able to keep track of
individual users via a unique identifier stored in each client. This allowed them to monitor how often users tune
in to the program, showing that user interest follows a Zipf distribution. In other words, there is a small number
of users who are very interested in the program, and a large number of users who are slightly or uninterested.

More recently, [SMZ04] presents data gathered at Akamai between October 2003 and January 2004. This data
includes 70 million requests for 5,000 distinct URLs. They find that popularity follows a 2-mode Zipf distribution
with the most popular items relatively similar in popularity. Interestingly, this matches the result in [Sri01] for
file-sharing items. This could be due to a similar only-view-once effect. However, this result conflicts with an
earlier study [CWVL01], which found a pure Zipf distribution.

Most session have short durations, less than 10 minutes, and modest sizes, less than one megabyte. However,
a few sessions (3%) are larger and longer and are responsible for nearly half of all bytes downloaded [CWVL01].

Open Issues The shift in popularity of files is not entirely understood, requiring observation over longer periods
of time. This data may be useful beyond network research, and, indeed, the publishing industry or researchers
studying the evolution of culture may already have an understanding of how these trends evolve in other contexts,
such as album sales.

6



It would be interesting to further examine the correlations in taste in conjunction with shifts in popularity, to
see if it is possible to predict whether a user will be interested in a particular object. Speculative caching would
then be possible, or perhaps a decentralized recommendation system.

Finally, no existing measurement studies examine the swarming download feature found in many modern file
sharing clients. We do not know how well they work or where their bottlenecks might be. We do not even have
well-understood metrics for understanding their behavior. As file-sharing networks continue to proliferate and
swarming downloads become more common, this is likely to become a significant area of future research.

3.3 Peer Characteristics

Another case of heavy skew is the fact that some IP addresses account for a dramatically disproportionate amount
of traffic. In [SW04], less than 10% all IP addresses running Kazaa contributed 99% of the total traffic. The top
0.1% contributed 33% of the traffic, while the top 1% contributed 73%.

[SGG02] present one of the most comprehensive studies of Gnutella and Napster, based on data collected in
May of 2001. After collecting a pool of hosts, they measure the bottleneck bandwidth, latency, availability, and
the number of shared files for each host. Each of these qualities varies by many orders of magnitude.

Correlations exit between some of the metrics they measure. Bottleneck bandwidth and the number of uploads
have a positive correlation, while bottleneck bandwidth and the number of downloads have a negative correlation.
In other word, those with high bandwidth tend to be uploading many files, while those with low bandwidth have
to spend more time downloading. Interestingly, no significant correlation exists between bottleneck bandwidth
and the number of files stored on a peer.

Streaming Bandwidth varies considerably among peers [hCGR+04], and therefore leveraging heterogeneity is
critical. An early study [CWVL01] found that most streaming is at low bit-rates: 81% are transmitted at less
than 56 kbps. However, may have shifted in the last few years as bandwidth becomes steadily less expensive.

One study examines a basic single-tree overlay multicast system in real-world usage, with a peak of 280
simultaneous viewers , [hCGR+04]. This work highlights several practical difficulties not normally addressed in
overlay papers. Specifically, it addresses the difficulty in coping with Network Address Translation (NAT) and
firewalls. These devices can establish outgoing connection, but cannot accept incoming connections. This limits
the connectivity of the network because two such devices cannot peer with one another.

Open Issues While [SGG02] presents us with an impressive battery of information on peer bandwidth charac-
teristics, this attribute is perhaps the one most likely to change over time. Also, their measurement techniques are
somewhat limited compared to the ideal of all-pairs bandwidth and delay characteristics needed for simulation.
This is a tricky problem.

The distribution of NAT and firewall devices in the network is a serious problem limiting the connectivity of
peer-to-peer applications and largely ignored by researchers. An in-depth study of the types of NAT and their
frequency would be invaluable for designing peer-to-peer systems that can cope with connectivity limitations.

3.4 Query Characteristics

Queries follow a Zipf distribution, except for the most popular queries which are of roughly equal popularity
[Sri01]. However, while both queries and stored files follow a Zipf distribution, they don’t match. There is little
relationship between sharing many files and responding to many queries. In other words, some users have a large
collection of rarely-sought files while other users have small collections of highly popular items [AH00].

An impressive 40% of all queries are duplicates, using different query identifiers3 [Mar02]. These results have
led several researches to suggest caching query results [Sri01, Mar02].

Queries and query-hits appear in bursts, across a variety of timescales [Mar02]. One study, [KLVW04],
provides a comprehensive analysis of queries, breaking down the number of queries observed by time of day and
geographical region. It includes distributions for the number of sessions that generate queries, the time until the
first queries, the query inter-arrival time, and the length of the session. In short, it provides a framework for
generating a synthetic query workload as seen from a single peer.

3Query identifiers are used by the flooding protocol to prune duplicate queries.
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An interesting quirk in query propagation in flooding networks is the “short-circuit effect”, first pointed out
by [ABJ01]. In simulation and analysis of scoped flooding networks such as Gnutella, it is normally assumed that
all hops take equal time to traverse. A message spreads out through the network, and any duplicates along longer
paths are dropped. However, due to unequal latencies, it is possible for the message along the longer overlay path
to arrive first. When this occurs, the horizon of the network is shortened, since this message has a lower TTL
than in the ideal model. Using a small captured topology with randomly assigned network latencies, they show
that the short-circuiting effect is significant. For a TTL of 5, it reduces the search horizon by 58% on average.

Open Issues The relationship between queries, files stored, query replies, and files transferred is not yet well
understood. The fact that storing many files and responding to many queries are uncorrelated is surprising and
suggests further research is needed.

Also, no existing work examines the relationship between the composition of a query and the number of
distinct results returned. Put another way, all existing work considers the relationship between queries and
results. However, queries are composed of a set of search terms and results must match all the terms. Little work
has been done to examine how many terms are in each query, the relative popularity of individuals terms, and
how different terms affect the final result set. This data would be import for investigating term-based indexing
options, such as using a Distributed Hash Table as described in Section 4.1.

While several studies have recommended result-caching based on their measurements, no studies have been
able to quantify how frequently the cached data will become invalid due to changes in the network.

3.5 Topology

In 2000, a company called “Clip2” developed a Gnutella crawler and published their results on the web. Although
not validated by peer-review, their analysis and topology captures have been widely used in simulation studies of
improvements for Gnutella-like networks [ALHP01, JZ03, LZXN03, LZXN04, LLX+04]. In [cli00], Clip2 presents
analysis of data they captured between June and August of 2000. They counted between 1,000 and 8,000 active
peers at this time using their crawler which took a bit less than an hour to survey the entire topology.

Their analysis suggests that the Gnutella network has a power-law degree distribution, although the highest
degree is 20. [ALHP01] repeats this analysis on similar data provided by Clip2, with a maximum degree of 12.
Several later studies [CGM02, GMS04, JZ03, LRS02, WXLZ04] rely on this result, simulating Gnutella using
random power-law topologies. [LCC+02] show that power-law networks are in fact worse for unstructured search
than random graphs.

[RFI02] implement a crawler and use it to examine properties of the overlay topology. Their crawler uses a
client-server architecture running on roughly 50 computers to crawl a 30,000 node network in a few hours. Their
crawls were conducted in November 2000 through May 2001. The size of the network grew from 2,063 to 48,195
peers over that time. They performed all-pairs shortest-path computations and plotted the distribution of path
lengths. 95% of paths are within 7 hops, with most paths being 4 or 5 hops long. In their November capture,
the degree distribution was power-law. By March, it is modal, with a roughly even distribution of degree among
low-degree nodes and a power-law distribution among high-degree nodes. Finally, they show that the Gnutella
topology is poorly matched to the underlying Internet topology.

Open Issues Thus far, no published papers have quantified the accuracy of their crawlers, making it difficult to
determine how accurate the captured topologies are. Given that crawls may take a few hours, and peer uptimes
may be just a few minutes [CLL02, SW04, GDS+03], it is very possible that these topologies are highly inaccurate,
leading to a drastically distorted picture of the network.

Also, all of the captured topologies are dated, studying Gnutella when it was over an order of magnitude
smaller than it is today, and before the introduction of ultrapeers. Finally, it would be interesting to capture the
topology of other peer-to-peer file sharing networks to compare and contrast them.

3.6 Implementation Characteristics

[KAD+04] explores the way in which different Gnutella implementations bootstrap to connect to the network
initially. They compare the operation of LimeWire 2.8, Gtk-Gnutella 0.91, Mutella 9.4.3, and Gnucleus 1.8.6.0.
Each implementation employs a local cache of nodes discovered in previous sessions and resort to contacting special
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rendezvous points, called GWebCaches [Dm03], if the local cache proves unhelpful. However, the details of each
implementation differs substantially. LimeWire’s performance is the best; it differentiates between ultrapeers
and leaves in its cache, prioritizes the cache by age, and includes the hard-coded addresses of two orders of
magnitude more GWebCaches than the other implementations. Not only does LimeWire connect faster, but it
begins receiving query replies sooner once connected. Unfortunately, GWebCaches are not performing well; most
of the load is concentrated on just a few and the caches have many entries for hosts that are no longer present in
the system.

[HA04] brings to light the issue of congestion in the overlay. Each peer connection uses TCP, a reliable
transport protocol with congestion control. When the network is congested, TCP will slow down its sending
rate. However, this means that the application will need to slow how fast it’s feeding data to TCP. While the
application can buffer data to smooth out transient network conditions, it eventually needs to start dropping data
if the queue is continuously growing faster than it can be emptied. [HA04] examines the approaches taken by three
different Gnutella implementations: LimeWire, Mutella, and Gtk-Gnutella. Their study includes a comprehensive
explanation of the algorithms employed by these implementations, measurements comparing their performance,
and simulations exploring alternative algorithms. Again, LimeWire shows the best overall performance.

Open Issues These studies have left out BearShare, one of the most popular Gnutella implementations, since
it is not open source. Nevertheless, these studies are very useful since they touch on topics otherwise neglected in
the research literature. Overlay congestion control, in particular, is not well-understood, with little solid research
to guide developers in choosing appropriate algorithms for handling application-layer bottlenecks.

4 Design of File-Sharing Networks

File sharing applications are composed of several inter-linked components. In the following subsections we review
published approaches for improving (i) indexing, (ii) query routing, and (iii) overlay construction. We also
explore attempts to model file sharing networks. We begin by examining the most radical departure from existing
systems: attempting to index file-sharing networks using Distributed Hash Tables. Table 4 summarizes the papers
covers in this section, illustrating where the research community has placed the most focus.

DHT Indexing and Querying
Overlay
Construction

Modeling Miscellaneous

[APHS02]
[CCR03]
[LHSH04]

[ALHP01]
[GMS04]
[LCC+02]
[LRS02]
[YVGM04]
[WXLZ04]

[CS02]
[YGM02]
[YGM03]
[LLS04]
[CGM02]
[SMZ03]

[LZXN03]
[LZXN04]
[LLX+04]
[WC04]
[PRU01]

[GFJ+03]
[ZA03]
[YGM01]

[CRB03]
[SGM04]
[BFLZ03]
[ZZA02]

Table 4: Research on peer-to-peer keyword search

4.1 Indexing with a Distributed Hash Table

A few papers suggest using Distributed Hash Tables (DHTs) [SMK+01, RFH+01, RD01] for the search function
in peer-to-peer file sharing systems. In these systems, peers still store whichever files they please, and the DHT
is used as a distributed indexing system.

[APHS02] discusses a DHT called P-Grid and builds a Gnutella-like system called Gridella over it. In their
system, peers get a portion of the search space based on their connections to other peers. Then, they fall-back to
Gnutella-like flooding to locate files that belong in their search space. They index those to make lookups more
efficient for other nodes. However, this early paper does not address any of the typical problems that DHTs face:
handling high peer churn and balancing load when some terms are exponentially more popular than others.

[CCR03] takes a different approach with a system called “Structella”, which builds the overlay using Pastry
[RD01]. Then, queries are sent over the structured overlay using flooding or random walks. They use the structure
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of the network to ensure that nodes do not receive any duplicate queries, thereby cutting cost considerably
compared to flooding over a small-world network.

[LHSH04] observes that a hybrid system may be the best approach. In their design, queries are done using
conventional flooding with a low TTL. Searches for popular items will be satisfied easily with this small, cheap
flood. If not many results are found, then the lookup is done using a DHT which only indexes rare items. This
ensures that no peers will shoulder a grossly disproportionate load.

The tricky part is determining which items are rare. They conduct a few measurements using the Participate
approach, and show that small result sets tend to contain only rare items, while large result sets contain a mix of
common and rare items. Thus, they suggest using the heuristic that items returned in small result sets are rare
and are indexed in the DHT. Using measurement, they show that 18% of queries return no results, even though
for two-thirds of those queries a match does exist in the network. Thus, their approach would both increase
results and decrease load.

Open Issues Much work remains to be done in this area. Although several steps have been made in the right
direction, a comprehensive, scalable, and robust system for indexing files using a DHT has not yet been presented.
Nevertheless, one widely-deployed peer-to-peer system, Overnet, uses the Kademlia DHT [MM02], presenting a
unique opportunity for future measurement studies.

4.2 Indexing and Query Routing

Aside from DHTs, two basic strategies have been proposed for improving the efficiency and efficacy of search versus
basic flooding. One is to reduce the number of duplicate messages by walking the network instead of flooding it.
The other is to replicate indexing information so queries search more with each peer they pass through.

[ALHP01] was the first to propose a walk strategy. In their scheme, each node indexes itself plus all of its
neighbors. Queries walk through the network, one peer at a time, preferring peers with the highest degree first.
They show with simulation that, in a power-law graph, this results in searching most of the nodes very quickly.
The query will reach the high-degree nodes within a few hops and, since they have many neighbors, these nodes
index a significant fraction of the network. However, their scheme results in every query being routed through
the highest degree nodes. [LRS02] build on this idea by introducing a dynamic scheme to adjust node degree
based on throughput. It still seems unlikely that network operators at high-bandwidth locations would approve
of their users routing all the query traffic for a large file-sharing network.

[GMS04] takes a slightly different approach and suggest using random walks. Through analysis and simulation,
they show that random walks perform better than flooding when either (i) ultrapeers are used, or (ii) identical
searches are reissued periodically when the overlay has not changed significantly.

[CS02] examines different approaches to replicating index information in the overlay. They show that having
records proportional to the popularity of the file is suboptimal. Proportional indexing is done implicitly by most
file-sharing networks today since each instance of a popular file creates an index entry on that peer. Interestingly,
they also show that having an equal number of records per unique file performs just as poorly! For proportional
indexing, there is too little indexing of the considerable number of less popular items. With uniform indexing, too
many resources are being spent indexing the least popular items. The optimal solution is square-root replication,
in which the number of index entries is proportional to the square-root of the popularity of related queries, striking
the right balance between common and uncommon files.

One difficulty with walking is that it incur substantially more latency than flooding. [LCC+02] solves this
problem by using k walkers in parallel. Using simulation, they show that 16 to 64 walkers typically achieves
good results, with latencies comparable to flooding. With 32 walkers, the overhead is reduced by two-orders
of magnitude compared to flooding. They also discuss practical ways to implement the square-root replication
proposed in [CS02].

Another challenge with walking is the danger that a long-walk may be lost somewhere in the overlay, greatly
limiting the search horizon. The Gnutella UDP Extension for Scalable Searches protocol (GUESS) [DF02] ad-
dresses this issue by keeping the state at the searcher. It individually queries each node along the walk, retrieving
a list of other GUESS-enabled ultrapeers in addition to results from each node queried.

[YVGM04] evaluates GUESS and explores different policies for caching the list of ultrapeers to query. They
show that prioritizing the caching of nodes with many files improves performance. However, congestion control
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for GUESS is still an open issue. Because query sessions are single, brief transactions, remaining TCP-friendly is
tricky.

Building on the suggestions of [Sri01] and [Mar02], [WXLZ04] explores a query-caching system for Gnutella,
called DiCAS. In this scheme, each node is assigned a random n-bit label. Queries are hashed into n-bits and
query results are cached by peers with a matching label. Thus, in a 2-bit system, each peer would cache roughly
one-quarter of all query results. Their simulations show a moderate cache size reduces query traffic by 54% and
response time by 33%. However, they do not address the problem of how to expire stale cache data.

Finally, [LLS04], [CGM02], and [SMZ03] suggest optimizing queries based on common interests. [LLS04] and
[CGM02] rely on using additional semantic knowledge about the content to restructure the network. [SMZ03]
proposes adding temporary “short-cut” links to nodes the previously responded to one of the user’s queries.
Later queries are then sent to the short-cut peers first, then flooded conventionally if the short-cut peers produce
enough matches. Each peer maintains just a handful of short-cuts. Through trace-driven simulation, they show
that shortcuts can reduce load by a factor of 3 to 7.

Open issues In summary, we have several techniques that offer significant improvements over flooding. Square-
root replication coupled with k-random walks over a network-aware overlay is a promising set of optimizations.
However, these approaches have not been carefully examined using populations as large as today’s file sharing
networks. Also, square-root replication and other result-caching schemes may not fair well in light of short peer
lifetimes where the cached data will become invalid quickly. Moreover, none of these techniques are efficient for
queries that don’t match any files in the system; for those queries, a hybrid solution using a DHT may be the
only efficient solution.

Also, while significant work has been done in this area, Gnutella clients have headed off in a slightly different
direction. Future work will need to reconcile this difference by studying the deployed implementations and see
how well they compare with the techniques already proposed in the literature.

4.3 Overlay Construction

Several studies examine building more efficient overlay topologies. The majority of these techniques are aimed at
overcoming the mismatch noted in [RFI02] between the overlay and underlying topology.

[LLX+04] propose a system called Location-aware Topology Matching (LTM) which selectively rewires the
topology based on network locality. In an impressive set of simulations, they show this results in faster searches
and less traffic while maintaining good connectivity.

[LZXN03] and [LZXN04] take a slightly different and complementary approach by logically disabling nearby
redundant overlay links. In their system, neighbors keep track of their neighbors’ neighbors and avoid sending
queries through obviously redundant links.

[WC04] develops a system called Phenix, which builds a power-law overlay in a distributed way that does not
reveal which nodes are the high-degree nodes. Their goal is to construct the power-law overlay while making it
difficult for attackers to cripple the network by attacking only the high-degree nodes.

[YGM03] examines topologies that use super-peers. Their most interesting result is demonstrating that high-
degree, low-TTL networks are both more efficient and more effective than low-degree, high-TTL networks.

Open Issues In the absence of a solid understanding of churn and how it affects the topology, it’s difficult
to understand the implications of additional rewiring or deliberate attempts to alter the topology. Causing
additional turbulence in the overlay may be detrimental. Once churn and topology are better understood, overly
construction techniques will need to be revisited.

4.4 Modeling

Only a few attempts have been made to develop comprehensive models to describe peer-to-peer file sharing
systems. The earliest attempt, [YGM01], models Napster-like systems that feature a centralized index and peer-
to-peer downloads. However, due to legal issues, no systems in this category exist anymore.

[GFJ+03] presents a model for the search component of peer-to-peer systems, including systems based on
centralized indexing, flooded queries, and DHTs. Their model supports several classes of users, distinguish-
ing freeloaders versus contributors and high versus low bandwidth users. Interestingly, their results show that
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freeloaders frequently do not adversely affect the performance of contributors. In their model, peers remain in
the system long enough to download n files, where n > 1. Unfortunately, this may not be the case, particularly in
light of the low session times reported in [CLL02]. They also assume that peers remain only orders of magnitude
longer than it takes to setup all of their connections, indexing, etc. This, too, may not be the case.

In contrast, [ZA03] models the spread of a file in a peer-to-peer system. Each peer may be up or down, and
may have the file, uninterested in the file, downloading the file, or waiting to download the file. They break these
into distinct states, and simply track the number of peers in each state rather than keeping track of each peer
individually. This makes their system faster and memory efficient.

Open Issues The models developed thus far are useful, but have limited applicability. Of course, this always
the tradeoff with models: it’s easier to work with a simple model, but it makes more simplifying assumptions.
Also, because peer-to-peer systems are evolving so rapidly, models can quickly become outdated. For example,
the model of [ZA03] does not account for swarming downloads.

4.5 Miscellaneous

The problem of server selection has been extensively studied in the literature. However, the problem is more
complicated in peer-to-peer systems. The server selection problem is typically cast as a local optimization problem,
where the goal is to find the optimal measurement technique and heuristics to allow a client to select the best
server. In the peer-to-peer context, this model is not always sufficient. Peers are typically more bandwidth-
constrained than servers, so there is greater contention for resources and server-peers allow only a limited number
of concurrent uploads. Furthermore, because some peers will be more useful in propagating a file throughout the
system, there is a global optimization element to the peer selection problem. In addition to the client-component
selecting peers, the server-component must choose which peers to upload to.

[ZZA02] presents an initial exploration of this problem. They assume the existence of a search protocol which
returns a list of peers that can serve the content. Through simulation, they consider the simple case where peers
allow any number of uploads and have global knowledge. In this scenario, they found that the greedy approach
worked best: each client-peer selects the server-peer with the maximum value of b

n+1
where b is the server-peers

uplink bandwidth, and n is the number of existing upload sessions. They also provide an initial exploration of
the case where server-peer’s have a finite number of upload slots.

Another largely unexamined problem is overlay congestion. The only design paper dedicated to this topic
is [SGM04], which proposes allocating bandwidth to peers based on the number of query replies seen from that
peer. They examine the effectiveness of their system through simulation on a 250 node random graph, using fixed
available bandwidth at each peer. Unfortunately, they do not compare their system with algorithms in existing
Gnutella implementations.

[CRB03] sets the ambitious goal of designing a next-generation Gnutella system called Gia. This system
used one-hop index replication coupled with a walk biased towards higher-bandwidth nodes. They compare Gia
through simulation with a flooding protocol, the k-random-walkers protocol from [LCC+02], and a super-peer
protocol.

Gia also employs a unique overlay flow-control mechanism based on tokens. Each node assigns tokens to its
neighbors, distributing the tokens proportional to the neighbor’s advertised capacity. The tokens act as a right-
to-transmit for one query. Because they do not evaluate their flow-control mechanism separately, it is difficult to
compare with the one from [SGM04] or those in real Gnutella implementations.

5 Design of Swarming-like Systems

Few papers have proposed swarming download schemes. [KG99], [SRS02], and [PS02] propose using a peer-to-peer
approach to alleviate flash crowds by re-sharing files that have been downloaded in full. In [KG99] and [PS02],
peers access a central server and may be referred to a peer that has already downloaded the file. In [SRS02], peers
search an overlay for a peer if the central server is overwhelmed. [BLM99] proposes allowing clients to download
from several Web servers at once. This allows conventional server-selection techniques to be skipped, sine the
clients will implicitly download most of the file from the fastest servers. To avoid the complexities of choosing
which bits to download from which server, they employ a type of Forward Error Correction (FEC) called Tornado
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codes. FEC encodes k packets into n packets such that the original k packets can be reconstructed using any εk

packets of the n, where n > k and ε is close to, but greater than, 1.
The workshop paper [MM03] proposes a full swarming system using FEC rateless codes . They use FEC to

improve the probability that peers will have data useful to other peers. For rateless codes, n is “practically
infinite” and coding is computationally inexpensive: encoding each block is O(1) and decoding the whole file is
O(εk). However, no formal analysis has been performed to demonstrate that peers have difficulty finding non-
redundant data sources in non-FEC swarming systems, so it’s unclear what benefit the additional complexity
provides. They do not provide any evaluation of the performance of their system.

Slurpie is another swarming system with the unique design goal of keeping the load on the root server constant,
regardless of the number of Slurpie clients [SBB04]. To achieve this goal, Slurpie clients attempt to estimate the
total number of clients, n, in the swarm. Then, if a peer can’t find a source for the block it’s seeking, every 4
seconds it downloads the piece from the root server with probability 4

n
. On average, there will be fewer than 3

concurrent connections to the server, yet the there will be at least one connection to the server 90% of the time.
Slurpie clients decide uniformly at random which block they would like to download next, then look for a peer

that can provide them with that block. This block-seeking approach is quite different from BitTorrent, which
establishes its peers first and then downloads whichever blocks they have available.

Slurpie performs better than BitTorrent in some limited experiments, which show that Slurpie performs
better when 50 clients on a 100 Mbps switch are downloading a 1 GB file from a source on a 10 Mbps connection.
Unfortunately, this doesn’t provide much information about how Slurpie would perform in a true flash-crowd
scenario. Also, their experiments do not help us to isolate which aspects of their implementation allow Slurpie to
outperform BitTorrent in that setting.

Several models for BitTorrent exist [QS04, YdV04]. They show that after a period of exponential growth
in system capacity, the system enters steady-state behavior. They also show re-sharing before completing the
download dramatically improves flash crowd response for large files. However, in their model BitTorrent responds
slowly to an additional burst of demand after the system is already in steady-state, suggesting an avenue for
improvement.

Bullet is a swarming system [KRAV03], inspired by overlay multicast. It forms a tree from the content source
and uses this tree to propagate random samples about which peers have which blocks of the file. These gossiped
messages use Bloom filters to summarize information about which blocks a peer has. Peers download blocks from
their parent in the tree, as well as contact other peers in the system that have blocks they need. Peers allocate
bandwidth to their children based on how many grandchildren they possess, and try to send a different block
to each child. They evaluate their scheme using the ModelNet emulation environment and on PlanetLab. They
show that Bullet performs better than a traditional single-tree overlay multicast scheme; however, this does little
to improve our understanding of how it compares to other swarming techniques.

Open Issues In summary, the design space of swarming protocols is still largely unexplored with only a few
research papers on the topic. Part of the difficulty may be that we do not yet have a good set of realistic, yet
practical, scenarios for comparing implementations, nor insightful metrics for locating bottlenecks. As such, it’s
difficult to make useful comparisons between two swarming systems, except in extremely limited environments.

Swarming systems are complicated with many inter-related components. Each implementation needs algo-
rithms to select peers, to choose which blocks to retrieve from which peers, to choose how many peers to connect
to, and a way to find peers. Each of these components affects the behavior of the others, which makes studying
them in isolation difficult. Also, we do not yet have a solid understanding of swarming systems that are deployed
and in operation in the real world, which makes it difficult to improve them incrementally.

There are two basic approaches. We can design entirely new systems and compare them head-to-head, or
gradually improve existing solutions. However, we lack good metrics and simulation environments to compare
two systems head-to-head and we lack the knowledge and the metrics to understand where an existing system is
bottlenecked. These issues will need to be resolved before further progress can be made.
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6 Design of P2P Streaming Systems

Peer-to-peer streaming is an up-and-coming technology evolving from overlay4 multicast [KLL03, BBK02, CRhZ00,
JGJ+00, KB04, BLBS03, ZLG04]. While IP multicast was by nature limited to a single distribution tree, overlay
multicast has considerably more flexibility. [BLB+04] shows that by sending a small percentage of packets outside
of the regular tree, they can improve the overall delivery rate. Like swarming, peer-to-peer streaming is a peer-
to-peer distribution mechanism where peers use multiple sources and re-share data as soon as it arrives. Unlike
swarming, streaming attempts to deliver the data in-order so that the client application can playback the content
in real-time. Where swarming splits files into blocks, peer-to-peer streaming splits the stream into stacked layers .
The receiver needs the lowest layer to continue playback. Higher layers improve the quality of the playback.

CoopNet [PWC03] uses Multiple Descriptor Coding (MDC) [Goy01]. Unlike layered coding, any single sub-
stream will provide low-quality playback with MDC, and any additional sub-streams will improve quality. Though
trace-driven simulation, they explore the relative performance of different centralized tree-construction algorithms
and the tradeoffs of how many trees to use. Their simulations show that CoopNet performs well, except in the
case where peers leave abruptly and repairs take more than 5 seconds to complete. However, their simulations
do not examine the case where peers have heterogeneous or changing bandwidth characteristics.

One study uses the data from [SMZ04], coupled with heuristics to estimate client bandwidth characteristics,
to evaluate the feasibility of using a generic peer-to-peer streaming protocol [SGMZ04]. For a single-tree protocol,
they simulate a few different tree-construction policies and find that a minimum-depth join algorithm resulted
in the fewest interruptions. They try using uptime-so-far as a predictor of future uptime, and joining to parents
who were the most likely to remain up. However, this performs poorly. It results in very tall trees such that when
a node high in the tree finally does fail, the number of interruptions is very significant. They also find that using
multiple trees with MDC results in fewer interruptions.

PRO uses a decentralized, gossip-based mechanism for locating potential parents [RS04] suggests. Each peer
maintains a modest cache of other peers in the system, along with their network coordinates as determined by
a system such as GNP [NZ02], HYP [ST04], or Vivaldi [DCKM04]. Peers periodically exchange gossip messages
with other peers in their local image, transferring the records most likely to be useful to the other peer. In
this way, peers gradually learn about the peers closest to them and select a subset of them as sources. [RO03]
complements this scheme with a receiver-driven protocol for downloading packets from a set of senders. In other
words, this is a “pull” scheme whereas the traditional multicast schemes are “push”.

Most of these schemes rely on an underlying congestion-control algorithm. TCP is inappropriate because it
(i) enforces reliability which is undesirable in an application where old data is useless, and (ii) may experience
large oscillations in throughput. RAP [RHE99] and TFRC [FHPW00] are rate-based protocols which provide
TCP congestion-fairness while providing more stable throughput.

Open Issues While efficient streaming over the Internet has been a dream of researchers for many years,
neither IP nor overlay multicast have been successful in realizing it. Peer-to-peer streaming is a new approach
that promises to overcome the remaining barriers by leveraging some of the same techniques that make other peer-
to-peer applications so successful. However, the real-time component remains a significant technical barrier which
new projects like CoopNet and PRO attempt to overcome. PRO is still in the early stages of its development,
and will be the first decentralized, peer-oriented streaming protocol.

7 Summary and Conclusions

This paper surveys this research literature in three related areas, examining different proposes approaches and
measurements made of real systems:

1. Peer-to-Peer Search

2. Peer-to-Peer Transfer

3. Peer-to-Peer Streaming

4Also called “application-layer multicast”
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We find that some aspects of these are moderately well understood, while others have gone mostly untouched.
The most well-examined aspects include the following:

Index and query routing over an unstructured overlay Square-root replication coupled with k-random
walks over a network-aware overlay is a promising set of optimizations that greatly improve efficiency
relative to flooding.

Query, download, and file distributions in file-sharing networks The popularity of files follows a pure
Zipf distribution, while the popularity of queries and transfers is Zipf for less-popular files, but relatively
equal for the most popular items. Users tend to have distinct preferences and generating a graph based on
the files results in a small-world.

User viewing habits of streams User preferences for streams also follow a Zipf distribution for unpopular
items and a relatively equal distribution for the most popular items. Churn among streaming viewers is
relatively well understood, due to the availability of centralized logs.

The least understood aspects include the topics listed below. My existing and future research will focus on a
subset of these areas, and may revisit some of the well-understood topics in light of new information.

Topological characteristics of unstructured networks The few topological studies are based on crawls that
are likely in accurate. Moreover, these crawls are old and the Gnutella network has grown by one or two
orders of magnitude since then and introduced ultrapeers. No topology studies have been done of other
peer-to-peer networks.

Effects of churn on overlay stability, performance, and structure There are conflicting results on churn
in file-sharing networks, and further work needs to be done to establish a definitive analysis. Thus far, no
work has been done to examine the effects of churn on the overlay.

Tools for workload generation Even in instances where distributions are well understood, they are often only
presented as graphs and not fit precisely so that they can be used to generate workloads. As a result, papers
use different simulation environments to evaluate their designs.

Effectiveness of existing swarming solutions Swarming downloads are still poorly understood. Substantial
anecdotal evidence suggests BitTorrent performs substantially better than a single server, but we don’t know
how much better or where its bottlenecks lie. No studies have examined the swarming implementations
built-in to file-sharing applications.

How to construct a good swarming system Few studies have proposed alternative swarming solutions and
we have a relatively weak understanding of different ways to approach the problem. once good metrics and
simulation models have been developed, it will become easier to compare and contrast different solutions.

How to construct a good peer-to-peer streaming system Few studies have proposed alternatives for peer-
to-peer streaming. This, too, is a relatively open field, although the performance metrics are at least better
understood.
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