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Abstract 
This paper provides an overview of the area of psychological inspired symbolic cognitive 
architectures. It does this by first defining the terms that describe this research area and 
by selecting three architectures to examine: ACT-R, EPIC, and Soar. For each of these 
architectures, the motivations, assumptions, and features are evaluated. The similarities 
and differences between the architectures are discussed as issues are raised and the results 
summarized. A few example cognitive models are described to demonstrate the different 
architectures. Finally, some current and future research areas in the field of cognitive 
architectures are examined as a springboard for future dissertation related work. 
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Introduction 
Research into the area of cognitive architectures has two main benefits. One of these is 
the advancement of psychological theories of cognition. This is done by examining the 
start of the art in psychological theory and realizing it as a computer program, a cognitive 
architecture, which can be empirically tested. The other main benefit involves using 
cognitive architectures to create more accurate simulations of human behavior. These 
models are useful in a wide variety of tasks, from modeling a user of a computer program 
in studies of human-computer interaction to modeling a military jet pilot in a large 
distributed simulation. 
 
This paper covers the breadth of modern psychologically inspired symbolic cognitive 
architectures. The reading list (see appendices for the reading list and annotated 
bibliography) on which this paper is based is designed to expose a broad range of topics 
and ideas for three cognitive architectures: ACT-R, EPIC, and Soar1. These readings are 
divided into four categories: foundation, ACT-R, EPIC, and Soar. For each of the areas, 
the readings support a general understanding of the architecture as well as examine a 
number of cognitive models. In addition to specific architectures and models, the reading 
list also covers a broad array of the important issues in cognitive architectures.  

Area of Study 
Some additional clarification is required with respect to the area of study: psychologically 
inspired symbolic cognitive architectures. The first clarification is based around what is 
meant by the terms “cognitive”, “psychologically inspired” and “symbolic”. The second 
is why ACT-R, EPIC, and Soar are chosen.  

Cognitive 
Newell (1990) specifies that cognitive behavior becomes evident at about one second in 
what he calls the cognitive band. This is based on a discussion of system levels where the 
time difference between levels is about an order of magnitude. Roughly, these levels are 
biological (up to 10ms), cognitive (100ms – 10 seconds), rational (minutes – hours), and 
social (days – months). He suggests that symbols are accessed around the 10ms level, 
which serves as the starting point of symbolic cognition. The level built on top of this, 
around 100ms, starts cognitive activity with deliberation (accessing remote knowledge 
and putting it to use). For example, retrieving a piece of knowledge from long term 
memory, say the name of your dog, and deciding that the answer is Baxter based on this 
fact would take around 100 ms. This doesn’t include saying or writing the answer, just 
deciding that Baxter is the answer. Newell writes that composed operations, such as 
pushing a button, begin around the one second level.  

Psychologically Inspired 
The term psychologically inspired simply means that the architectures were created to 
model human cognitive activity, where cognitive activity is defined as those operations 
                                                 
1 The acronyms stand for, respectively, Adaptive Control of Thought – Rational, Executive-Process 
Interactive Control, and Soar (not an acronym though it used to be SOAR – State Operator And Result) 
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that take between 10ms and 10s as describe above. An example of modeling that is not 
psychologically inspired are the finite state machines commonly used in the game 
industry to model intelligent behavior (Fu & Houlette, 2003), such as the bots in a first 
person shooter. 
 
This paper takes psychologically inspired one step further, requiring included 
architectures to be psychologically validated as well. This means that both the theory 
behind an architecture, and the models created with it, have been validated to some 
extent. Validation is an important part of this paper and is discussed in greater detail in 
the Cognitive Architecture section of this paper. See Pew and Mavor (1998) for 
information on comparing the extent of validation for a large number of cognitive 
architectures. 

Symbolic 
Newell (1990) provides a description of symbol systems, stating that they contain 
memory (of tokens, the physical representation of a symbol), symbols (tokens that 
represent distal information), operations (that manipulate symbols), interpretations (of 
symbols to perform operations), and capacities (memory, composability, and 
interpretability). Symbol systems are often implemented as collections of if-then rules. 
Newell argues that symbol systems naturally represent human knowledge, making it 
easier to both encode knowledge and understand behavior of the architecture (see Clark, 
2001 for an overview of some of the difficulties of this stance). An example of a 
subsymbolic system is a neural network. In such a network, behavior is represented as 
weighted connections between nodes rather than human interpretable symbols. 

ACT-R/EPIC/Soar 
A large number of symbolic cognitive architectures are described by Pew & Mavor 
(1998). Of these, only ACT-R, EPIC, and Soar are described as psychologically 
validated. Cognet was another candidate but is not covered in the reading list based on 
three reasons: it lacks psychological validation (Pew & Mavor, 1998), it is a proprietary 
system (whereas ACT-R, EPIC, and Soar are academic), and it has been cited as being 
too complex2 (Kieras, 2003). The selection of ACT-R, EPIC, and Soar is supported by 
Byrne’s (2003a) review of cognitive architectures.  

Intention 
The goal of this paper is to demonstrate knowledge of the basic principles and current 
directions in cognitive architectures. The reading list for this paper answers a number of 
questions (detailed answers can be found in the Detailed Issues appendix) such as: 
• What are the basic issues surrounding symbolic cognitive architectures? How do the 

selected cognitive architectures differ from one another? How are they similar?  
• How do the cognitive models themselves differ across architectures? 
• What kinds of things can be done with a cognitive architecture? How does this differ 

across theories of cognition? 

                                                 
2 Kieras writes that Cognet “… incorporates a multitude of ideas about human cognition and performance, 
so many that it appears to be rather difficult to understand how it works.” The chosen cognitive 
architectures all use fewer and less complex mechanisms to account for cognitive behavior. 
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• In the architectures that support learning, how does it work? Is it useful? 
• What are some of the current research topics in cognitive architectures and 

modeling? 
 
The paper supports the aforementioned goals by providing a comprehensive review of the 
studied area. A general description of cognitive architectures comprises the next section. 
This foundation sheds light on some of the similarities of the chosen architectures. 
Following sections focus on the specific assumptions, motivations, and features of ACT-
R, EPIC, and Soar. The final section describes both current and future research areas in 
cognitive architectures. Appendices supplement the paper, including a reading list, an 
annotated bibliography, and a list of detailed issues. 
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Cognitive Architecture Components 
There are three major components essential in defining what a cognitive architecture is: 
theory, architecture, and model (Figure 1). First, a number of different ways of thinking 
about these components are examined. This is followed by a discussion of each 
component individually. 

 
Figure 1. Cognitive Architecture Components 

 
One way of visualizing the components is that the architecture lies between a theory and 
a model. A theory of cognition forms the core of the architecture. This theory describes 
how cognition occurs and what constraints there are on cognition. An architecture is built 
based on this theory. Creating an architecture requires complete specification of the 
relationships, constraints, and functions described in the theory. Finally, the architecture 
is used to build a cognitive model. A model specifies, in the language of the architecture, 
how to complete a given task.  
 
There are other ways to visualize how these three components fit together. Figure 2 
shows an explicitness-based visualization. The theory, based on the psychological 
literature, leaves a number of details unspecified. One example might be how procedural 
knowledge is stored. The architecture, going beyond the theory, adds constraints such as 
that procedural knowledge is stored as production rules. Finally, a model provides further 
constraints, dictating exactly what the production rules are. Progression up the pyramid 
requires that more details be made explicit. 

 
Figure 2. Cognitive Architecture Components (Second Version) 
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A third way of looking at these components, from a modeler’s perspective, is shown in 
Figure 3. In this image, the architecture extends from the theory, as shown on the left 
hand side. This signifies that the architecture specifications extend beyond what is 
currently known in the literature. The right hand side illustrates how the architecture 
language is used to construct a model and how the model is fed into the interpreter. In 
this diagram, the model is something that the architecture uses, not an extension of the 
architecture.  

 
Figure 3. Cognitive Architecture Components (Third Version) 

The java programming language can also be thought of along these lines. The java 
language, i.e. the basic operators and classes of java, is based on computer language 
theory. The java virtual machine (architecture interpreter) interprets a program (model) 
built using the java language. From this perspective, a cognitive architecture is essentially 
a specialty computer programming language. 
 
A fourth way of relating these components, again from the perspective of a modeler, is 
that all of the pieces combine to form a cognitive model. A cognitive model, using this 
definition, contains the theory implemented in the architecture as well as the productions 
and parameter settings written in the modeling language and the simulated device the 
productions interact with.  
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Theory 
The theory behind a cognitive architecture, the first component in all of these diagrams, 
describes the various processes involved in cognition, how these processes are related to 
and communicate with one another, and the types of information that these processes 
work with. First, the Model Human Processor (Card, Moran, & Newell, 1983) is 
described as a specific example of a theory of cognition. Second, the concept of a 
particular type of theory, a unified theory of cognition (Newell, 1990), is discussed. A 
unified theory of cognition is one that covers a substantial portion of human cognitive 
behavior. 
 

Model Human Processor 
One example of early work in cognitive theories is the Model Human Processor (MHP) 
(Card, Moran, & Newell, 1983). The overall design of the system can be seen in Figure 4. 

 
Figure 4. The Model Human Processor - Memories and Processors (Card, Moran, & Newell, 1983) 

 
The MHP is an example of a theory of cognition, designed especially for the study of 
computer interfaces. It consists of a set of connected processes (perceptual, cognitive, and 
motor) combined with memories (working and long term) and a set of operational 
principles that guide how the processors and memories work together. Each processor 
can perform a number of basic tasks (e.g., the motor processor can tell the finger to press 
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a button) where the average time to complete a task is gathered from the relevant 
psychological literature. A few of the ten principles of operation (the rules for running the 
MHP) are the:  

• Recognize-act cycle of the cognitive processor 
• Fitt’s law 
• Power law of practice 
• Rationality principle 
• Problem space principle.  

 
In addition to being an important part of the MHP, these principles can also be found in 
ACT-R, EPIC, and Soar. In the recognize-act cycle, the perceptual processors (visual, 
aural, tactile) send information to the working memory. The updated contents of working 
memory, possibly with additional information from the long term memory, determine an 
action to perform. This action may be internal, such as retrieving something from LTM, 
or external (e.g., sending a command to the motor or verbal processors). A simplification 
of the MHP recognize-act loop looks something like: Perception -> Recognition -> 
Decision -> Action. 
 
Fitt’s law and the power law of practice are two formulas that describe behaviors in 
human-computer interaction (HCI). Fitt’s law is given as Tpos = IM log2 (D/S + .5), where 
Tpos is the time it takes to move a hand some distance, D, to a target of some size, S. IM is 
a constant, generally 100 ms/bit. The power law of practice is given as Tn = T1n-alpha, Tn is 
the time to perform on the nth trial, T1 is the time to perform on the first trial, and alpha is 
a constant generally equal to .4. These two laws are examples of information found in the 
psychological literature that can be directly applied to constrain behavior in cognitive 
architectures. 
 
The rationality principle states that humans act in such a way as to achieve their goals in 
an efficient manner, given their knowledge of the current situation and possible actions. 
Card, Moran, and Newell (1983) give the following formula: Goals + Task + Operators + 
Inputs + Knowledge + Processing-limits = Behavior. This principle is a driving force 
behind the operation of ACT-R, EPIC, and Soar.  
 
Finally, the problem space principle makes assumptions about how to represent rational 
behavior. The basic tenets are that knowledge can be represented as a set of states, 
operators change one state into another, operators can be constrained such that they only 
apply to certain states, and some mechanism must decide which of the applicable 
operators to apply. While this principle is much more explicit in Soar, it can also be seen 
in the workings of ACT-R and EPIC3. 
 
To validate a theory such as the MHP, justification must be given for each of the 
processors, relationships, and principle of operations defined in the theory. Card, Moran, 

                                                 
3 Soar has explicit states but EPIC and ACT-R do not. However, in practice EPIC and ACT-R are 
maneuvering through a state space. For example, in ACT-R the current contents of the working memory 
buffers (a state, combined with a certain amount of noise) is used to determine the next production to use. 
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and Newell (1983) devote a significant portion of their work to reviewing psychological 
studies and describing the impact of the results in the context of their theory.  
  

Unified Theory of Cognition 
A unified theory of cognition is a designation for a particular type of cognitive theory, 
one that captures a substantial portion of human cognitive behavior. In his book, Unified 
Theories of Cognition, Newell (1990) writes about his view of the state of cognitive 
science and provides an overarching goal for research in the area of cognitive 
architectures – developing a unified theory of cognition. The book is a coalescing of 
ideas and previous research, resulting in a focused research direction, a candidate unified 
theory of cognition, supported by the refined cognitive science platform he describes.  
 
Newell defines a unified theory of cognition as “a single set of mechanisms for all 
cognitive behavior.” The importance of a single set of mechanisms is in developing a 
single, unified theory rather than stringing together a number of possibly disparate 
theories that each tackles a small part of cognition. One difference between these two 
approaches is that a single theory must take into account all of the functionality and 
constraints found in the human mind, which in turn influences the complete theory as it is 
developed. Figure 5, taken from his book, describes what he means by cognitive 
behavior. 
 

 
Figure 5. Areas to be Covered by a Unified Theory of Cognition  

(Figure and caption from Newell, 1990) 

 
Newell (1990) writes that a candidate unified theory of cognition does not necessarily 
have to do all of these things, but that it should be making progress down the list of 
behaviors. This definition also leaves open the likely possibility that there can be more 
than one unified theory of cognition. Both ACT-R (Anderson & Lebiere, 1998) and Soar  
(Newell, 1990) claim to be candidates for a unified theory of cognition. The basic theme 
of a single theory that covers much of cognition is found repeatedly in the cognitive 
architecture literature. 
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Architecture 
Byrne (2003a) writes that “a cognitive architecture is a broad theory of human cognition 
based on a wide selection of human experimental data and implemented as a running 
computer simulation program.” Lehman, Laird, and Rosenbloom (1998) provide a 
slightly different definition: “a cognitive architecture is really two things at once. First, it 
is a fixed set of mechanisms and structures that process content to produce behavior. At 
the same time, however, it is a theory, or point of view, about what cognitive behaviors 
have in common.”  
 
Another way of looking at this is: a cognitive architecture is a theory realized as a 
cognitive model programming language and runtime interpreter. The programming 
language dictates the representation of knowledge and provides a number of basic 
functional operators used in model construction. The runtime interpreter executes 
cognitive models according to the underlying theory, supplying input from the outside 
world (perception), performing cognitive processing as described by the model and 
constrained by the architecture (cognition), and producing actions (behavior). The EPIC 
architecture is used to illustrate the various elements of a cognitive architecture. 
 
Figure 6 lists a few of the operations and knowledge representation capabilities available 
in the EPIC architecture (Kieras & Meyer, 1998). Operators such as these are the basic 
building blocks of cognitive models.  

 
Figure 6. Example Operations Supported by the EPIC Architecture 

 

These cognitive architecture operators provide predictive power to cognitive models in 
part by constraining what a model can do during its execution (Kieras, 2003). These 
constraints help provide psychological validity for a given model as the operators are 
carried out within the runtime portion of the architecture. The goal is to allow people that 
aren’t cognitive psychologists to construct psychologically valid models using the 
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language of a cognitive architecture. As an example, the execution environment of the 
EPIC architecture is shown in Figure 7 (Kieras). 

 

 
Figure 7. The EPIC Architecture (from Kieras, http://www.eecs.umich.edu/~kieras/epic.html) 

 

Since the validity of models depends in part on the architecture, the validation of 
architectures is an important issue. The problem is how to determine if an architecture is 
correctly describing cognition. The evidence for this comes from both theory and models. 
To some extent, an architecture is based on the specific results from the psychological 
literature that were used to construct the underlying theory. New or conflicting research 
findings may provide support for, or detract from, an architecture. However, since 
architectures must be completely specified they tend to go beyond the research findings. 
The result is that the main method of validating architectures is empirical, i.e. based on 
the creation and validation of cognitive models for a diverse array of individual tasks.  
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Model 
Byrne (2003a) defines a cognitive model as a cognitive architecture combined with the 
knowledge to perform a task. It is important to consider that acquiring and codifying a 
task requires knowledge-engineering and model-programming skills to 1) specify the 
task, 2) specify the task environment, and 3) create a set of instructions for a particular 
architecture that completes the task. Further, a model is a program that performs a task in 
a particular way while there often is more than one way to perform the task. Finally, the 
validity of a model has ramifications for both the model itself and the underlying 
architecture. 
 
To make the idea of cognitive models more concrete, a cognitive model created during an 
EPIC seminar (Hornof, 2004, personal communication) is examined. The production 
rules from this model are shown in Figure 8. 

 
Figure 8. Production Rules from a Simple EPIC Model 

 
There are two points in the artifact: A and B. The task is to point to A with the right hand, 
assuming the user is already looking at A, and press a key (Z) with the left hand when it 
is reached. Then point from A to B with the right hand and press a key with the left hand. 
Finally point back to A again, and press a key again. The task completed by this model is 
basic, mainly demonstrating motor modeling in EPIC. 
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The model includes operations that check whether or not the manual or visual modalities 
are free (e.g., Motor Manual Modality Free) and whether or not an object is visible to the 
architecture based on what the eyes are currently looking at (Visual ?object Text 
My_Point_B), where ?object binds to any object that meets the description. The reaction 
time performance of this model is constrained by how long it takes the architecture to 
move the eyes, move the mouse, press buttons, etc. These production rules also show 
some of the working memory elements that are added to memory specifically to allow the 
task to be completed (such as Add(Step Click AtB)). 
 
In this EPIC model, the model includes a simulation of the program interface. In this 
case, C++ code is used to build a simulated artifact that is a certain size with two letters, 
“A” and “B”, on the screen. The EPIC runtime interpreter simulates eye movements 
within this specially created artifact. Additional functions of the artifact are performing 
measurements (such as reaction time) and task setup (e.g., the specific location of A and 
B on any given trial).  
 
Creating models such as this provides an opportunity to validate the architecture by 
comparing model results to observed results. This means that the performance of 
cognitive models, built in a particular architecture, are compared with human 
performance. Newell (1990) provides a detailed discussion of agreement between human 
and model data, but for the purposes of this paper two types of agreement are important: 
quantitative (means and/or typical values) and qualitative (results are in the right 
directions but the scale does not match4). Either of these types of agreements can provide 
validation of a model and to some extent the underlying architecture as well.  
 
The performance characteristics to be matched depend on the task being modeled, 
varying from something as specific as reaction time measured in milliseconds to as 
general as learning curves or something that “looks good” to a human observer. Kieras, 
Wood, and Meyer (1997) describe a model based on a well known study in human-
computer interaction, called Project Ernestine. This model makes use of very small 
human-computer interaction measurements such as the time it takes to make a single 
keystroke. The authors build a cognitive model, based on a task analysis, which 
determines that it will take telephone operators longer to complete a task with a new 
interface than with the existing interface based on the duration, dependencies, and 
ordering of short sub-tasks. On the other end of the spectrum are personified interface 
agents (Yoshikawa, 2003), where the goal of the model is to seem human-like (e.g., 
social and affective behavior) to the user. 
 

                                                 
4 This definition of qualitative results is not the same as that commonly used in psychology. 
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ACT-R / EPIC / Soar 
Many of the differences between ACT-R, EPIC, and Soar stem from their varying 
motivations and assumptions. First the motivations of these three architectures are 
discussed and summarized in Table 1. Following this is an examination of the 
fundamental assumptions that the architectures make and how these assumptions push the 
architectures in different directions. Detailed summaries on how each of these 
architectures actually work can be found in Appendix C: List of Detailed Issues. 

Motivations 
The ACT (Adaptive Control of Thought) series of theories and programs have changed 
significantly since their original instantiation in 1976. Initially, the architecture has been 
used to study memory and problem solving with a long term goal of becoming a unified 
theory of cognition. In their book, The Atomic Components of Thought, Anderson & 
Lebiere (Anderson & Lebiere, 1998) make the case for ACT-R being ready for this title.  
 
Kieras and Meyer (1997) list three major motivations for EPIC: examining embodied 
cognition, creating computational models of performance and attention as well as 
cognition, and studying the executive processor with a focus on multiple task 
performance. 
 
Soar is specifically designed to be a candidate unified theory of cognition, focusing on 
human problem solving and learning (Lehman et al., 1998). To understand what is meant 
by problem solving and learning, the authors describe a number of features common to 
cognitive behaviors: 

1. It is goal oriented 
2. It reflects a rich, complex, detailed environment 
3. It requires a large amount of knowledge 
4. It requires the use of symbols and abstractions 
5. It is flexible, and a function of the environment 
6. It requires learning from the environment and experience 

In attempting to model problem solving and learning, Soar needs to model these aspects 
common to cognitive behaviors. 
 
The motivations are summarized in Table 1. These varying motivations can be seen to 
have directly influenced the feature set of the various architectures. Some examples of 
this are the detailed implementation of memory in ACT-R, perceptual-motor processes in 
EPIC, and problem spaces in Soar. 
 ACT-R 

(Anderson et al., 2004) 
EPIC  
(Kieras & Meyer, 1997) 

Soar 
(Laird & Congden, 2004) 

Motivations Memory and problem 
solving 

Embodied cognition 
and multiple task 
performance 

Problem solving and learning 

Table 1. Motivations for ACT-R, EPIC, and Soar 
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Assumptions 
The assumptions chosen by the different theories also affect the resulting architectures. 
Of course, to some degree these three architectures are very similar and share a number 
of the same assumptions. Some examples of this are the principle of rationality, goal 
directed behavior, and the use of production rules (though there are a number of 
differences in the specifics of production rules and how they are processed). However, 
the architectures are still far apart on some of their assumptions as seen in Table 2. 
 
Anderson & Lebiere (1998) outline the basic assumptions of ACT-R. A number of their 
assumptions differ from those of EPIC and/or Soar. Among these are the use of “chunks”, 
each of which has up to three or so attributes with values, for representing declarative 
memory. The attributes of a chunk are the sources of activation for elements in 
declarative memory, with different attributes having the possibility of having differing 
strengths of activation. Procedural memory is represented using production rules, with 
the possibility of partial pattern matching of productions. Partial matching requires a way 
of selecting which production to fire since ACT-R only fires one production each cycle. 
This supports an assumption that productions are chosen using utility based conflict 
resolution. Learning occurs in a variety of places, from production utilities to production 
compilation to activation strengths. These assumptions are discussed in practice in 
Anderson et al. (2004), including embodied cognition, the defense of processing/buffer 
limitations (central bottleneck theory), the representation of memory in “chunks”, the 
subsymbolic aspects of declarative and procedural memory, the learning involved in 
these subsymbolic aspects, and the learning of productions through production 
compilation. 
 
Kieras & Meyer (1997) lay out the basic philosophy of EPIC: make the simplest 
assumptions first and refine later. One of the main assumptions made by the EPIC 
architecture, based on this philosophy, is that cognitive limitations are the result of 
perceptual constraints and motor constraints (including their respective working 
memories). This differs from the assumption that limitations are caused by bottlenecks in 
the central cognitive processor. The parallel rule-processing of the cognitive processor 
supports this assumption. It is important to note that performance is still limited by the 
rate of execution (50ms cycle), perceptual/motor processors (only one set of eyes) and the 
various working memories (see Meyer & Kieras, 1997, for a more detailed treatment). 
This basic assumption is propagated into the processors as well. For example, there are 
no capacity limitations in verbal working memory. Instead, the number of items is limited 
by the decay rate of items in memory and the rate of subvocalization (i.e. rehearsal). 
 
Newell (1990) lists the main characteristics of central cognition in Soar: 

1. “Problem spaces represent all tasks 
2. Productions provide all long-term memory (symbols) 

a. Search control, operators, declarative knowledge 
3. Attribute/value representation is the medium for all things. 
4. Preference-based procedure used for all decisions 
5. Goals (and goal stack) direct all behavior 
6. Chunking of all goal-results (impasse resolutions) occurs continuously” 
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One additional principle, applied to all of the above characteristics, is uniformity. For 
example, there is one type of LTM (productions) to be used for episodic, semantic, and 
procedural knowledge.  Another principle is implied by the decision cycle (described in 
more detail in the architecture description). This principle is that all relevant information 
should be considered before a decision is made. 
 
 ACT-R 

(Anderson et al., 2004) 
EPIC  
(Kieras & Meyer, 1997) 

Soar 
(Laird & Congden, 2004) 

Major 
Assumptions 

Activation of chunks as 
declarative knowledge. 
Central processing 
limitation. 

Embodied cognition. 
Making the simplest 
assumptions first and 
refining later. 

Representing cognition in the 
terms of problem spaces. The 
principle of uniformity. 

Table 2. Assumptions and Approaches of ACT-R, EPIC, and Soar 

 
These different assumptions and approaches lead to significantly different architectures. 
Perhaps the best example of this is how the architectures make decisions. Each cycle, 
EPIC applies all production rules that match the current state. ACT-R, on the other hand, 
computes the utility of all partial matches and (stochastically) determines which single 
rule will fire in a given cycle. Soar, differing from both of these, tries to apply all 
relevant information through what they call a decision cycle. Here, Soar fires every rule 
that matches in continuous cycles until no new rules fire. From all of the operators 
suggested during these waves, preference operators choose which single action will 
actually be performed.  Continuing this thread, the different feature sets of the three 
architectures is discussed. 

Features 
In order to study the different feature sets, each architecture is examined in turn. EPIC is 
described first because its perceptual/motor processors are the basis for ACT-R and 
because it is the easiest of the three architectures to understand. Following this, the 
features of ACT-R and Soar are given. Table 3 summarizes this information in an easy to 
read table format. For a number of features the table includes additional information not 
found in the text. This table is similar to, and contains information from, the tables 
compiled by Pew and Mavor (1998) and Bryne  (2003a) as well as the attributions given 
in the table.  
 

EPIC 
EPIC consists of a series of interconnected processors (visual, auditory, cognitive, motor) 
based on the multiple-resource theory (Kieras & Meyer, 1997, 1998). Each processor 
contains its own working memory in addition to a partition in the general working 
memory with processor-specific functionality. A brief overview of the processors follows 
after a discussion on multiple-resource theory. 
 
The multiple-resource theory is in opposition to the central limitation theory of cognition. 
The former places limits on cognition by the relationships and dependencies of multiple 
resources, while the latter places limits on cognition by positing a cognitive bottleneck. 
Kieras and Meyer (1997) write “… we assume that limitations on human ability are all 
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structural; that is, performance of tasks may be limited by constraints on peripheral 
perceptual and motor mechanisms or by limited verbal working memory capacity, rather 
than by a pervasive limit on cognitive-processing capacity.” 
 
The visual processor works as a pipeline. For example, the detection of a new visual 
object is registered 50ms after it becomes visible, shape information becomes available at 
about 100ms, and task specific pattern recognition (e.g., an icon) may take 250ms. Visual 
working memory makes available to the cognitive processors items and their attributes 
that are currently in view; the visual portion of the general working memory contains 
these as well as those seen previously that have not yet decayed. The availability of 
attributes is determined by the region (originally fovea, parafovea, and periphery). Users 
have significant control over the visual processor due to a large number of customizable 
parameters. It is important to note that the visual processor does not actually recognize 
objects. Instead, it receives symbolic information from the device and simulates the 
recognition process.  
 
The auditory processor is similar to the visual processor with minor differences. While 
the decay was originally fixed, an extension of EPIC resulted in a more realistic working 
memory. Other differences include that items in auditory memory have links to the 
previous/next item in memory to preserve serial order and special tags to note external or 
internal items. 
 
The cognitive processor is based on user defined production (if/then) rules. This means 
that there is no general executive cognitive processor; a specialized one must be created 
for each task. This is more notable in multi-task situations rather than single task 
situations. Processing happens on a 50ms cycle (or optionally stochastically around 50 
ms). These are discrete steps; all processing happens during a regularly scheduled cycle. 
During each cycle there are no central processor bottlenecks, so all rules that can fire 
(perceptual motor processors are limited resources) will fire. The working memory for 
the cognitive processor is unlimited and items put there by the cognitive processor do not 
decay. The cognitive section of the general working memory contains the goals and state 
of production rules along with general task information. Finally, there is no specific 
attention mechanism. All items in the general working memory are available for 
matching production rules. 
 
Hands, eyes, and voice are controlled by the motor processors. Moving the hands requires 
specifying the style, hand, finger, direction, and extent of the motion. The specification is 
used to prepare and execute the movement. Only one movement can be prepared or 
executed at a time, though a movement can be prepared while another is being executed. 
Each feature takes 50ms to prepare along with a 50ms initiation delay. The actual 
movement time is based on Fitt’s law, with a minimum of 100ms. The motor processor 
working memory can store and reuse features for similar movements. The vocalization 
motor is fairly basic, using mostly fixed times for different utterances. The oculomotor 
processor controls the eye movements in either a voluntary or involuntary mode. 
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ACT-R 
Much like EPIC, ACT-R is composed of a set serial modules running in parallel: 
perceptual, motor, goal, declarative memory, and cognitive (procedural 
memory)(Anderson et al., 2004). Further, just like EPIC, the system cycle time is 50ms. 
However, there are a number of differences between the two architectures in both the 
general operating principles and the modules themselves. 
 
Foremost of these differences are the operating constraints on memory items. Only a 
single production rule can fire on any given cycle (central bottleneck theory) in the 
cognitive module. The cognitive module communicates with the other systems through 
independent buffers, each of which holds only “chunk” at a time. Other significant 
differences in ACT-R are the combination of symbolic and subsymbolic aspects as well 
as the various methods of learning. These differences will become more concrete as the 
individual modules are examined. 
 
The main difference in the perceptual/motor system is the model of attention. ACT-R 
contains two visual buffers: where and what. Where contains the location and basic 
features of the visual items. Putting chunks in the where buffer does not require an 
attention shift. The what buffer contains identified chunks (e.g. the encoded text from a 
visual display) and requires a shift in attention. 
 
While EPIC has a goal structure based on convention, ACT-R has a goal structure built 
into the model. Goals can be altered, added to, or removed from the goal buffer. 
Additionally, as goals are added or removed they are added to declarative memory as 
additional chunks. 
 
Declarative memory is composed of items called “chunks”. An example chunk is show in 
Figure 9. This chunk specifies that 8 + 4 = 12. 

 
Figure 9. An Example of a Chunk from Anderson et al. (2004) 

The availability and recall speed is controlled by activation functions. Chunks are 
activated based on the slots of the current goal, the weights and strengths of the 
associations, and the base activation (a separate equation) of the chunk. As a model 
progresses, the activation values of the chunks will change. This is one form of 
subsymbolic learning in ACT-R.  

During any given cycle, multiple productions may be able to fire. However, because of 
the central processor bottleneck assumption, only one of the productions can fire. A 
production is chosen to fire based on an expected utility equation. Similar to activation 
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values, the variables in the production choice equations can also change over time based 
on successes and/or failures. This results in subymbolic learning for conflict resolution. 

ACT-R also features a symbolic method for procedural learning called production 
compilation. This feature attempts to combine any two productions that occur in 
sequence into a single production with the effect of both productions. These new 
productions improve performance in two ways. First, one production is more efficient 
than two productions. Second, new productions can directly encode previously retrieved 
declarative memory thus reducing the number of declarative memory retrievals in the 
future. 

Soar 
The definitive description of the Soar architecture is provided by Laird & Congden 
(2004). In their paper they state that the basic component of the Soar architecture is the 
problem space. To achieve goals, Soar uses operators to move through a problem space 
represented by states that consist of attributes with values and contain a goal and possibly 
parent and/or child states5. The states, with parents and children, form a goal hierarchy. 
Long term memory (LTM) is made up of productions. It represents general knowledge 
(such as knowledge about things in general). Working memory (WM) contains the 
current state (such as knowledge about a particular thing), as well as the state hierarchy.  
 
This architecture is quite different than the previous two architectures. In EPIC and ACT-
R, the cognitive processor includes the productions that control behavior in addition to 
the states of the production rules. Long term memory consists of pieces of information, 
such as chunks in ACT-R. Soar also takes a different approach to the single/multiple rule 
firing of ACT-R/EPIC. 
 
The decision cycle applies LTM to the current state. There are three stages in the decision 
cycle: propose operators, select operator, and apply operator. In the propose operator 
phase, all elaborations, operator propositions, and operator comparisons are fired in 
parallel6. This phase continues until no more productions apply (quiescence). Then, from 
the proposed operators, one is selected. 
  
Elaborations, operator comparisons, and operator selection all merit more description. 
Elaborations that are proposed by LTM elements will be added as they are true (in 
“parallel waves”7) and retracted when they no longer match. The result of this is a general 
truth maintenance system as part of the architecture. However, this does introduce the 
following difficulty. Operators, once fired, make a permanent change to the state. This is 
called o-support (o is for operator). Elaborations (and operator propositions and 
comparisons) on the other hand are only making temporary changes to the state that may 

                                                 
5 This brief description of Soar matches nicely with the definition of a cognitive architecture given by 
Lehman et al. (1998). 
6 Newell (1990) describes perfect intelligence as bringing all relevant knowledge to bear, which is what 
happens during the decision cycle. 
7 Firing in “parallel waves” involves serially traversing the rules and firing all that apply. After one 
traverse, traversing the rules again and firing all that apply. This continues until a state is reached where no 
more rules can be applied. 
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be revoked any time the current state changes. This is called i-support (i is for 
instantiation). When creating models, whether or not something has o- or i-support has a 
significant effect and requires careful consideration. 
 
Proposed operators can be given preferences to direct the operator selection mechanism 
by operator comparison rules. These preferences include: acceptable, reject, better, 
worse, best, worst, indifferent, numeric-indifferent (biased indifference), require, and 
prohibit. 
 
Finally, if an operator cannot be selected an impasse is reached. To resolve this impasse, 
a new substate is created in which Soar attempts to resolve the impasse. This new state is 
a copy of the current state, but with a goal of resolving the impasse. If resolved, Soar’s 
chunking mechanism creates a new LTM production to remember what to do if this 
impasse arises again. This new production contains the relevant features of the state prior 
to the impasse with the relevant action (e.g., operator comparison; operator proposal). 



21 of 82 

 
 ACT-R 

(Anderson et al., 2004) 
EPIC  
(Kieras & Meyer, 
1997) 

Soar 
(Laird & Congden, 2004) 

Relationship 
to 
Neurobiology 

ACT-R attempts to match 
the modules and their 
buffers to particular 
functional areas of the 
human brain. 

Epic does not directly 
tie features to brain 
areas.  

One of the requirements of a 
unified theory of cognition, and 
thus of Soar, is that it be 
neurologically realizable. 
However, Soar does not directly 
tie features to brain areas. 

Modules Perceptual, motor, goal, 
declarative memory, and 
cognitive. 

Perceptual, cognitive, 
and motor. 

Perceptual, working memory, 
long term memory, and motor. 

Working 
Memory 

Working memory is both 
the productions (procedural 
memory) and the contents of 
the module buffers. For 
productions, and the 
subsymbolic aspects of 
productions and declarative 
memory, there is unlimited 
capacity and duration. The 
number of declarative 
objects is limited by the 
retrieval buffer size of one 
chunk. 

The cognitive section 
of the general 
working memory 
contains the goals 
and state of 
production rules 
along with general 
task information. 
Capacity and 
duration is unlimited. 

Working memory consists of 
problem states, where states are 
attribute/value pairs. Capacity is 
unlimited, but duration of some 
working memory elements is 
related to the current state (I-
support). 

Long Term 
Memory 

Called declarative memory 
in ACT-R. Composed of 
items called “chunks” that 
have some number (usually 
less than three) of weighted 
slots and values. 
Availability and recall speed 
of chunks is controlled by a 
number of activation 
functions. These functions 
include an activation decay 
that makes less-often-used 
items harder to activate. 

An unlimited number 
of productions and 
propositions can be 
stored in declarative 
and working memory 

Long term memory consists of 
production rules. Unlimited 
capacity. 

Goals Goals are tracked in an 
architectural goal stack. As 
goals are completed they are 
added to declarative 
memory. 

There is a convention 
to encode a goal 
structure in the 
production rules. 

The problem states form a goal 
hierarchy called universal sub-
goaling. 

Learning ACT-R has a variety of 
learning mechanisms. The 
subsymbolic methods 
include weight adjustment 
(for chunk slots) and 
production strength 
adjustment (for production 
utility). Symbolic learning 
includes learning new 
productions and learning 
new chunks. 

EPIC does not 
currently include any 
learning capability. 

When an operator cannot be 
selected, an impasse is reached. 
Learning (called chunking) occurs 
when a resolution is found. This 
involves adding a new production 
to LTM. 
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 ACT-R EPIC Soar 
Standard 
Cognitive 
Cycle 

1. Input from the other 
processors into 
independent buffers that 
each hold one chunk. 

2. The current goal 
combined with the 
contents of the buffers 
may match a number of 
productions.  

3. The production utility 
equation determines 
which production rule 
fires. 

4. Fire the production rule 
5. Output to the other 

processors through the 
single-item independent 
buffers 

 
The cognitive portion of this 
cycle generally takes 50ms. 
 

1. Input from the 
perceptual 
module into 
working 
memory. No 
covert attention 
mechanism. 

2. The contents of 
working memory 
may match a 
number of 
productions.  

3. All matched 
productions fire 
simultaneously. 

4. Output to the 
motor processor. 
Resource 
conflicts are a 
possibility and 
must be avoided 
by the modeler.  

 
The cognitive portion 
of this cycle 
generally takes 50 
ms. 
 

1. Input from the environment 
into the current state 

2. Propose operators 
a. All matching 

elaborations, operator 
proposals, and operator 
comparisons fire in 
parallel. 

b. Firing continues until 
nothing is left to fire. 

c. These firing have I-
support 

3. Decide on an operator 
4. Apply the operator 

a. This firing has O-support 
b. Other, I-supported rules 

may fire or retract based 
on the new state 

5. Output to the environment 
 
The cognitive portion of this cycle 
takes approximately 60ms in the 
basic case. 

Model 
Creation   
 
(not including 
constructing 
the simulated 
task 
environment 
or task 
instances) 

An outline of steps to create 
an ACT-R model: 
 
• Create production rules 

and declarative memory 
chunks 

• Setup task specific 
parameters. There are a 
lot more possible 
parameters in ACT-R 
than EPIC or Soar. 
Parameters for 
declarative memory and 
production utilities will 
likely need to be 
adjusted, especially for 
partial matching of 
declarative memory and 
production conflict 
resolution. 

 

Some of the steps 
given by Kieras & 
Meyer (1997): 
 
• Create 

production rules 
(the executive 
process; also 
called a strategy) 
to perform the 
task 

• Setup task 
specific 
parameters for 
the various 
processors, 
especially the 
visual processor 

• Select motor 
movement styles 
if they are not 
specified in the 
task 

Constructing a Soar model 
involves the iterative defining and 
refining of the following: 
 
States representation 
• Attributes with values 
• Objects are simply values that 

contain additional attributes 
Long term memory productions 
for 
• Creating the initial state 
• Operator proposal 
• Operator evaluation 
• Operator application 
• Elaborating the current state 

o This includes 
productions that 
check for 
failure/desired states 
or that provide a 
resolution to an 
impasse 

• Removal of completed 
operators so that they may be 
proposed again 

Table 3. Features of ACT-R, EPIC, and Soar 



23 of 82 

 
Model Examples 
There have been a large number of cognitive models created with these three 
architectures. A quick survey of the ACT-R web page reveals over 500 ACT-R related 
articles, many of which are models, in their comprehensive publication database. The 
number of EPIC publications is smaller, with approximately 60 listed on various web 
pages by EPIC researchers. While no comprehensive archive exists for Soar, it appears 
that the Soar literature is roughly equal to that of ACT-R based on usage at a number of 
research institutions throughout the world, internet and article search results, and earlier 
works such as The Soar Papers (Rosenbloom, Laird, & Newell, 1993). 
 
Four example cognitive models are chosen for discussion as a demonstration of the use of 
cognitive architectures. The first is a dual-task model created with EPIC. The second is 
an ACT-R model of childhood verb tense usage and an examination of the model for this 
task. The final two models are in Soar: a simple model from the Soar tutorial and a 
complex model of military piloting. Additional issues surrounding cognitive models, and 
there are quite a few, are discussed in the Detailed Issues appendix. 
 
Each of these models illustrates some particular aspect of modeling. The first model is 
chosen largely because of the importance of dual-task modeling in EPIC and to discuss a 
single task modeled in different architectures. The second model, verb tense usage, is 
picked because it demonstrates memory modeling, a cornerstone of ACT-R. The first 
Soar model is chosen mainly because it is an easy to understand example of how to 
model in Soar. The second Soar model is included as an often cited modeling success 
story and a springboard for a number of current research projects. 
 

Dual-Task Model 
One example of a simple dual-task model is the Wickens’ task (Kieras & Meyer, 1997).  
The first task, of lower priority, is a tracking task. The participant uses a joystick in their 
right hand to keep a cursor on a target. The second, higher priority, task is to watch an 
area of the screen and press one of two buttons with their left hand depending on what is 
displayed (right or left pointing arrow). The low priority task happens continually; the 
higher priority task happens occasionally. There are two independent variables (the visual 
angle between the two; the difficulty of the tracking task) and two dependent variables 
(reaction time for the choice task; tracking performance for two seconds following a 
choice). This task emphasizes eye movements and executive control, making it a good 
task to model in EPIC. 
 
Two different executive models were created. The first is the simple lockout model, 
which puts the low priority task on hold anytime the high priority task needs to be 
executed. From the flowchart describing their model, the basic executive process is: 

• Start Tracking Task 
• Keep Eye on Tracking Task Cursor 

o Wait for Choice Stimulus 
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• Suspend Tracking Task, Start Choice Task 
o Wait for Choice Response Started 

• Resume Tracking Task 
 
The second model is an interleaved model. In this model the two tasks are performed 
simultaneously as much as possible, e.g. by making the most efficient use of eye 
movements. The data predicted from this second model provide a good qualitative fit for 
the observed human data. The basic executive process given for this model is: 

• Start Tracking Task 
• Keep Eye on Tracking Task Cursor 

o Wait for Choice Stimulus 
• Suspend Tracking Task, Start Choice Task 
• Resume Tracking Task 

o Wait for Choice Response Selection 
• Suspend Tracking Task 
• Permit Choice Task Response 
• Resume Tracking Task 

One of the differences in this executive controller is that the tracking task is resumed 
while the cognitive processor is still deciding upon a response to the choice task.  
 
Interestingly, this is the same task used in a paper on the EPIC-Soar hybrid (Chong & 
Laird, 1997). This hybrid uses Soar as the cognitive processor and EPIC as the 
perceptual/motor processors. The main thrust of the paper is looking at an executive 
model that is less “task-dependant” than that used by the EPIC model. They developed 
two different strategies: sequential (first one task and then the other) and concurrent 
(running both tasks at once). A problem with concurrently running the tasks is known as 
“jamming” in EPIC – sending two or commands to a processor that can only do one thing 
at a time. EPIC uses the executive process to keep this from happening; the Soar model 
detects jams and then learns to avoid them in the future. In order to produce results 
similar to that of the EPIC model (and the observed data), a number of specialized rules 
from the first model were included in the Soar model. 
 

Verb Tense Usage 
This model comes from the ACT-R tutorial chapter on production rule learning (Unit 7: 
Production Rule Learning). Here is the description of how the model should work given 
in the tutorial: 
 

“The learning process of the English past tense is characterized by the so-called 
U-shaped learning in the learning of irregular verbs. That is, at a certain age 
children inflect irregular verbs like “to break” correctly, so they say “broke” if 
they want to use the past tense. But at a later age, they overgeneralize, and start 
saying “breaked”. At an even later stage they again inflect irregular verbs 
correctly.” 
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The model contains some production rules that control verb tense formation. Other 
production rules are learned as the model proceeds. The utilities of both kinds of 
production rules, which control which production rules are fired, need to be learned from 
“hearing” verbs from the environment. The initial rule set for this model is found in 
Figure 10. An explanation follows. 

 
Figure 10. The Production Rules from an ACT-R Model of Verb Tense Lookup 
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In this model, there are two possible directions from the starting point. The first, shown 
on the left, is to search for an exact match and place it in the retrieval buffer. The second 
is to search for an analogical match and place it in the retrieval buffer. 
 
Both sets of rules look quite similar. To specify what the contents of a buffer should be, 
=buffer> is used (e.g., =goal> for the goal buffer). On the left hands side of the rule, 
before the ==>, is what must be matched in order for the rule to fire. On the right hand 
side of the rule the contents of the buffers can be changed. To request a retrieval from 
long term memory of some piece of information, +buffer> is used. This can be seen in the 
begin-search-exact rule which uses +retrieval> to find the matching verb. As another 
example, +goal> can be used to pop a new goal onto the goal stack (not shown above).  
 
In this model production learning is also enabled. One example of a learned production 
is: 

(p Production75 
 =goal> 
  isa PAST-TENSE 
  status Start 
  verb =word 
==> 

=goal> 
  stem =word 
  suffix Ed 
  status Done 
) 

This production simply adds an “ed” suffix to the given word. It would be correctly 
applied in the case of end (ended) but wrong for spend (spent). 
 
The results from this model are examined qualitatively for the U-shaped learning curve 
for irregular verbs seen in human children. Figure 11 shows the results given in the 
tutorial (benchmark) and the results found in the model built while undertaking this 
paper. This model did not require parameter adjusting or data fitting (other than designing 
the strategy to complete the task). 

 
Figure 11. Tutorial (left) and Model (right) Graphs for Irregular Verbs Correct Proportions 
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Eaters 

Eaters is a pac-man like game included in the Soar tutorial. Working through the tutorial 
chapters, several different models are made for controlling the behavior of an eater. One 
of the simpler models, shown in Figure 12, is examined (Laird, 2004). This model serves 
as an easy to understand example of developing a Soar model. 

 
Figure 12. Basic Soar model of eater behavior (Laird, 2004) 

 
Soar models are based on the idea of proposing and selecting actions using all available 
knowledge. All of the matching rules that propose operators are allowed to fire in parallel 
waves until quiescence is reached. In constructing Soar models, there is not an easy way 
around this requirement. Propose/select is a built-in part of the Soar modeling language. 
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The first rule proposes all of the legal moves (i.e., those that do not go into a wall). The 
first line matches a state <s> where immediately in the direction <dir> there is not a wall. 
The line (<s> ^operator <o> + = ) proposes an operator <o> (hence the +) that is as 
equally likely as any other operator to be chosen (indicated by the =). The operator itself 
if then defined as a move operator to a specific direction. This rule fires as many times as 
possible, until no more moves can be added. 
 
While the first rule is firing, the second and third rules are also firing. These two rules 
both rank some operator as better than some other operator. In this case, they are both 
aimed at maximizing the immediate point value gain. For example, the line (<s> 
^operator <o1> > <o2>) states that for state <s> operator <o1> is better than <o2>. These 
two rules also fire as many times as possible, until there are no more preferences to 
create. The internal selection process then uses these preferences to select the operator to 
apply. 
 
After all the possible moves have been proposed, and the operator selected, the last three 
rules come into play. The first of these actually applies the selected operator by telling the 
agent to move in the specified direction (<out> ^move .direction <direction>). The last 
rule fires at the same time, since it matches as well, and sends monitoring information to 
the screen. The middle of the last three, apply*remove-move doesn’t fire until the next 
round, after the action has been completed. Remove-move simply removes the completed 
move from the output state to make room for the next move. 

 

TacAir-Soar 

TacAir-Soar (Jones et al., 1999) is a model of significantly greater complexity than the 
Eaters model, capable of flying a majority of the militaries’ planes on all of the different 
types of missions. It is an important model for a number of reasons. Foremost of these is 
the model’s size (over 5200 productions, 400 operators, 100 goals) and successes (in 
types of planes and number of missions modeled as well as evaluated performance of 
those models). The model is often cited as a large-scale modeling success story. 
 
One of the interesting findings was that roughly 70-90% of the model development time 
was spent in the communication process – moving information from the subject matter 
expert to the programmer (Pearson & Laird, 2004). This includes both time spent in pilot 
model creation and pilot model verification for a number of different mission types. In 
both cases, the subject matter expert has the knowledge of what the model should look 
like or should be doing but the developer needs to create/modify the behavior. This 
problem has spurred on a number of research projects discussed below in Current and 
Future Directions. These include modification and verification of existing large rule sets 
(Pearson & Laird, 2004) and automatically comparing expert and model behaviors 
(Wallace & Laird, 2003).  
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Critiques of Cognitive Architectures 
There are four main categories of critiques for cognitive architectures (Clark, 2001; 
Lewis, 2001): specific models, specific architectures, the general concepts of cognitive 
architectures and of unified theories of cognition, and the symbolic approach to 
cognition. Each of these different areas is described below, starting with individual 
models. 
 
Most models made in a cognitive architecture are subject to scrutiny. Particular areas of 
examination are the task strategies used by the model (e.g., plausibility), the rules that 
implement the strategy, the model’s use of free parameters (free parameters are 
adjustments that can be made to cognitive or perceptual parameters on a per model basis), 
and the goodness of fit between predicted (model) and observed (human) data. With 
respect to problematic models, Lewis (2001) writes “the theoretical challenge is 
understanding the extent to which the empirical problems can be resolved within the 
existing architecture, or whether they point back to problems in the architecture itself.” 
 
The underlying theory, operators, and principles of a specific architecture may also be 
critiqued, for example with respect to ease of use or number of phenomena explained. 
Another example is the long running debate between EPIC and ACT-R on the existence 
and nature of cognitive processor limitations (Meyer & Kieras, 1997). A more detailed 
look at critiques of a particular cognitive architecture can be found in Newell’s (1992) 
response to criticisms of his book Unified Theories of Cognition. In this article he 
responds to a broad array of criticisms, broken into a number of different groups. As an 
example, the first group is (from Newell, 1992): 

• Fundamental failings of the SOAR enterprise 
o The perceptual-motor system 
o The treatment of psychological data and experiments 
o Language 
o The undetermined character of psychological theory in Soar 
o The AI bias of SOAR 

Other groups include “missing or wrong critical concepts”, “challenges on concepts and 
capabilities”, “the structure of Soar”, and “relation to other viewpoints”. In other words, 
nearly every aspect of a specific architecture is open to criticism. 
 
At a slightly higher level, the idea of developing architectures and unified theories of 
cognition must also be defended. Cooper and Shallice (1995, p. 121) present a number of 
significant problems with the methodology behind unified theories of cognition. For 
instance, they find fault with the wide divide between the underlying theory and the 
implemented details, stating that “in our view, the implementations cannot seriously be 
taken as statements of psychological theory.” While the authors are writing about Soar, 
the argument is just as valid for other cognitive architectures. 
 
Lewis (2001) summarizes the theoretical issues brought up by various researchers, 
including Cooper and Shallice, that are still methodological problems today. The three 
issues discussed by Lewis are: (1) irrelevant specification (also known as the Reitman 
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specification problem), (2) too many degrees of freedom, and (3) identifiability. The first 
issue is based around separating the theoretical aspects of the computer implementation 
from the implementation details, at both the architectural and model levels. The second is 
that in a complex computer program, such as a cognitive architecture, the number of 
variables that can be “tweaked” specifically for each model allow the architecture to 
match nearly any data. The third issue, identifiability, revolves around production 
systems being universal computational systems. If Soar (or some other production 
system) is capable of universal computation, then there is no reason to believe that its 
results will replicate human behavior better than any other universal computation system. 
More to the point, Lewis defines this as “any sufficiently general proposal for processing 
schemes or representations can mimic the input/output characteristics of any other 
general processing or representation scheme.” 
 
Cooper and Shallice (1995) also attack the methodological grounds for pursuing 
universal theories of cognition (UTCs). Specifically, they dismiss most of the advantages 
that Newell assigns to UTCs and point out the advantages of modern micro theories. The 
main advantage they do give to UTCs is that, in some cases, different processors in the 
brain are dependent on one another. While UTCs can capture this relationship, so can 
sufficiently large micro-theories. 
 
Finally, the whole philosophy of the symbolic approach to cognition is open to 
questioning. First, the symbolic stance is quickly examined. Following this is a brief 
discussion of the symbol system problem and some alternatives. This philosophical 
problem is large and thorny and generally beyond the scope of this paper. See Clark 
(2001) for a more detailed introduction to this area than the following summary. 
 
The first step in this argument is defining what symbol systems. Newell (1990) defines 
symbols as “… symbols stand for something and that the token of a symbol occurring in 
some place in a structure carries the interpretation that the symbols stands for something 
within the context that is specified because of the symbol token’s location.” He argues 
that symbol systems are necessary and sufficient for intelligence: “… (3) cognitive 
behavior requires symbol systems.” This argument is based on the various properties of 
mental representations that symbol systems possess: (1) productivity (the ability to form a 
large number of thoughts from a few basic concepts; John, Love, Mary, likes, tomatoes), 
(2) systematicity (the ability to use similar forms in relationships between symbols; John 
loves Mary, John likes tomatoes) , (3) compositionality (the ability to use different 
symbols in similar forms to acquire similar meaning; John Loves Mary and Mary Loves 
John) and (4) distal access (accessing related information stored somewhere else). 
 
A quote from Clark (2001) gets to the root of one of the main symbol system problems: 
“it is a commitment to the existence of a computational symbol-manipulating regime at 
the level of description most appropriate to understanding the device as a cognitive 
(reasoning, thinking) engine.” He points out that symbol systems are especially appealing 
as a method of describing cognition because they are very similar to the common sense 
psychology that people use in everyday life. However, the similarity of symbol systems 
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to how we describe thoughts does not necessarily mean that we actually think using 
symbols.  
 
Three philosophical arguments summarized by Clark against the symbol system 
hypothesis are that symbol systems can never truly “understand” the way people do or 
that the symbols never have any real “meaning”, that humans perform their everyday 
activities by employing pattern matching not symbol processing, and that the brain is 
more akin to a “swiss-army knife” than a single set of functions as proposed by UTCs. A 
number of alternative methods of computation are offered (connectionism, subsumption, 
and dynamic systems) though none of them make significant headway at getting at issues 
like the qualitative experience humans enjoy. For now at least, symbolic systems such as 
cognitive architectures are the reigning method for describing cognitive behavior. 
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Current and Future Directions 
The future directions section covers two distinct areas. The first area consists of some 
general observations on current ACT-R, EPIC, and Soar research. The second area is a 
list of possible dissertation topics. The items on this list serve as a number of starting 
points in the dissertation proposal process. 

General Observations 
As discussed previously, there are a number of focus areas for research in cognitive 
architectures. One aim is to create a computer program that implements the particular 
psychological assumptions in a given candidate unified theory of cognition – a cognitive 
architecture. The general goal here is the validation and refinement of a particular theory 
of cognition through model development and analysis. 
 
A second goal is to use cognitive models to study human-computer interaction. As the 
cognitive theories are shored up with respect to cognitive level human-computer 
interaction, cognitive models become useful as a priori engineering tools.  
 
Human-level behavior is another aim of cognitive modeling. This area of research 
generally seeks to model human-like behavior at longer durations than human-computer 
interaction, moving up Newell’s time scale (as discussed earlier).  
 
Related to human-level cognitive modeling is the goal of improving, and simplifying, the 
practice of creating cognitive models. This is desired for both efficiency (it is a very 
difficult and time consuming task requiring considerable expertise) and 
maintenance/validation reasons (which also tend to be difficult and time consuming). 
Some general observations for each of these aims are discussed below. 

 

Architectural Convergence 
One striking observation of work in these three cognitive architectures is the degree to 
which they are becoming more similar. This is not to say they are the same: EPIC still 
maintains parallelism (Kieras & Meyer, 1997), ACT-R a cognitive bottleneck (Anderson 
et al., 2004), and Soar a decision cycle (Laird & Congden, 2004).  
 
The foremost example of this convergence is that of the embodiment of cognition as seen 
in EPIC, where much attention is paid to the fact that cognition happens in the context of 
perceptual (in) and motor (out) processors. For the class of tasks where these processors, 
not cognition, are the limiting or significant factor, the operating details of these 
processors are of primary importance. The embodiment of ACT-R is essentially a re-
write of EPIC’s perceptual/motor processors8 (Anderson et al., 2004). Soar has also made 
use of EPIC’s perceptual and motor peripherals in at least one hybrid model (Chong & 
Laird, 1997). The essential idea is that the various research communities recognized that 

                                                 
8 Though the authors are quick to point out that “While human cognition is certainly embodied, its 
embodiment is not what gives human cognition its advantage over that of other species.” 
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(a) this was an important concept and (b) the developed model was a reasonably good 
model. 
 
This basic phenomenon of developing, implementing, and sharing concepts can be seen 
in the case of production learning (based on chunking in Soar) in the most recent version 
of ACT-R (Anderson et al., 2004). Soar is also emulating some of the more powerful 
concepts in ACT-R such as memory activation (Nuxoll, Laird, & James, 2004), 
reinforcement learning similar to production utilities (Nason & Laird, 2004), and partial 
matching and production compilation for episodic memory (Nuxoll & Laird, 2004) . 

 

Human-Computer Interaction 
While this was not a focus area of the reading list, a number of readings addressed some 
of the current human-computer interaction (HCI) research directions (Byrne, 2003a; 
Kieras, 2003).  Significant work has been completed or is underway on architecture and 
model validation, as well as parameter estimation, for short duration HCI tasks. Other 
avenues of research include automatic mapping from task descriptions to cognitive 
models (Byrne, 2001) and the ability to interact with the actual artifacts that human 
participants use (Shah, Rajyaguru, St. Amant, & Ritter, 2003). Taken together, this 
research can be seen as working toward the goal of an automated virtual user such as 
research performed by Hornof (2004, personal communication). This type of a priori 
model would, for example, be very useful in engineering systems involving HCI. 

 

Human-Level Behavior Modeling 
The reading list covers human-level behavior modeling examples from both the ACT-R 
and Soar research communities. Many of these models are designed to “push” the 
architecture to determine the bounds of what it can handle, i.e. what level of performance 
and realism it can support. For ACT-R, the best example of this in the reading list is the 
combination of driving and a cell-phone dialing models (Salvucci, 2001). There are a 
number of examples of complex models, as well as there creation, maintenance, and 
validation, in the Soar reading list (Jones et al., 1999; Pearson & Laird, 2004; Wallace & 
Laird, 2003; Wray & Laird, 2003). While progress is being made, there is still much 
work to be done in these areas (creation, maintenance, and validation) for large, complex 
models of human behavior. 
 
Teamwork and social behavior modeling, a requirement for simulating groups of humans, 
is also an open area of research in human behavior modeling. One paper in the reading 
list describes a solution using a director which helps choreograph the actions of the 
individual agents (Magerko, Laird, Assanie, Kerfoot, & Stokes, 2004). 
 
Another research area in human behavior modeling is modeling human emotion (affect), 
currently a topic of significant interest in artificial intelligence. A number of different 
papers are examined that provide starting points for investigating the effects of emotion 
in cognitive architectures (Belavkin, 2001; Marinier & Laird, 2004).  
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Human error modeling and user variability are also currently of interest. Yoshikawa 
(2003)  reviews a number of psychology-based human error models in developing a 
human error modeling system for HCI. Byrne (2003b) describes the requirements of a 
system in order for it to “correctly” produce procedural errors, with ACT-R given as one 
system that meets these requirements. Wray and Laird (2003) also develop a similar set 
of requirements in the context of Soar. They point out the need to have error models that 
produce the desired results at both the population and individual level. Other issues 
related to modeling human variability, including balancing variability and validation 
(Pearson & Laird, 2004) and balancing variability and autonomy (Magerko et al., 2004), 
are discussed later in this paper.  
 

Tools for Model Development 
Another general area of research in cognitive architectures focuses on improving tools 
and methods for cognitive modeling. A wide variety of work is encompassed by this 
topic. Some examples found in the reading list include: integrated development 
environments for Soar and ACT-R (Anderson et al., 2004; Laird & Congden, 2004), a 
tool for automatic construction of GOMS models through interaction with a standard web 
based artifact (John, Prevas, Salvucci, & Koedinger, 2004), a scenario based knowledge 
acquisition tool (Pearson & Laird, 2004), and a tool for allowing computer programs to 
interact with other programs in the exact same way as a human (Shah et al., 2003). 

Future Work 
What follows is a number of specific areas of interest found during the reading process, 
roughly ordered form “best” to “worst” in terms of dissertation potential and interest: 

• Creating multi-level models that merge high-level AI with lower-level cognitive 
models to make it easier to simulate human behavior at multiple levels of fidelity. 

• Examining the role of creativity in cognitive architecture and models. 
• Determining the impact of brain imaging on the theories behind these cognitive 

architectures.  
• Developing and applying human error models. Initial work could focus in more 

constrained domains. For example, Newell (1990) provides detailed information 
on typing error rates that could be used to create a realistic model of typing errors. 

• Describing a framework for, and models of, augmented cognition. This would 
especially apply to problem solving tasks and the effects of tools that assist 
cognition. 

• Combining a cognitive model with a large common sense database (e.g. cyc, 
wordnet) to push the limits of the memory model. There may be room here for 
comparison of model results to results observed in humans. 

• Studying social and team-based action and communication within the context of 
human-level cognitive models. 

The first three items on the list, multi-level models, creativity, and the impact of brain 
imaging on cognitive architectures are examined in greater detail below. 
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Multi-Level Models 
Cognitive architectures have been widely recognized as useful tools in constructing 
realistic models of human behavior, especially in military simulations (Pew & Mavor, 
1998). One often cited success story of cognitive modeling is TacAir-Soar (Jones et al., 
1999). It is an important model for a number of reasons. Foremost among these are the 
model’s size (over 5200 productions, 400 operators, 100 goals) and successes (types of 
planes, number of missions, evaluated performance). Another example of human 
behavior modeling is an ACT-R/IMPRINT hybrid pilot model (Craig et al., 2002). This 
proof of concept combined a task network that described pilot behavior with ACT-R 
productions that performed various cognitive capabilities. 
 
Despite these and similar successes, there are a number of problems in modeling human 
behavior using cognitive architectures. These problems include: (1) time spent in model 
development, maintenance, and verification, (2) modeling variability and cultural effects 
at the individual agent level (3) orchestrating teamwork for simulated scenarios, (4) 
adding agent dialog and conversation based interactions, and (5) working with the small 
grain size of cognitive architectures (around 50ms for ACT-R, EPIC, and Soar). 
 
One of the interesting findings of TacAir-Soar was that roughly 70-90% of the model 
development time was spent in the communication process – moving information from 
the subject matter expert to the programmer (Pearson & Laird, 2004). This includes both 
time spent in pilot model creation and pilot model verification for a number of different 
mission types. In both cases, the subject matter expert has the knowledge of what the 
model should look like or should be doing but the developer needs to create/modify the 
behavior. This problem has spurred on a number of research projects, including 
modification and verification of existing large rule sets (Pearson & Laird, 2004) and 
automatically comparing expert and model behaviors (Wallace & Laird, 2003).  
 
Modeling individual variability is also a current problem in cognitive architectures. This 
variability can be used to account for an array of different behaviors in particular entities 
such as cultural effects and error modeling. Byrne (2003b) describes the requirements of 
a system in order for it to “correctly” produce procedural errors, with ACT-R given as 
one system that meets these requirements. Wray and Laird (2003) also develop a similar 
set of requirements in the context of Soar. They point out the need to have error models 
that produce the desired results at both the population and individual level. The same is 
true of modeling cultural effects, where models must portray the elements of culture at 
both the general population level and in a particular individual. 
 
The last three issues (3,4, and 5 above) are somewhat related. The problem is the grain 
size of operations in a model built with a cognitive architecture, around 50ms, can make 
it difficult to model behavior in the rational and social bands (as defined by Newell, 
1990) where interactive behavior must be maintained for minutes or hours. This means 
that some desired behaviors, such as teamwork and explicit dialogs that humans can 
participate in, can be difficult to represent using a cognitive architecture by itself. For 
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example, in order to present a specific scenario to the user Magerko et al. (2004) use a 
partial order planner to provide direction to a number of autonomous Soar agents.  
 
Various forms of finite state machines (FSMs), an AI-based modeling alternative to 
cognitive architectures, are often used for developing intelligent agents in the game 
industry (Fu & Houlette, 2003). Some advantages that FSMs model possess over 
cognitive models are that they are generally easier to write, maintain, and verify. They 
also often include useful architectural embellishments such dialog and motion planning 
systems. Additionally, since behaviors in FSMs are at a much higher level of granularity, 
modeling higher level behavior such as teamwork is much easier. The main disadvantage 
is that they are, for the most part, unconstrained. The author can model anything, and the 
resulting model can be expected to be quite different than the way a human would do it. 
 
Multi-level models hope to leverage the best of both worlds by allowing the user to 
model behavior at multiple levels of fidelity within a single infrastructure. The end result 
should be models that are easier to create and maintain than standard cognitive models, 
but with better approximation to human behavior than standard AI techniques. Feasibility 
of work in this area was demonstrated by a hybrid task network and ACT-R model  of 
fighter piloting (Craig et al., 2002).  
 
A research program in this area would involve a number of steps. The first is finding a 
suitable simulation/game with steep demands for higher order behaviors and a need for 
accurately modeling human behavior. This simulation/game should also come with the 
user group that would perform the high level modeling. The next step is to examine 
methods for integrating high level control behavior with existing cognitive architectures. 
The goal would be to develop a unified framework that meets the following 
requirements: a single infrastructure that allows modeling at a variety of levels (from 
FSMs to detailed cognitive models) and that includes all of the standard modeling ideas 
(e.g., attention, perceptual processing). The final portion of this research would be 
dedicated to exploring the tradeoffs between ease of modeling/maintenance and similarity 
to human performance. 
 

Creativity in Cognitive Models 
Newell (1990) provides a list of cognitive behaviors required by a unified theory of 
cognition as shown in Figure 5. Of this list, he writes “we cannot face the entire list all at 
once. So let us consider it to be a priority list, and work our way down from the top. What 
I will mean by a unified theory of cognition is a cognitive theory that gets significantly 
further down the list cumulatively than we have ever done before” (p. 16). One item 
conspicuously missing from this list is creativity. For some researchers, such as Newell, 
creativity is lumped together with problem solving (Vicinanza & Prietula, 1993). 
However, such a significant force in human intelligence deserves a closer look. 
 
Boden (1999) provides several useful categorizations of creativity. The first is that 
creative ideas are both novel and valuable. In her descriptions, these are the necessary 
output of a creative process. Of course, there are difficulties in determining what novel 
and valuable are. The second categorization Boden makes is between historical (H-) and 
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personal (P-) creativity. P-creativity is developing an idea that is novel and valuable to an 
individual, irrespective of what anyone else thinks. H-creative ideas are those that are 
novel and valuable with respect to some community. Boden also makes a distinction 
between different types of creativity: combinatorial, exploratory, and transformational. 
Here combinatorial corresponds to brute force, and exploratory corresponds to heuristic, 
search in some domain. Transformational creativity is the most interesting category, 
where the basic premise is that the conceptual space of the search will be transformed. 
This allows creative ideas to be developed that were impossible in the original conceptual 
space.  
 
While there have been a large number of models of creativity in both the computer 
science and psychological literature, there has been relatively little work studying 
creativity in the context of cognitive architectures. A quick review of the literature found 
only one previous model of creativity (Vicinanza & Prietula, 1993). In their work, 
creativity is defined as heuristic search through multiple problem spaces. In addition to 
this work on creativity, a number of other cognitive models may be relevant to research 
on creativity, such as models of analogy and scientific discovery in ACT-R (e.g., 
Salvucci & Anderson, 1998; Schunn & Anderson, 1998). 
 
Similar to research cited in this paper on emotion and variability, the first step in studying 
creativity is to develop a framework for supporting creativity. This involves finding or 
developing a sufficient model of creativity and describing how this model would be 
supported in a cognitive architecture. The research by Gabora (2002) is one example of a 
psychological model of creativity that might form a basis for creativity in architectures.  
 
Once the framework is developed, the architecture can then be extended to implement 
this framework. The focus of the research would then change to identifying a task/model 
where creativity is likely to have an effect and testing the model to demonstrate that 
creativity, as it is supported by the architecture, is occurring and affecting the model 
significantly. 
 
For example, one might loosen the associative memory parameters in ACT-R during a 
“creative” search phase, gradually returning them to normal at some later time in a 
simulated annealing inspired algorithm. However, these types of architectural changes 
may not be enough to support transformational creativity. One of the additional questions 
in this line of research is determining the types of creativity that can be supported by an 
architecture and the types that need to be encoded in the model. 
 
There is also an important social aspect of creativity. This is what Boden (1999) is getting 
at with her discussion of P- and H- creativity. This would be a line of research separate 
from that of the creativity of an individual described above. 
 

The Impact of Brain Imaging on Cognitive Architectures 
Brain imaging technologies can provide valuable guidance in the design of cognitive 
architectures and their underlying theories and cognitive architectures can help explain 
the imaging. First, a couple of brain imaging techniques will be discussed. Then some 
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existing work by the ACT-R research group on brain imaging is summarized. Finally, a 
brief outline is given for undertaking research in this area. 
 
Functional Magnetic Resonance Imaging (fMRI) is a technique for mapping human brain 
function in two or three dimensions. It offers “the ability to observe both the structures 
and also which structures participate in specific functions …, and provides high 
resolution, noninvasive reports of neural activity detected by a blood oxygen level 
dependent signal …” (The Future Role of functional MRI in Medical Applications). This 
web site describes one of the active areas of research with fMRI as identifying the 
particular brain structures that take a role in cognition (e.g., visual perception, language 
generation, complex problem solving). More information on fMRI can be found at: 
http://www.functionalmri.org/. 
 
Electroencephalography (EEG) is based on electrical activity in the brain rather than 
blood flow. Don Tucker, a researcher in the University of Oregon department of 
psychology, has been involved in the development of an EEG helmet that takes readings 
from the entire scalp simultaneously (http://www.egi.com). While EEG is much faster 
than fMRI, it has less spatial resolution than fMRI (Marthias, 1996). For this reason, the 
two technologies are sometimes used together to provide the best possible information. 
 
The various components of ACT-R have been developed with the structure of the brain in 
mind, with attempts to tie together architecture and brain functionality as shown in Figure 
13. The authors describe these relationships as “neural anchors.” 

 
Figure 13. ACT-R to Neurobiology Relationships (from Anderson, et al., 2004) 
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The research group behind the ACT-R cognitive architecture is currently seeking 
guidance for further development of their theory from fMRI data (Anderson et al., 2004). 
They summarize data from fMRI trials that provides evidence for two different 
hypotheses. First is that there is actually more than one goal module (i.e., more than one 
area of the brain which keeps track of goal states). The second is that while the Basal 
Ganglia appears to be involved in cognition (production rules) not all processing actually 
goes through the Basal Ganglia (central cognitive processor).  
 
While the authors describe some of the difficulty in interpreting fMRI data, it is 
interesting to think about what a cognitive architecture would look like if it had 
distributed goal and production modules rather than single centralized modules. Other 
important questions are which modules communicate with one another and how much. 
 
A research program in this area would involve answering a number of questions to 
proceed. First, are there tasks where it is expected that a distributed cognitive processor 
would perform “better” than a single cognitive processor either in human modeling or 
explanation power? Tasks may need to be designed that would bring out this distinction. 
Second, is there enough information existing in the literature to support hypotheses on the 
number, structure, and communication of the sub-cognitive models? If not, then a 
collaborator may need to be identified in order to pursue this topic further. 
 
Once these questions are answered, the creation of a distributed cognitive component 
becomes an empirical problem. A distributed cognitive component must be created and 
situated within one of the existing cognitive architectures. After this is complete, models 
need to be created within this distributed environment (a research area unto itself). 
Finally, the results of a model with the distributed cognitive component can be compared 
to standard cognitive models and the observed data for the selected task(s) to demonstrate 
the usefulness of distributed cognition.  
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Conclusion 
This paper provides an overview of psychological inspired symbolic cognitive 
architectures. The goal of this paper is to provide a general introduction to the field. To 
support this goal, the first section of this paper is dedicated to defining the research area 
and selecting three architectures to examine: ACT-R, EPIC, and Soar. 
 
Following this is a discussion on what is a cognitive architecture. Unlike many 
introductory texts, much time is spent describing different ways of viewing the 
relationships between the three major components of an architecture: theory, architecture, 
and model. Further, each of these components is defined separately and includes a real-
world example. 
 
With a solid foundation of what a cognitive architecture is, the next section dives into 
specific descriptions of ACT-R, EPIC, and Soar. For each of these architectures, the 
motivations, assumptions, and features are evaluated. The similarities and differences 
between the architectures are discussed as issues are raised and the results summarized. A 
helpful table presents this information in an easy to read format. 
 
A few example cognitive models are described to demonstrate the different feature sets of 
the architectures. This includes examining an example model, as well as its code, written 
in each of the covered architectures. The three different example models are a point and 
press task (EPIC), a verb tense memory model (ACT-R), and a model for a pac-man like 
character (Soar). 
 
Some critiques of cognitive architectures are also discussed. These critiques fall into four 
main categories: specific models, specific architectures, the concept of a unified theory of 
cognition, and the symbolic approach to cognition. Each of these areas is covered. 
 
Finally, some current and future research areas in the field of cognitive architectures are 
examined as a springboard for future work. Three different future work areas are 
examined in more detail: modeling at multiple levels of fidelity, the role of creativity in 
cognitive architectures, and the impact of brain imaging on cognitive architectures. 
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Appendix B: Annotated Bibliography 
 
The annotated bibliography is divided into four reading sections: General, EPIC, ACT-R, 
and Soar. It was compiled as the papers were read and reflects this order in both the 
physical ordering of the bibliography and the content of the reviews. 

Foundation 
Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-

computer interaction. Hillsdale, N.J.: L. Erlbaum Associates. 
 
Based on the view that a person is an information-processor, the authors develop an 
argument for, and a description of, applying psychology to the study of human-computer 
interaction. This influential chapter is still applicable today, where cognitive modeling is 
helping to extend the science of human-computer interaction. 
 
In the second chapter, the authors proceed to flesh out the Model Human Processor 
(MHP). The MHP is composed of multiple memories and processors driven by ten 
principles of operation. Using a number of citations from psychology and engineering 
examples, details are provided on the operating parameters of the memories and 
processors (e.g., capacity, decay rate, cycle time) as well as some of the effects of the 
principles of operation. This chapter provides a mid-level overview of how a cognitive 
architecture would work, and how psychological measurements fit into it, forming a good 
introduction to cognitive architectures. One of the main questions that arose from reading 
this article is why didn’t Newell base Soar off of the MHP? It seems that the first person 
to tackle this was Kieras with EPIC. 
 
Newell, A. (1990). Unified theories of cognition. Cambridge, Mass.: Harvard 

University Press. 
 
The first chapter describes what Newell means by a unified theory of cognition – a “… 
single set of mechanisms for all of cognitive behavior.” Unlike the Model Human 
Processor (MHP), a unified theory of cognition needs to account for “problem solving, 
decision making, routine action, memory, learning, skill, perception, motor behavior, 
language, motivation, emotion, imagining, dreaming ...” The eventual goal then is not an 
engineering tool but to approximate human level cognitive abilities. Newell provides 
Soar as a candidate unified theory of cognition. Soar is essentially a symbol system based 
on goal hierarchies, production rules, problem spaces, and a chunking version of learning. 
This shift in goals explains why Soar is so different from the MHP. 
 
The foundations of cognitive science are the subject of the second chapter. Here, Newell 
presents a number of familiar terms such as behaving systems, knowledge systems, 
representation, symbols, computation, architectures, etc. All of these terms were 
discussed in the context of physical (not necessarily human) systems using concrete 
examples. A problem with this chapter is that it is not really a chapter on cognitive 
science so much as a defining of terms necessary to understand human cognition in terms 
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of a symbol system. Only the aspects of cognitive science that are easily explained using 
a symbol system are discussed. 
 
In the third chapter, Newell attempted to define a human cognitive architecture. Much of 
this chapter was devoted to the identification and discussion of various processing levels 
(neural, neural circuit, simple operations, composed operations [cognitive level]). While 
much of what was presented is speculation, there are three definite conclusions: the 
human cognitive architecture is based on neurons, cognitive behavior can be seen around 
the one second mark, and that “… cognitive behavior requires a symbol system.” The 
third point, that symbol systems are required, was based on the argument that distal 
access and composition are required to deal with the real world. While Newell was quick 
to point out that much was speculation, and that the levels wouldn’t necessarily have to 
be strong levels, more discussion on the premise that symbol systems are required is 
needed. 
 
Gray, W. D., & Altmann, E. M. (1999). Cognitive modeling and human-computer 

interaction. In W. Karwowski (Ed.), International Encyclopedia of 
Ergonomics and Human Factors (pp. 387-391). New York: Taylor & 
Francis, Ltd. 

 
This chapter provides a look at some applications of cognitive architectures, where 
cognitive modeling is used to design and evaluate human-computer interaction. The 
authors examine three different tasks, one of which is the relatively famous Project 
Ernestine. Using GOMS techniques, it was predicted that a new system would actually be 
slower to operate than the existing one. This prediction also included an explanation as to 
why the new system would be slower. The article goes on to describe how the three 
models vary over two dimensions: generative vs. descriptive and generality vs. realism. 
While the cases in this article do not directly refer to the cognitive architectures being 
investigated, the article does provide a valuable reference on possible uses of cognitive 
architectures.  
 
Byrne, M. D. (2003). Cognitive architecture. In J. A. Jacko & A. Sears (Eds.), The 

Human-Computer Interaction Handbook: Fundamentals, Evolving 
Technologies and Emerging Applications (pp. 97-117). Mahway, NJ: 
Lawrence Erlbaum Associates. 

 
The chapter by Byrne is a broad review of cognitive architectures as applied to human-
computer interaction. The chapter first covers a definition and history of cognitive 
architectures, followed by an overview of four contemporary architectures 
(LICAI/Colides, Soar, Epic, ACT-R/PM). A particularly informative table summarizes 
the similarities and differences between these architectures. Throughout the chapter, the 
link between cognitive architectures and human-computer interaction is also discussed. 
This chapter is valuable both for the overview of cognitive architectures and the 
description of a large variety of cognitive models built with these architectures. 
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Kieras, D. (2003). Model-based evaluation. In J. A. Jacko & A. Sears (Eds.), The 
Human-Computer Interaction Handbook: Fundamentals, Evolving 
Technologies and Emerging Applications (pp. 1139-1151). Mahway, NJ: 
Lawrence Erlbaum Associates. 

 
Kieras gives two solid reasons for using models to study human-computer interaction via 
simulation: to replace empirical observations and to provide used information about the 
task and/or system through formalization. He discusses examples of task network models, 
cognitive architecture models, and GOMS (Goals Operators Methods Selectors rules) 
models. Following this is an overview of a number of model-based evaluation issues. 
These include the role of psychological constraints, a summary of past work in cognitive 
modeling, modeling perceptual-motor tasks relative to cognitions, the visibility of the 
science base, and the role of detail. Concluding this chapter is a description of a number 
of GOMS models and recommendations for their use. All of the different areas covered 
by this paper are relevant to my topic, but the section describing some of the current 
issues in model-based evaluation was especially valuable. 
 
Yoshikawa, H. (2003). Modeling humans in human-computer interaction. In J. A. 

Jacko & A. Sears (Eds.), The Human-Computer Interaction Handbook: 
Fundamentals, Evolving Technologies and Emerging Applications (pp. 
119-146). Mahway, NJ: Lawrence Erlbaum Associates. 

 
While the topic of this chapter is similar to that in Kieras (2003) the line of research 
described is quite different. This chapter relies heavily on the ideas of Rasmussen, 
including his detailed design of human cognition and the multiladder model of control, 
and on the fallible machines work by Reason in sketching out a design of a human 
cognitive model. The author then goes on to describe the transformation from design to 
implementation and a number of applications of this model. This article was interesting 
for a couple of reasons. First, it explores some relevant prior work that I have not come 
across in other readings. Second, it provides a concise example of how to go about 
creating a new cognitive model. 
 
Pew, R. W., Mavor, A. S., & National Research Council (U.S.). Panel on 

Modeling Human Behavior and Command Decision Making: 
Representations for Military Simulations. (1998). Modeling human and 
organizational behavior : application to military simulations. Washington, 
D.C.: National Academy Press. 

 
The third chapter in this book briefly covers a wide variety of symbolic cognitive 
architectures, comparing them across a variety of measures. It is interesting to note that, 
by and large, the various architectures are quite similar. Almost all are grounded in the 
stage model of human information processing, have a long term and working memory, 
and use production rules to simulate human behavior. They do, however, differ widely in 
the details of implementation and in psychological validity. The descriptions of the 
various architectures provide a background for the decision to concentrate on EPIC, Soar, 
and Act-R. 
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EPIC 
Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC archtecture for cognition and 

performance with application to human-computer interaction. Human-Computer 
Interaction, 12, 391-438. 

 
This paper by Kieras and Meyer is the definitive overview of the EPIC architecture. The 
paper provides the motivation behind EPIC as well as the details of the major pieces of 
this architecture and how the various processors work together. Following this is a brief 
description of how to construct models in EPIC and four example models. Each of these 
models takes advantage of the parallelism offered by the architecture in order to fit 
human reaction time data while performing a particular task. They conclude with the 
thought that cognitive psychology is important to HCI and that HCI is important to 
cognitive psychology. 
 
Kieras, D. E., Wood, S. D., & Meyer, D. E. (1997). Predictive engineering models based on the 

EPIC architecture for a multimodal high-performance human-computer interaction task. 
ACM Trans. Comput.-Hum. Interact., 4(3), 230--275. 

 
One of the proposed uses of cognitive architectures is as a predictive tool in human-
computer interface design. Kieras, Wood, and Meyer describe the a priori modeling of a 
telephone operator task (Project Ernestine). Some of the important ideas presented in this 
paper are that of policies for a priori interface modeling, the effect of situation on task 
performance, the lack of tuning in a priori models, and discussions on goodness of fit. 
This paper also provides a couple of different GOMS examples (CPM-GOMS, 
NGOMSL) that are quite interesting. 
 
Kieras, D. E., Meyer, D. E., Mueller, S., & Seymour, T. (1999). Insights into working memory from 

the perspective of the EPIC architecture for modeling skilled perceptual-motor and 
cognitive human performance. In A. Miyake & P. Shah (Eds.), Models of working 
memory: Mechanisms of active maintainence and executive control (pp. 183-223). New 
York: Cambridge University Press. 

 
This paper is interesting for two main reasons. The first is that the paper describes how 
the basic EPIC architecture can be extended in a particular direction (e.g., auditory 
working memory) and then validated. The second is that this paper provides an example 
of how cognitive modeling can inform cognitive theory through application (e.g., 
duration of items in auditory working memory). Other topics of interest are a discussion 
of free parameters vs. experiment factors and a concise summary of the theoretical stance 
of EPIC. 
 
Hornof, A. J., & Kieras, D. E. (1999). Cognitive modeling demonstrates how people use 

anticipated location knowledge of menu items. In Proceedings of the SIGCHI conference 
on Human factors in computing systems (pp. 410--417): ACM Press. 

 
Hornof and Kieras demonstrate the applicability of EPIC to the study of human-computer 
interactions by examining a menu selection task. Two different types of models are 
developed. The first requires some non-standard assumptions in order to get a good fit 
while the second involves a more subtle task strategy as well as tuning an error 
coefficient. Similar to the Kieras, Meyer, and Wood article, this paper advances cognitive 
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theory by pointing out several places where more study is needed. It also provides 
another example of model building and tuning. 
 
John, B., Vera, A., Matessa, M., Freed, M., & Remington, R. (2002). Automating CPM-GOMS. In 

Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 
147-154). New York: ACM Press. 

 
While this paper does not discuss the EPIC architecture, it does provide a brief foray into 
current research in GOMS. Since GOMS and EPIC are often discussed in the same 
papers, and EPIC seems to have evolved from GOMS, a better understanding of GOMS 
provides additional insight into EPIC and EPIC alternatives. John et al. describes an 
automated tool that, somewhat like EPIC, takes a goal decomposition description and a 
number of low level templates, schedules the given activities into a PERT chart, and 
returns the critical path (longest time through the chart). 
 
Kieras, D. E., Meyer, D. E., Ballas, J. A., & Lauber, E. J. (2000). Modern computational 

perspectives on executive mental pocesses and cognitive control: Where to from here? In 
S. Monsell & J. Driver (Eds.), Control of cognitive processes: Attention and performance 
XVIII (pp. 681-712). Cambridge, MA: MIT Press. 

 
Kieras et al discuss the executive process that controls the interleaving of two tasks 
performed simultaneously (dual-task models), concentrating on PRP (psychological 
refractory period) tasks. The authors point out that one limitation of these models is the 
customization of the executive process for each model. They then look at the possibility 
of a general executive process, and its learning mechanisms, based on computer operating 
system research. This paper provides an in-depth review of some of the issues 
surrounding dual-task control. 
 
Meyer, D. E., & Kieras, D. E. (1997). A computation theory of executive control process and 

human multiple-task performance: Part 1. Basic Mechanisms. Psychological Review, 
104, 3-65. 

 
This article is focused on multiple-task performance as well. The paper begins by 
providing background for some of the assumptions made in EPIC. For example, the 
authors discuss the multiple-resource theory that is central to the EPIC cognitive 
architecture and why limited-capacity assumptions are not made. This results in a set of 
heuristic principles that guide the design of EPIC. After a brief overview of the 
architecture, a number of strategic response deferment (SRD) multiple-task models are 
detailed. A number of conclusions are discussed, one of which is how multiple-task 
performance is strongly affected by perceptual-motor limitations. Meyer and Kieras 
cover the EPIC architecture from a different angle in this paper, concentrating more on 
the psychological and less on the computer science aspects. 

ACT-R 
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin Y. (2004). An 

integrated theory of mind. Psychological Review (To Be Published). 
 
Anderson et al. provide the definitive overview of ACT-R 5.0. While many of the 
positions are similar to that taken in EPIC, such as embodied cognition, there are still a 
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number of differences. These differences include processing limitations (e.g., central 
bottleneck theory), representation of declarative memory in chunks, subsymbolic aspects 
of declarative and procedural memory, as well subsymbolic and production rule learning. 
Particular to ACT-R is an emphasis on relating cognitive architecture functionality to 
brain regions.   
 
Byrne, M. D. (2001). ACT-R/PM and menu selection: applying a cognitive architecture to HCI. 

International Journal of Human-Computer Studies, 55, 41-84. 
 
A perceptual-motor (PM) extension to ACT-R is described in this paper by Byrne. These 
extensions are basically a re-implementation of the EPIC PM components with some 
specializations for ACT-R. One major divergence is the “where” and “what” visual 
buffers found in ACT-R, as well as the hard limitation of one item in these buffers at a 
time. EPIC has only a single channel that contains all the visible information as it is 
available. Two different models are presented that make use of the PM components and 
the results compared to prior EPIC and ACT-R models for the same task. This paper also 
discusses artifact (i.e. Lisp program) integration, the ability to use the same tasks as 
people (if it is typed up in a task specification language), and free parameters 
(extensively). It is in a free parameter discussion, comparing the various models, where 
this paper seems to get into trouble by not taking into account the free parameters 
introduced in creating sets of production rules. 
 
Salvucci, D. D. (2001). Predicting the effects of in-car interfaces on driver behavior using a 

cognitive architecture. In Human Factors in Computing Systems: CHI 2001 (pp. 120-127). 
New York: ACM Press. 

 
This short paper contains a brief description of what is likely a large amount of work. It 
reports on the construction of a set of ACT-R cell phone dialing models and the general 
executive strategy used to merge these models with a (simplified) model of driving 
behavior. Following this, predicted results generated with the model are compared to an 
empirical study of (simulator) driving and cell phone dialing behavior. For the most part, 
the modeling effort portrays the same trends found in the human driving and dialing 
study. While the results found seem obvious, this paper is a good example of the kinds of 
fairly complex, if short, behaviors that can be modeled. 
 
Harrison, A., & Schunn, C. (2002). ACT-R/S: A computational and neurologically inspired model 

of spatial reasoning. In Proceedings of the 24th Annual Meeting of the Cognitive Science 
Society. Fairfax, VA. 

 
A one-page proposal on adding neurologically based 3-D modeling. This would be done 
by adding two different systems to ACT-R/PM. The first would be a manipulative system 
for 3-D representation and manipulation, based on geons (Biederman, 1987). The second 
system would be an ego-centric mapping and waypoint system. The main importance of 
this paper to the exam is to provide an example of an interesting extension to the basic 
cognitive architecture. 
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MacLaren, B., & Koedinger, K. (2002). When and why does mastery learning work: Instructional 
experiments with ACT-R "SimStudents". Paper presented at the Intelligent Tutoring 
Systems 6th International Conference, Biarritz, France & San Sebastion, Spain. 

 
MacLaren and Koedinger describe an interesting use of cognitive models in a mediocre 
paper. Using ACT-R, they construct simulated student models and try out different 
curricula for algebra problems. They also look at the effects of mastery learning vs. 
overly general learning on algebra problem performance. This paper does have some 
problems though. First, the paper is of limited scope. It seems like a lot more could have 
been done with their experimental setup. Second, the writing lacks many of the details 
required to understand the results of the experiments. Despite the 10 page length of the 
paper it seems like only the surface has been scratched. While these two comments seem 
contradictory (more breadth, more depth), moving the paper in either direction would 
make it a much better paper. 
 
Byrne, M. D. (2003). A mechanism-based framework for predicting routine procedural errors. In 

R. Alterman & D. Kirsh (Eds.), Proceeding of the Twenty-Fifth Annual Conference of the 
Cognitive Science Society. Austin, TX: Cognitive Science Society. 

 
Byrne examines the general types of errors that occur when performing highly 
specialized, yet routine, procedures (e.g., those encountered by a fixed wing pilot or 
health care provider). The goal is to develop models that can predict both the type and 
frequency of errors. The author reviews previous work on errors, which is mostly 
taxonomic in nature (i.e. not predictive). To address this problem, Byrne describes the 
criteria for a framework capable of investigating procedural errors and how ACT-R 
satisfies the given criteria. This paper is a starting point of what looks to be a interesting 
line of research as well as a review of existing work in the area of routine procedural 
errors. 
 
Belavkin, R. V. (2001). The role of emotion in problem solving. In Proceedings of the AISB'01 

Symposium on Emotion, Cognition, and Afective Computing (pp. 49-57). Heslington, 
York, England. 

 
This paper ties emotions directly to ACT-R parameters and demonstrates the effect that 
changing emotions play in problem solving. Specifically, motivation is represented as the 
goal reward G, arousal by the noise parameter τ, and confidence by G/τ. Some heuristics 
that come out of this are that positive emotions will increase motivation and confidence 
while negative emotions will decrease motivation and confidence. The result of this is 
that search will be more directed (hill climbing) as the goal is approached and more like 
random search when the goal seems far away. This form of simulated annealing could be 
a critical part of the problem solving process. While the paper is highly speculative, and 
some of the experiments a little odd, it does describe specifically how certain emotions 
could effect problem solving. 
 
Shah, K., Rajyaguru, S., St. Amant, R., & Ritter, F. E. (2003). Connecting a cogntive model to 

dynamic gaming environments: Architectural and image processing issues. In F. Detje, D. 
Doerner & H. Schaub (Eds.), Proceedings of the Fifth International Conference on 
Cognitive Modeling. Bamberg, Germany: Universitats-Verlag Bamberg. 
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While the ACT-R (and EPIC) cognitive architectures generally use specialized interface 
(artifact) development tools that provide a symbolic version of the computer screen, 
SegMan is an attempt to provide generic, real-time image processing for cognitive 
modeling. The authors briefly describe how SegMan works and discuss an example that 
interfaces an ACT-R cognitive model with SegMan to drive a car in a first person driving 
game. Feature detection is not as fast as in a human, but good enough to drive the car 
within the game. This paper is preliminary work on a task of great importance to 
cognitive modeling. 
 
John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K. (2004). Predictive human performance 

modeling made easy. In Human Factors in Computing Systems: CHI 2004 Conference 
Proceedings. New York: ACM Press. 

 
As the title states, the paper describes a method for easy predictive modeling. Task 
interfaces are created using a WYSIWYG html development tool (Dreamweaver) 
augmented with specialized components (though these specialized components aren’t 
required). Users can perform a task on the html pages with their actions recorded. From 
this, a keystroke-level model (KLM; a type of GOMS model) is produced. This KLM is 
then compiled into an ACT-R model. While there are still some technical difficulties, and 
it remains to be seen whether or not this line of research will pan out, this does sound like 
a better way of building non-generative cognitive models. 
 
Taatgen, N. A., & Lee, F. J. (2003). Production compilation: A simple mechanism to model 

complex skill acquisition. Human Factors, 45(1), 61-76. 
 
Taatgen and Lee closely examine production compilation, one of the main learning 
mechanisms in ACT-R 5.0. An air traffic controller experiment serves as their test bed, 
where the task specific model is originally specified only in declarative memory. It is up 
to a set of generic production rules to act on the task specific declarative chunks and 
eventually develop new production rules. These new rules will be faster because they 
complete the same subgoal with (1) fewer production rules and (2) fewer declarative 
memory accesses. The model results are compared to humans in the same experiment, at 
the overall, task, and keystroke levels. One important item discussed in the conclusion is 
the necessity for the model to make use of cognitive “slack” time by pursuing activities 
that are likely to be needed in the future in order to attain expert performance. This is 
somewhat an argument for the intricately orchestrated control mechanisms, such as those 
seen in EPIC, for modeling expert performance. 
 
Taatgen, N. A., & Wallach, D. (2002). Whether skill acquisition is rule or instance based is 

determined by the structure of the task. Cognitive Science Quarterly, 2(2), 163-204. 
 
Symbolic learning is a central aspect of ACT-R 5.0. Taatgen and Wallach lay the 
foundation for the two types of symbolic learning in the architecture: instance learning 
and production compilation. Instance learning is the transfer of completed goals to 
declarative memory, while production compilation is the creation of a new production 
from two projections firing adjacent to each other. This new production produces the 
behavior of both of the previous productions. In a series of experiments, they demonstrate 
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with human participants and cognitive models that both types of learning can occur. The 
principle of rationality determines which type(s) of learning will occur for a given task. 

Soar 
Lewis, R. L. (2001). Cognitive theory, Soar. In International Encyclopedia of the Social and 

Behavioral Sciences. Amsterdam: Pergamon (Elsevier Science). 
 
A whirlwind introduction and overview of the Soar cognitive architecture is presented in 
this paper. The introduction starts with a discussion of the functional requirements (for 
human level intelligence) that Soar meets as well as some of the issues surrounding 
cognitive architectures in cognitive science. The overview describes the five main ideas 
that soar is based upon: (1) physical symbol systems, (2) cognitive architectures, (3) 
production systems, (4) problem spaces, and (5) chunking. Following this some general 
Soar predictions, as well as a number of specific Soar models, are outlined. Finally, 
Lewis writes about a number of critiques (many centered on the uniformity assumption) 
and future directions for Soar. This encyclopedia entry is only a high-level description of 
Soar, but it is useful as an introduction to the architecture and where it fits in cognitive 
science. 
 
Lehman, J. F., Laird, J. E., & Rosenbloom, P. S. (1998). A gentle introduction to Soar: An 

architecture for human cognition. In D. Scarborough & S. Sternberg (Eds.), (2 ed., Vol. 4, 
pp. 212-249). Cambridge, MA: MIT Press. 

 
Soar is introduced to the reader through a simple baseball example that demonstrates the 
four basic elements of the architecture: goals, problem spaces, states, and operators. 
Through this example, details such as long term memory (production rules), working 
memory (goals with slots and values), the decision cycle, subgoaling, and learning 
(chunking) are worked through. However, this article is more than just an overview of the 
Soar computer program architecture. The article tackles such problems as defining 
cognitive architectures and the types of human behavior they need to support as well 
outlining some of the basic Soar assumptions. The article concludes with a brief 
description of a number of Soar extensions and models. A very useful article for 
understanding the basics of what Soar does and how it does it. 
 
Laird, J. E., & Congden, C. B. (2004). The Soar User's Manual Version 8.5 Edition 1. Retrieved 

August 16, 2004, from http://sitemaker.umich.edu/soar/soar_software_downloads 
 
This manual is the definitive description of the current (version 8.5.2) Soar architecture. 
Chapter 2 contains a deeper overview of the inner workings of Soar than seen in the 
previous two papers. More details are given for the general architecture and for the 
various components: working memory, long term memory, preference memory, 
execution cycles, substates, and learning. Readers interested in input/output specifications 
are referred to a different paper. Chapter 4 examines how chunking works in greater 
detail. Specifically, this chapter focuses on how the condition and actions are generated 
for learned chunks as well as problems that can be introduced by chunking. 
 
Newell, A. (1990). Unified theories of cognition. Cambridge, Mass.: Harvard University Press. 
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From Chapter 4 thru the end of the book, Newell describes the Soar architecture in great 
detail. The chapter titles give a brief summary of the content covered: (4) symbolic 
processing for intelligence, (5) immediate behavior, (6) memory, learning, and skill, (7) 
intendedly rational behavior; and (8) along the frontiers. In addition to covering the Soar 
architecture and various models, much of these chapters apply to cognitive modeling in 
general (e.g. types of agreement between theory and data in chapter 5).  This book is one 
of the most influential in the area of cognitive architectures. 
 
Rosenbloom, P. S., Laird, J. E., & Newell, A. (Eds.). (1993). The Soar Papers: Research on 

Integrated Intelligence. Cambridge, MA: MIT Press. 
 
The papers are a multi-volume collection of Soar extensions and models prior to 1992. 
This comprehensive set of papers serves both as a history of modeling in Soar and a 
reference for future models. 
 
Chong, R. S., & Laird, J. E. (1997). Identifying dual-task executive process knowledge using 

EPIC-Soar. In M. Shafto & P. Langley (Eds.), Proceedings of the Nineteenth Annual 
Conference of the Cognitive Science Society (pp. 107-112). Hillsdale, NJ: Erlbaum. 

 
Originally, this paper was included in the EPIC section. However, due to various delays it 
ended up in the Soar section. The paper could go either way. It combines the cognitive 
(problem solving and learning) elements of Soar with the perceptual and motor 
capabilities of EPIC to examine the executive process in dual-tasks. The two programs 
use sockets to communicate, based on the following cycle: EPIC perceptions  -> Soar (1 
decision cycle) -> EPIC motor commands. The interesting idea in this paper is how 
Soar’s learning mechanism is used to prevent jams. Essentially, a part of the executive 
process is being learned. Similar to Kieras et al. (2000), this work found that prevention 
of jamming is not enough to reproduce results observed in humans. Various 
optimizations were required to produce the best resuls. 
 
Nason, S., & Laird, J. E. (2004). Soar-RL: Integrating reinforcement learning with Soar. Paper 

presented at the International Conference on Cognitive Modeling, 2004. 
 
Nason and Larid write about the recent addition of reinforcement learning to Soar. This is 
a sub-symbolic form of production utility learning. While it is similar to production 
utility learning in ACT-R, the authors are quick to point out a number of differences. This 
addition mainly centers on learning the numeric preferences that are already a part of 
Soar’s operator preference scheme. Two different models are examined: missionaries and 
cannibals (a classic AI problem) and eaters (a pac man like game). This paper represents 
the beginning of adding RL to Soar (there is a lot of future work) as a means to 
compare/contrast Soar human behavior models with ACT-R models. 
 
Nuxoll, A., & Laird, J. E. (2004). A Cognitive Model of Episodic Memory Integrated With a General 

Cognitive Architecture. Paper presented at the International Conference on Cognitive 
Modeling. 

 
This paper describes how a new type of episodic, long-term memory, is added to Soar 
(Soar-EM). Each episode contains a complete description of working memory (WM) 
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whenever an operator is performed. Episodes are retrieved, on command, by finding the 
best partial match for a given WM state. The best performance is achieved when the 
matching is biased towards activation based features (i.e. activation of the features in 
WM) rather than when all features in WM are considered equal. This activation, 
described in Nuxoll, Laird, and James (2004), is similar to chunk activation in ACT-R 
with base activation, activation increases with production rule usage, and activation 
decay. Examples are given for the eaters domain. Similar to reinforcement learning, this 
is a preliminary extension to Soar. Soar-EM takes Soar in the direction of ACT-R and 
away from the assumption of uniformity and LTM as production rules. 
 
Nuxoll, A., Laird, J. E., & James, M. (2004). Comprehensive working memory activation in Soar. 

Poster presented at the International Conference on Cognitive Modeling. 
 
The activation mechanism required by Soar-EM (Nuxoll & Laird, 2004) is described in 
greater detail in this paper. Of special interest is the brief discussion of the transition from 
a purely symbolic Soar to a Soar that incorporates sub-symbolic elements. The rest of the 
paper focuses on the extension of a previous Soar activation mechanism. Most of the new 
features is based on the ability of i-supported working memory elements (WMEs) being 
able to push activation back to the creating o-supported elements, and of o-supported 
elements pushing activation to newly created o-supported WMEs (in place of a fixed 
initial activation). 
 
Marinier, R., & Laird, J. E. (2004). Toward a comprehensive computational model of emotions 

and feelings. Paper presented at the International Conference on Cognitive Modeling. 
 
Marinier and Laird propose and implement architectural changes to Soar (Soar-Emote) 
that allow affective reasoning. These changes involve integrating three different levels of 
emotion: biological, cognitive, and social. The changes come from the combination of 
two existing theories of affective reasoning. An example of Soar-Emote is given, using a 
simple water balloon tossing model. This model demonstrates both the architectural 
additions and affective model requirements. This paper describes yet another Soar 
architectural direction in its infancy. 
 
Pearson, D., & Laird, J. E. (2004). Redux: Example-driven diagrammatic tools for rapid 

knowledge acquisition. Paper presented at the Behavior Representation in Modeling and 
Simulation, Washington, D.C. 

 
This paper examines an aspect of modeling that has not previously been covered. It 
focuses on the knowledge acquisition problem in human behavior modeling. Specifically, 
they found that 70-90% of human behavior modeling work is the transfer of knowledge 
from the subject matter expert (SME) to the knowledge engineer (at a number of points in 
the development cycle). The Redux tool is meant to allow a SME to directly encode a 
number of graphical scenarios from which a rule based model will be developed through 
mixed-initiative or automatic methods. Additional benefits are found in both model 
verification and modification. Part of this effort is in direct response to the expense and 
difficulty of adding additional tactics to TacAir-Soar and the general brittleness and 
difficulties associated with large rule-based models. 
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Wallace, S. A., & Laird, J. E. (2003). Comparing agents and humans using behavioral bounding. 
Paper presented at the International Joint Conference on Artificial Intelligence. 

 
Another solution to the problem of verifying human behavior models is presented by 
Wallace and Laird (2003). They describe an automated system that builds concise, 
constrained, hierarchal, goal-based models from agent behavior traces. These models are 
then used to automatically identify errors in the novice model with respect to the expert 
model. This paper could be improved in a number of ways. First, relevant prior work in 
the ITS literature that is very similar to their hierarchical model is ignored (e.g., Ong & 
Noneman 2000). Second, there is a lack of concrete examples for the core component of 
error identification across models. Finally, the various figures need more explanation 
behind them to maximize their usefulness. 
 
Magerko, B., Laird, J. E., Assanie, M., Kerfoot, A., & Stokes, D. (2004). AI characters and 

directors for interactive computer games. Paper presented at the Innovative Applications 
of Artificial Intelligence Conference, San Jose, CA. 

 
In this research, semi-autonomous agents (Soar models) are guided by a director (it is 
unclear whether this is a Soar model or not) to produce a believable and adaptive story 
for a mystery-genre computer game. These Soar models connect to agents realized in the 
UnrealTournament engine to provide a 3D gaming environment. While the Soar models 
are not described in great detail, this paper demonstrates an interesting use of Soar human 
behavior models in computer games. 
 
Wray, R. E., & Laird, J. E. (2003). Variability in human behavior modeling for military simulations. 

Paper presented at the Behavior Representation in Modeling and Simulation Conference, 
Scottsdale, AZ. 

 
Wray and Laird tackle the problem of introducing within- and across-subject variability 
to human behavior models. This problem was the driving force behind the original 
implementation of using a numeric (instead of a strictly random) mechanism to break ties 
among equivalent operators. The research they present uses this numeric mechanism to 
create within-subject variability based on variability parameters. They hope to extend it 
to across-subject variability through variability profiles. This work is related to a number 
of other Soar related projects. The numeric mechanism formed the basis of the Soar-RL 
work (Nason & Laird, 2004). This problem also depends on knowledge acquisition and 
validation (Pearson & Laird, 2004) as well as balancing variability and autonomy 
(Magerko et al, 2004).  
 
Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P., & Koss, F. V. (1999). 

Automated intelligent pilots for combat flight simulation. AI Magazine, 20(1), 27-41. 
 
TacAir-Soar is a model capable of flying a majority of the militaries planes on all of the 
different types of missions, and is an important model for a number of reasons. Foremost 
of these is the model’s size (over 5200 productions, 400 operators, 100 goals) and success 
(types of planes, number of missions, evaluated performance). This model is also 
important due to the various research projects that sprang up from it. These include 
modification and verification of existing large rule sets (Pearson & Laird, 2004) and 
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automatically comparing expert and model behaviors (Wallace & Laird, 2003). Jones et 
al (1999) is often cited as a large-scale modeling success story. 
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Appendix C: List of Detailed Issues 
The detailed issues are divided into four reading sections: Foundation, EPIC, ACT-R, and 
Soar. It was compiled after all of the papers in a given section were read. 

Foundation 
Human as an information processor  
(Card, Moran, & Newell, 1983; Pew & Mavor, 1998) 
 
Pew & Mavor (1998) review a large number of symbolic cognitive architectures and 
determine that all are based on the model of a human as an information processor. This 
isn’t surprising as the model human processor (Card, Moran, & Newell, 1983) is 
described as part of an applied information processing psychology. The information-
processing view sees humans as possessing various components that work together to 
process information and produce behavior. These components often consist of sensing 
and perception processors, working memory, long term memory, cognitive processor, and 
a motor processor. 

Modeling Level 
 (Newell, 1990; Clark, 2001) 
 
Newell (1990) specifies that cognitive behavior becomes evident at about one second in 
what he calls the cognitive band. This is based on a discussion of system levels where the 
time difference between levels is about an order of magnitude. Roughly, these levels are 
biological (up to 10ms), cognitive (100ms – 10 seconds), rational (minutes – hours), and 
social (days – months). He suggests that symbols are accessed around the 10ms level and 
that this is where an architecture should begin. The level built on top of this, around 
100ms, starts cognitive activity with deliberation (accessing remote knowledge and 
putting it to use). Composed operations, such as pushing a button, begin around the one 
second level.  
 
Other choices could be made. For example, only the items in the cognitive band could be 
modeled, with all lower level behavior treated as a black box. This may or may not be a 
good solution for a particular task based on the leakiness of the levels. Strength of levels 
(the lack of strength is referred to as leakiness) is the extent to which the behavior can be 
explained by referring only to the current level and not to lower levels (Clark, 2001).  
 
Another way of thinking about levels is to imagine how a person would predict the 
behavior of another person (e.g., will my professor come to class tomorrow). The 
knowledge level (rational band) is used to describe rational agents making use of 
knowledge and goals (Newell, 1990), which roughly describes humans. 

Discussion of Symbol Systems  
(Newell, 1990; Clark 2001; http://www-
psychology.concordia.ca/department/PSYC353/Cog2_2001_03.pdf) 
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Newell (1990) defines symbols as “… symbols stand for something and that the token of 
a symbol occurring in some place in a structure carries the interpretation that the symbols 
stands for something within the context that is specified because of the symbol token’s 
location.” It is also important to note that symbol systems are universal computational 
systems (given sufficiency and completeness). 
 
A quote from Clark (2001) gets to the root of the symbol system problem: “it is a 
commitment to the existence of a computational symbol-manipulating regime at the level 
of description most appropriate to understanding the device as a cognitive (reasoning, 
thinking) engine.” Clark also points out that symbol systems are especially appealing 
because they are very similar to the common sense psychology that people use in 
everyday life. 
 
Newell (1990) argues that symbol systems are necessary and sufficient for intelligence: 
“… (3) cognitive behavior requires symbol system.” His argument is based on various 
properties of mental representations that symbol systems possess: productivity, 
systematicity, and compositionality (defined below). Another important property, from a 
performance perspective, is distal access. Newell wrote that not all information on an 
object can be processed at once so there must be some form of tokens to access related 
information stored somewhere else. 
 
Productivity: There are infinitely many propositions thinkable within a finite system, so 
there is a need to form combinations of elementary thoughts into complex thoughts (e.g., 
John, Love, Mary, Paul are a small number of concepts that can create a large number of 
thoughts). 
 
Systematicity: The syntactic structure of mental representations allows us to think about 
others with similar forms (e.g., the ability to think John loves Mary is connected to the 
ability to think Mary loves John). 
 
Compositionality: The meaning of complex thoughts is a function of the elementary 
thoughts that form it (e.g., Mary, Love, and John have similar contributions in John 
Loves Mary and Mary Loves John). 
 

Model Human Processor  
(Card, Moran, & Newell, 1983)  
 
The model human processor is an example of applied information-processing 
psychology. It consists of a set of connected processes (perceptual, cognitive, and motor) 
combined with a set of operational principles. Each processor can perform a number of 
basic tasks, where the average time to complete a task is gathered from the relevant 
psychology literature. A few of the ten principles of operation are the: (0) recognize-act 
cycle of the cognitive processor, (5) Fitt’s law, (6) the power law of practice, (7) 
uncertainty principle, (8) rationality principle, and (9) problem space principle. The 
model human processor was designed especially for the study of computer interfaces. 
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Definition of a Cognitive Architecture  
(Byrne, 2003; Newell, 1990) 
 
“A cognitive architecture is a broad theory of human cognition based on a wide selection 
of human experimental data and implemented as a running computer simulation 
program” (Byrne, 2003). 
 
Cognitive architectures have also been described as the hardware of the brain, comparing 
them to the hardware of the computer. The software of the brain is then the cognitive 
model described in this document.   
 
“A cognitive architecture is really two things at once. First, it is a fixed set of 
mechanisms and structures that process content to produce behavior. At the same time, 
however, it is a theory, or point of view, about what cognitive behaviors have in 
common” (Lehman et al, 1998) 
 

Definition of a Cognitive Model  
(Byrne, 2003) 
 
Byrne (2003) defines a cognitive model as a cognitive architecture combined with the 
knowledge to perform a task. It is important to consider that acquiring and codifying a 
task requires knowledge engineering and model programming skills. Further, a model is a 
program that performs a task in a particular way while there often is more than one way 
to perform the task. 

Role of Psychological Constraints in Cognitive Architectures  
(Hornof 2004; Kieras, 2003) 
 
The predictive power of models constructed using cognitive architectures is due to the 
constraints imposed by and the policies of the architecture. These constraints help 
provide the psychological validity of a model. The goal is to allow people that aren’t 
cognitive psychologists to construct psychologically valid models. Respecting these 
constraints, architectures should generally be used without modifications. Modifications 
that are made are generally referred to as free parameters (discussed more in under the 
Free Parameters section). 

Science Base Visibility in Cognitive Architectures 
(Card, Moran, & Newell, 1983; Kieras 2003) 
 
Two quotations from Kieras (2003) sum up his thoughts on science base visibility: “…it 
is critical that the psychological assumptions be accessible, justified, and intelligible” and 
“the importance of documented synthesis of the scientific literature cannot be 
overstated.” He goes on to state that updates should be frequent as the science base 
changes. Card, Moran, and Newell (1983) demonstrate this in the second chapter of their 
book, providing evidence supporting the timing parameters in their model human 
processor.  
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Modeling Perceptual-Motor vs. Cognitive Tasks 
(Kieras, 2003; Newell, 1990) 
 
Kieras (2003) writes that modeling purely cognitive tasks is generally impractical due to 
the open-ended nature of cognitive tasks and the lack of data on how those tasks are 
performed. Instead, he focuses on tasks with a perceptual-motor component as a good 
starting point for modeling since the task and interfaces can be well defined and the 
availability of psychological research for perceptual-motor tasks. On the opposite side of 
the coin, Newell (1990) writes that cognitive architecture should aspire to support the full 
spectrum of human cognition. Some of the examples in the ACT-R, EPIC, and Soar 
readings will provide information on the types of tasks that can be successfully modeled. 

The Role of Detail 
 (Kieras, 2003) 
 
Building a cognitive model is a detail-intensive task, which is a possible drawback to 
cognitive modeling as it makes them difficult to program (Kieras, 2003). Both the task 
and the interface must be completely specified along with some assumed values for 
architectural parameters (when there isn’t enough research). 

The Value of Generativity 
(Gray & Altmann, 1999; Kieras, 2003) 
 
Kieras (2003) lists generativity as one of the issues in model based evaluation. A 
generative model is one that is capable of adapting to a different set of inputs versus a 
non-generative model that is capable of performing exactly one task with completely 
specified inputs. The example that Kieras gives is that of a telephone operator model 
being able to greet a customer differently based on the information provided in a display. 
He also points out that most models built with cognitive architectures would be 
considered to be generative. 

Comparison of ACT-R, EPIC, Soar  
(Byrne, 2003; Pew & Mavor 1998) 
 
The following table is a subset of the table compiled by Pew & Mavor (1998) which was 
cited by Byrne (2003) in the construction of a similar table. Some sections have been 
expanded to include additional information not found in either table. The table below 
outlines the different decisions made in implementing these theories of cognition. 
 
 Soar EPIC ACT-R/PM 
Original Purpose Learning and 

problem solving 
Multiple-task 
performance 

Memory and 
problem-solving 

Basic cycle Decision cycle; 10 
ms. However, to 
actually do anything 
takes on the order of 

Production cycle 
(parallel); 50ms 

Production cycle 
(conflict resolution); 
50ms 
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60 ms (2 DC at 
10ms + 2 operators 
at 20ms) 

Symbolic or 
activation-based? 

Symbolic (with 
recent experiments 
in activation) 

Symbolic Both 

Sensing and 
Perception 

Visual, Auditory Visual, Auditory, 
Tactile 

Visual, Auditory, 
Tactile 

Working / STM Unlimited capacity, 
duration tied to 
goals stack 

Unlimited capacity 
and duration 

Activation based 
part of LTM 

LTM Productions Propositions and 
productions 

Network of schema-
like structures plus 
productions 

Outputs Behaviors Behaviors Behaviors 
Declarative 
Knowledge 

Productions Productions Schema-like 
structures 

Procedural 
Knowledge 

Productions Productions Productions 

Learning Chunking – flexible 
and pervasive 
(experimenting with 
other forms of 
learning) 

No learning Weight adjustment, 
production strength 
adjustments, new 
productions, new 
schemas 

Planning Creates new plans Instantiates general 
plans 

Creates new plans 

Decision Making Knowledge-based Knowledge-based Knowledge-based, 
Bayesian 

Resource 
Representation 

Serial cognitive 
processor, limited 
perceptual and 
motor resources 

Limited perceptual 
and motor 
processors, 
unlimited cognitive 
processor 

Amount of 
declarative memory 
activation 

Visual attention An operator fired by 
central cognition 
(see Newell, 1990, 
p. 257) 

Based on where 
eyes are looking 

Spotlight metaphor 

Architectural goal 
management 

Universal sub-
goaling 

None Goal stack 

Multiple Human 
Modeling 

Yes No Potentially 

 

Free Parameters / Evaluating models 
 (Pitt & Myung, 2002; Hornof, 2004; Byrne, 2004; Newell, 1990; Schunn, 2001; Kieras, 
Meyer, Mueller, & Seymour, 1999).  
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Pitt & Myung (2002) write about a number of issues involved in evaluating cognitive 
models. While there are various goodness of fit metrics (e.g. see Schunn, 2001), the 
number of free parameters and the plausibility of the mechanisms are important when 
examining how fit was achieved. The generalizability (the ability for the model to predict 
new, similar data) and complexity of a model must also be considered, though the 
definitions of these aspects are often related to free parameters. 
 
Free parameters are adjustments that can be made to cognitive or perceptual parameters 
on a per model basis. In Chapter 1 of Unified Theories of Cognition, Newell (1990) 
points out that free parameters are much more of a problem in small, isolated theories 
(e.g. Fitt’s Law) than for general cognitive simulations where values are approximated 
while searching for the correct ones. 
 
Kieras, Meyer, Mueller, and Seymour (1999) provide two different examples. In the first, 
the number of free parameters is close to the number of factors in the experiment. Under 
these circumstances, it is hard to tell whether or not the model is actually working. The 
second, similar, example they provide demonstrates that the model still works when the 
number of free parameters is much smaller than the number of factors in the experiment. 
 
It is important to mention one particular use of free parameters: scaling. In some models, 
tweaking is used to adjust parameters in order to move the model from a qualitative fit of 
the observed data to a quantitative fit. 
 
Other sources for information on this come from personal communication (Hornof, 2004) 
and Byrne (2004). 

How to Build a Cognitive Model 
(Hornof, 2004) 
 
Building a model is an architecture specific task. For EPIC, the general method is to (1) 
build a simulated device, (2) encode the perceptual parameters, (3) write production 
rules, (4) compare the predicted (model) and observed (human) results, and (5) adjust the 
production rules followed by returning to (4). 
 

Why Model? 
(Hornof, 2004; Newell, 1990; Kieras, 2003; Byrne, 2003) 
 
There are two main reasons given for building cognitive models. The first is to advance 
psychological theory by fusing current research into a candidate unified theory of 
cognition and implementing the theory as a running program (Newell, 1990). This allows 
for the validation and refinement of theories of cognition. The second uses cognitive 
modeling as an engineering tool in studying human-computer interaction (Byrne, 2003; 
Card, Moran, & Newell, 1983; Kieras, 2003). These models are used to generate 
quantitative interface measures such as execution time, error rates, and learning curves 



67 of 82 

(Byrne, 2003). Other reasons for modeling include that more modeling leads to improved 
cognitive architectures, modeling policies, and modeling evaluation (Hornof, 2004).  

EPIC 
Motivation 
(Kieras & Meyer, 1997) 
 
Kieras and Meyer list three major motivations for EPIC: examining embodied cognition, 
creating computational models of performance and attention as well as cognition, and 
studying the executive processor with a focus on multiple task performance. 

Key Assumptions 
(Kieras & Meyer, 1997; Kieras, Meyer, Mueller, & Seymour, 1999; Meyer & Kieras, 
1997) 
 
The basic philosophy is the make the simplest assumptions first and refine later. 
 
One of the main assumptions made by the EPIC architecture, in various areas, is that 
cognitive limitations are the result of perceptual processors and motor processors 
(including their respective working memories). This differs from the assumption that 
limitations are caused by bottlenecks in the central cognitive processor. The parallel rule 
processing of the cognitive processor is one result of this assumption. It is important to 
note that performance is still limited by the rate of execution (50ms cycle), 
perceptual/motor processors (only one set of eyes) and the various working memories.  
 
This basic assumption is propagated into the processors as well. For example, there are 
no capacity limitations in verbal working memory. Instead, the number of items is limited 
by the decay rate of items in memory and the rate of subvocalization (i.e. rehearsal). 
 
Meyer & Kieras (1997) provide a historical view of multiple task performance, including 
an examination of multiple-resource theory. This theory states that multiple, 
interconnected, processors complete individual tasks. Each individual processor has its 
own limitations. This is a generalization of the unitary-resource theory. Further, in this 
article they outline several heuristics that guided the construction of EPIC: integrated 
information processing architecture, production-system formalism, omission of limited 
processing-capacity assumption, emphasis on task strategies and executive processes, 
and detailed treatment of perceptual-motor constraints. 
 

Architecture Description 
(Kieras & Meyer, 1997) 
 
EPIC consists of a series of interconnected processors (visual, auditory, cognitive, motor) 
based on the multiple-resource theory. Each processor contains its own working memory 
in addition to a partition in the general working memory with processor specific 
functionality. A brief overview of the processors follows. 
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The visual processor works as a pipeline. For example, the detection of a new visual 
object happens 50ms after it becomes visible, shape information becomes available at 
about 100ms, and task specific pattern recognition (e.g., an icon) may take 250ms. Visual 
working memory displays items and their attributes that are currently in view; the visual 
portion of the general working memory contains these as well as those seen previously 
that have not yet decayed. The availability of attributes is determined by the region 
(originally fovea, parafovea, and periphery). User have significant control over the visual 
processor due to a large number of customizable parameters. It is important to note that 
the visual processor does not actually recognize objects. Instead, it receives symbolic 
information from the device and simulates the recognition process.  
 
The auditory processor is similar to the visual processor with minor differences. While 
the decay was originally fixed, an extension of EPIC resulted in a more realistic working 
memory. Other differences are that items in auditory memory have links to the 
previous/next item in memory to preserve serial order and special tags to note external or 
internal items. 
 
The cognitive processor is based on user defined production (if/then) rules. This means 
that there is no general executive cognitive processor, a specialized one must be created 
for each task. This is more notable in multi-task situations rather than single task 
situations. Processing happens on a 50ms cycle (or optionally stochastically around 50 
ms). These are discrete steps; all processing happens during a regularly scheduled cycle. 
During each cycle there are no central processor bottlenecks, so all rules that can fire 
(perceptual motor processors are limited resources) will fire. The working memory for 
the cognitive processor is unlimited and items put there by the cognitive processor do not 
decay. The cognitive section of the general working memory contains the goals and state 
of production rules along with general task information. Finally, there is no specific 
attention mechanism. All items in the general working memory are available for the 
production rules. 
 
Hands, eyes, and vocal are controlled by the motor processors. Moving the hands requires 
specifying the style, hand, finger, direction, and extent of the motion. The specification is 
used to prepare and execute the movement. Only one movement can be prepared or 
executed at a time, though a movement can be prepared while another is being executed. 
Each feature takes 50ms to prepare along with a 50ms initiation delay. The actual 
movement time is based on Fitt’s law, with a minimum of 100ms. The motor working 
memory can store and reuse features for similar movements. The vocalization motor is 
fairly basic, using mostly fixed times for different utterances. The oculomotor processors 
controls the eye movements in either a volunatary or involuntary mode. 

Model Construction 
(Kieras & Meyer, 1997) 
 
Model construction was described by Kieras & Meyer (1997) as five basic steps: (1) 
create production rules (the executive process) to perform the task, (2) setup task specific 
parameters for the various processors, (3) select motor movement styles if they are not 
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specified in the task, (4) construct the simulated task environment, and (5) create the set 
of task instances to be examined with the model. 

Parameters 
(Kieras, Meyer, Mueller, & Seymour, 1999; Kieras, & Meyer, 1997) 
 
EPIC models contain three different types of parameters: fixed, typical, and free. Fixed 
parameters are constrained by the architecture and cannot be adjusted by modelers. 
Typical parameters have default values that may be adjusted a priori. Free parameters are 
those that would be adjusted as needed to tune the fit of the model. As research in 
cognitive architectures progresses, it is desired that parameters move from free to typical 
to fixed. 

Model Policies 
(Kieras, Wood, & Meyer, 1997; Kieras & Meyer, 1997) 
 
In order to perform a priori modeling, Kieras & Meyer (1997) write that modeling 
policies are required. Creating modeling policies require elaboration of the model space. 
Generally, modeling policies should include that strategies are based on a task analysis, 
can be easily represented in EPIC, and are empirically accurate. An additional constraint, 
not mentioned in either paper, is that they be generally plausible as well. Given a basis 
such as this, the next step is to determine the factors that can vary in the task strategy. In 
Kieras, Wood, & Meyer (1997) some of the factors were: hierarchical vs. flat and 
prepared in advance vs. prepared when needed. Modeling policies then allow the strategy 
space to be examined systematically. 

Bracketing 
(Kieras, D. E., & Meyer, D. E. (2000). The role of cognitive task analysis in the application 
of predictive models of human performance. In J. M. Schraagen & S. F. Chipman (Eds.), 
Cognitive task analysis (pp. 237-260). Mahwah, NJ: Erlbaum.) 
 
While this paper was not included in the oral comprehensive reading list, the topic of 
bracketing (discussed in this paper) is one of the results attributed to the EPIC line of 
research. The basic idea is to “bracket” the observed results with the results from 
cognitive models with different strategies. One model should under-predict the observed 
results, the other over-predict. Bracketing provides information about what strategies are 
not being used. 

Model Outputs 
(Kieras & Meyer, 1997; Kieras, Wood, & Meyer, 1997) 
EPIC outputs the predicted sequence and timing of the simulated human actions. 

Limitations of EPIC 
(Kieras, Meyer, James, & Lauber, 2000) 
 
Kieras et al. (2000) writes about three limitations of EPIC. The first is a lack of a context 
independent executive process capable of running multiple tasks simultaneously. Each 
model must contain a specialized executive process created to perform the given task. 
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The second, related to the first, is the lack of a way to resolve resource conflicts that may 
result in miscommunication or deadlock. The third limitation is the lack of a procedural 
learning component. 

General Executive 
(Kieras, Meyer, James, & Lauber, 2000; Meyer & Kieras, 1997) 
 
In order to explore the first limitation, Kieras et al. (2000) examine the idea of an EPIC 
general executive. They compare three different general executive to the customized 
executive. The conservative general executive performed worst, followed by the liberal 
general executive, then the executive that made use of context-dependent knowledge, and 
finally the original customized executive. The authors also discuss how learning may 
begin with conservative task strategies and change to customized strategies over time.  
Meyer & Kieras (1997) provide an in-depth exploration of an executive processor for 
psychological refractory period (PRP) tasks. 

ACT-R 
Motivation 
(Anderson & Lebiere, 1998; Anderson, et al 2004; Byrne 2003 [from the foundation 
readings]) 
 
The ACT (Adaptive Control of Thought) series of theories and programs have changed 
significantly since their debut in 1976. Generally, the architecture has been used to study 
memory and problem solving with a long term goal of becoming a unified theory of 
cognition. In their book, The Atomic Components of Thought, Anderson & Lebiere 
(1998) make the case for ACT-R being ready for this title.  

Key Assumptions 
(Anderson et al. 2004; Anderson & Lebiere, 1998) 
 
Anderson & Lebiere (1998) outline twelve of the basic assumptions of ACT-R:  

1. Technical time assumption 
a. Acting in continuous time or at the closest grain size that matters 

2. Procedural-declarative distinction 
3. Declarative representation 

a. Chunks – slots (up to three or so) with values 
4. Procedural representation 

a. Production rules 
5. Goal-directed processing 

a. Goal stack 
6. Sources of activation  

a. Slots in the current goal 
7. Activation in declarative memory 
8. Production pattern matching 
9. Production selection  

a. Utility based conflict resolution 
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10. Strength in declarative memory 
11. Production strength 
12. Knowledge compilation 

a. Production compilation 
13. Learning production rule utilities 

 
These assumptions are discussed in practice in Anderson (2004). Included in this paper is 
embodied cognition, the defense of processing/buffer limitations (central bottleneck 
theory), the representation of memory in “chunks”, the subsymbolic aspects of 
declarative and procedural memory, the learning involved in these subsymbolic aspects, 
and the learning of productions through production compilation. 
 
One additional assumption is the principle of rationality. “The theoretical foundation of 
the ACT-R architecture is rational analysis of human cognition (Anderson, 1990). 
According to rational analysis, each component of the cognitive system is optimized with 
respect to the demands from the environment given its computational limitations” 
(Taatgen & Wallach, 2002, p. 6). 

Architecture Description 
(Anderson et al. 2004; Byrne, 2001; Taatgen & Wallach, 2002 ) 
 
Much like EPIC, ACT-R is composed of a set serial modules running in parallel: 
perceptual, motor, goal, declarative memory, and cognitive (procedural memory). 
Further, just like EPIC, the system cycle time is 50ms. However, there are a number of 
differences in both the general operating principles and the modules themselves between 
the two architectures. 
 
Foremost of these differences are the operating constraints on memory items. Only a 
single production rule can fire on any given cycle (central bottleneck theory) in the 
cognitive module. The cognitive module communicates with the other systems through 
independent buffers, each of which holds only “chunk” at a time. Other significant 
differences in ACT-R are the combination of symbolic and subsymbolic aspects as well 
as the various methods of learning. These differences will become more concrete as the 
individual modules are examined. 
 
Perceptual System 
The main difference in the perceptual/motor system is the model of attention. ACT-R 
contains two visual buffers: where and what. Where contains the location and basic 
features of the visual items. Putting chunks in the where buffer does not require an 
attention shift. The what buffer contains identified chunks (e.g. the encoded text from a 
visual display) and requires a shift in attention. 
 
Goal Module 
While EPIC has a goal structure based on convention, ACT-R has a goal structure built 
into the model. Goals can be altered, pushed, or popped. Additionally, as goals are 
completed they are added to declarative memory as additional chunks. 
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Declarative Memory 
Declarative memory is composed of items called “chunks”. An example chunk from 
Anderson et al. (2004) is shown below. This chunk specifies that 8 + 4 = 12. 
 

 
 
The availability and recall speed is controlled by an activation function. Chunks are 
activated based on the slots of the current goal, the weights and strengths of the 
associations, and the base activation (a separate equation) of the chunk. 
 
As a model progresses, the activation values of the chunks will change. This is one form 
of subsymbolic learning in ACT-R. Of note is that some of the learning algorithms (for 
both declarative and procedural memory) don’t scale very well. Optimizations are 
included that replace these with much faster approximations. 
 
Procedural Memory 
During any given cycle, multiple productions may be able to fire. However, because of 
the central processor bottleneck assumption only one of the productions can fire. A 
production is chosen to fire based on an expected utility equation. Similar to activation 
values, the variables in the production choice equations can also change over time based 
on successes and/or failures. This results in subymbolic learning for conflict resolution. 
 
ACT-R also features a symbolic method for procedural learning called production 
compilation. This feature attempts to combine any two productions that occur in 
sequence into a single production with the effect of both productions. An example from 
Anderson et al. (2004): 
 
IF reading the word for a paired-associate test and a word is being attended THEN retrieve the associate of the word 
IF recalling for a paired-associate test and an associate has been retrieved with response N THEN type N 
 
Might combine to form: 
 
IF reading the word for a paired-associate test and “vanilla” is being attended THEN type “7” 
 
These new production improve performance in two ways. First, one production is more 
efficient than two productions. Second, new productions (as in the example) can encode 
declarative memory thus reducing the number of declarative memory retrievals. 
 
There are some additional complexities to production compilation. Not all production 
pairs can be compiled and new productions are not immediately available. 

Importance of Stochastic Sampling 
(Byrne, 2001; Byrne, 2003)  
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“Stochasticity plays multiple roles. First, the human perceptual-motor system being 
modeled is itself noisy. Stochasticity prevents the model from producing exactly the same 
response time from trial to trial. Second, averaging over noisy Monte Carlo runs tends to 
produce smoother responses to change than the sharp discontinuities produced by non-
stochastic models. Third, the system's behavior when timing is stochastic is not always 
identical to that when times are fixed.” (Byrne, 2001, p.13) 

Model Construction 
An outline of steps to create an ACT-R model: 

1. Create production rules and declarative memory chunks 
2. Setup task specific parameters  

a. There are a lot more possible parameters in ACT-R than EPIC. Parameters 
for declarative memory and production utilities will likely need to be 
adjusted, especially for partial matching of declarative memory and 
production conflict resolution. 

3. Construct the simulated task environment (if necessary) 
4. Create task instances to be examine in the model 

 

Lessons from the Tutorial 
 
The tutorial covered the following areas. 
 

• Unit 1: Understanding production systems 
o Built an addition model 

• Unit 2: Perception and motor actions in ACT-R 
o Extended a screen scanning, matching, and typing model 

• Unit 3: Attention 
o Built a model based around visual search, attention, and vocalization 

• Unit 4: Activation of chunks and base level learning 
o Extended an alpha-arithmetic model by remembering and retrieving 

chunks as well as a counting strategy. 
o Performed parameter tuning to fit the data. 

• Unit 5: Activation and context 
o Built a model that closely matched a distribution of simple arithmetic 

errors involving partial matching of declarative memory. 
o Manipulated similarities, activation noise, retrieval threshold, and base-

level activations. 
• Unit 6: Selecting productions on the basis of their utilities and learning these 

utilities 
o Built a model demonstrating learning in production rule selection for a 

heads vs. tails choice task. 
o Wrote LISP code to perform the task instances. 
o Constructed the simulated task environment in specialized LISP code. 

• Unit 7: Production rule learning 
o Built a long-term model demonstrating production rule learning with the 

U-shaped curve for over-regularization.  
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The stand-alone version of ACT-R was used to complete the tutorial on a Windows 
machine. The existence of stand alone executables for a variety of operating systems is a 
very useful feature. However, the interface itself was somewhat disappointing. There 
exists a huge difference between the usability of the existing ACT-R interface (see image 
below) and a mature integrated development environment with multiple perspectives 
such as ECLIPSE for Java. Important issues include keyword highlighting, better 
compilation / interpretation error feedback, multiple undo functionality, consistent cut 
and paste functionality, command history, and better window management. 
 

 
Parameters 
(Anderson et al. 2004; Byrne, 2001) 
 
Many ACT-R papers contain a discussion of free parameters. Likely, this is in response 
to a significant amount of criticism on the number of parameters present in ACT-R. One 
of the answers has been to work find typical values for many of the parameters. These 
parameters do not generally need to be changed across modules. 
 
Byrne (2001) discusses another source of free parameters: artifact integration. Using the 
actual artifact (e.g. software program) that the human uses rather than a simulation of it 
eliminates the possibility of adding free parameters through the artifact.  
 
The productions and chunks that compose the model are also a source of free parameters 
(Anderson et al. 2004). Ideally, the model would be constructed automatically from the 
task description. One of the models described by the authors does just this, building the 
model from an English language like model specification language. A previous version of 
Soar (TAQ-SOAR; Newell, 1990, p. 219) performed a similar function. However, these 
solutions seem to shift the free parameter problem from building the model directly to 
building the task specification.  
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Soar 
Motivation 
(Lehman et al, 1998; Lewis, 2001) 
 
Soar was designed to be a candidate unified theory of cognition, focusing on human 
problem solving and learning. 
 
Lehman (1998) lists a number of assumptions about what cognitive behaviors have in 
common that provide motivation for Soar: 

7. It is goal oriented 
8. It reflects a rich, complex, detailed environment 
9. It requires a large amount of knowledge 
10. It requires the use of symbols and abstractions 
11. It is flexible, and a function of the environment 
12. It requires learning from the environment and experience 

 
Lewis (2001) also describes Soar as being driven to be able to duplicate these types of 
cognitive behaviors. Specifically, he cites “… (a) exhibiting flexible, goal-driven 
behavior, (b) learning continuously from experience, and (c) exhibiting real-time 
cognition (elementary cognitive behavior must be evident within about a second)” as 
motivating elements for Soar.  
 
He also describes soar as the confluence of five technologies: 

1. Physical symbol system 
2. Cognitive architectures 
3. Production systems 
4. Search in problem spaces supported by a two-level automatic/deliberate control 

structure 
5. Continuous, impasse-driven learning 

Key Assumptions 
(Newell, 1990, 2001) 
 
Newell (1990) lists the main characteristics of central cognition in Soar on page 160: 

7. Problem spaces represent all tasks 
8. Productions provide all long-term memory (symbols) 

a. Search control, operators, declarative knowledge 
9. Attribute/value representation is the medium for all things. 
10. Preference-based procedure used for all decisions 
11. Goals (and goal stack) direct all behavior 
12. Chunking of all goal-results (impasse resolutions) occurs continuously 

 
One additional principle, implicit in the above, is uniformity. For example, there is one 
type of LTM (productions) to be used for episodic, semantic, and procedural knowledge.  
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Another principle is implied by the decision cycle (describe in more detail in the 
architecture description). This principle is that all relevant information be considered 
before a decision is made. 

Architecture Description 
(Laird & Congden, 2004; Lehman et al, 1998) 
 
The basic component of the Soar architecture is the problem space. To achieve goals, 
Soar uses operators to move through a problem space represented by states that consist 
of attributes with values and contain a goal and possibly parent and/or child states. The 
states, with parents and children, form a goal hierarchy. Long term memory (LTM) is 
made up of productions. It represents general knowledge (such as knowledge about cups). 
Working memory (WM) contains the current state (such as knowledge about a particular 
cup sitting on the desk), as well as the state hierarchy.  
 
The decision cycle applies LTM to the current state. There are three stages in the decision 
cycle: propose operators, select operator, and apply operator. In the propose operator 
phase, all elaborations, operator propositions, and operator comparisons are fired in 
parallel. This phase continues until no more productions apply (quiescence). Then, from 
the proposed operators, one is selected. 
  
Drilling down in this description, elaborations, operator comparisons, and operator 
selection are all areas that merit more description. Elaborations that are proposed by LTM 
elements will be added as they are true (in parallel waves) and retracted when they no 
longer match. The result of this is a general truth maintenance system as part of the 
architecture. However, this does introduce a difficulty. Operators, once fired, make a 
permanent change to the state. This is called o-support. Elaborations (and operator 
propositions and comparisons) on the other hand are only making temporary changes to 
the state that may be revoked any time the current state changes. This is called i-support. 
When creating models, whether or not something has o- or i-support has a significant 
effect and requires careful consideration. 
 
Proposed operators can be given preferences to direct the operator selection mechanism 
by operator comparison rules. These preferences include: acceptable, reject, better, 
worse, best, worst, indifferent, numeric-indifferent (biased indifference), require, and 
prohibit. 
 
Finally, if an operator cannot be selected an impasse is reached. To resolve this impasse, 
a new substate is created in which Soar attempts to resolve the impasse. This new state is 
a copy of the current state, but with a goal of resolving the impasse. If resolved, Soar’s 
chunking mechanism creates a new LTM production to remember what to do if this 
impasse arises again. This new production contains the relevant features of the state prior 
to the impasse with the relevant action (e.g., operator comparison; operator proposal). 
  
Here is a summary of Soar execution without substates (from Laird & Congden, 2004): 

d. Input from the environment 
e. Propose operators 
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a. All matching elaborations, operator proposals, and operator comparisons 
fire in parallel. 

b. Firing continues until nothing is left to fire. 
c. These firing have I-support 

f. Decide on an operator 
g. Apply the operator 

d. This firing has O-support 
e. Other, I-supported rules may fire or retract based on the new state 

h. Output to the environment 

On Soar as a Universal Computation Engine 
(Lewis, 2001; Newell, 1990) 
 
Lewis (2001) summarizes one of the major problems facing cognitive architectures that 
are universal computation engines, known as the problem of identifiability. He defines 
this problem as “any sufficiently general proposal for processing schemes or 
representations can mimic the input/output characteristics of any other general processing 
or representation scheme (Anderson, 1978; Pylyshyn, 1973).” That is, why would anyone 
believe that Soar is any more likely to replicate human behavior than any other universal 
computation system? 
 
Newell (1990) provides a response to this argument: “Soar does not automatically 
provide an explanation for anything just because it is a universal computational engine” 
(p.248) 

1. Humans are capable of universal computation, so Soar must be (or, Soar is so soar 
predicts humans are). 

2. “Universality refers only tot the class of functions that can ultimately be 
composed. It doesn’t deal with the sorts of errors that will be made, with how fast 
Soar will run, and with what profile of durations of its various subcomponents. 
Most ways of attaining a given result can be seen not to be a way that humans do 
it, or indeed could do it.” (p. 248) 

Types of Agreement between Theory and Data  
(Newell, 1990, p. 249) 
 
“Parametric: explains variations with experimental parameters 
Quantitative: explains means or typical values 
Qualitative: explains order, presence or absence of effects 
Consonant: assigns explanation elsewhere 
No explanation 
Contradiction” 

Model Construction 
Constructing a Soar model involves the iterative defining and refining of the following: 

• States representation 
o Attributes with values 
o Objects are simply values that contain additional attributes 
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• Long term memory productions for: 
o Creating the initial state 
o Operator proposal 
o Operator evaluation 
o Operator application 
o Elaborating the current state 

 This includes productions that check for failure/desired states or 
that provide a resolution to an impasse 

o Removal of completed operators so that they may be proposed again 

Lessons from the Tutorial 
• Unit 1: Simple Puzzle Task 

o Water Jug model 
• Unit2: Interactions with external environments 

o Basic Eaters model 
• Unit 3: Subgoaling and task decomposition 

o Basic Tank Soar model 
• Unit4:  Problem solving and search 

o Missionaries and Cannibals model 
o State representation and operator design becomes much more important 

(and difficult) with this more complex problem. 
• Unit5: Look-ahead planning and learning 

o Extending the Water Jug and Missionaries and Cannibals models 
 
One of the biggest difficulties in learning to model in Soar is working with the decision 
cycle. For example, in the missionaries and cannibals problems, the easiest way to make 
a move is to develop a rule that moves each item (missionary, cannibal, boat) individually 
even if one of each is moving across. This is a different way of thinking from the 
standard, single function that moves a number of specified items. 
 
Other difficulties include the Soar syntax. Models in Soar have a large number of special 
symbols and ways of arranging productions. Of the three, it is the most complex 
language. While the production rule interface is slightly better than that of ACT-R, the 
syntax checking mechanism still allows a significant number of beginner mistakes to pass 
through. Improvements could be made in both areas. 
 
Debugging Soar models seems much more difficult than debugging ACT-R or EPIC 
models. The reason for this probably lies in the operation of the decision cycle. 
 
Soar makes it non-trivial to do simple tasks such as allowing the same operator to fire 
more than once (e.g., the MOVE operator in eaters). It isn’t hard to correct this, but it 
seems like odd default behavior. 
 
Finally, while o-support and i-support provide a lot of advantage to Soar, they are also a 
liability when it comes creating and debugging models. 
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Issues in Human Behavior Modeling 
(Magerko et al, 2004; Marinier & Laird, 2004; Pearson & Laird, 2004; Wallace & Laird, 
2004; Wray & Laird, 2003) 
 
While a number of human behavior modeling (HBM) issues are discussed, a few of them 
stand out. The first is the difficulty of knowledge acquisition, i.e. transferring knowledge 
from a subject matter expert (SME) to a cognitive modeler. According to Pearson & 
Laird (2004), this accounts for the bulk of the work in large cognitive models. 
 
A second problem, discussed in both Pearson and Laird (2004) and Wallace and Laird 
(2004), is that of verifying and modifying a model once it has been completed. First of 
all, verifying the complete model is a tedious process. Second, it is a process that should 
be completed again whenever the model is modified. A related problem is the inherent 
difficulty of modifying a large rule base. 
 
Third is the difficulty of introducing human-like variability into the model. Wray & Larid 
(2003) wrote “sariability seemed at odds with validation requirements (how could the 
system be validated if it had any variability at all?) but yet necessary for realistic models 
(how could we possibly claim to model human behavior without variability?.” While 
random noise may suffice to generate average results for a population, it is not likely to 
accurately reflect variation at the individual level. 

Future Work 
(Lehman et al, 1998; Lewis, 2001) 
 
“Still, our methodology in working toward that goal [UTC] is clear: work within the 
architecture, base content theories on the regularities already available from the 
contributing disciplines of cognitive science, and combine those content theories to try to 
explain increasingly complex behaviors (Lehman et al, 1998).” 
 
General future work includes (1) providing ideas for researching complex cognitions (2) 
applying Soar to AI problems and (3) building and evaluation Soar models of cognitive 
tasks (Lewis, 2001). 
 
Recently, a number of current Soar research papers indicate that it is moving towards the 
type of sub-symbolic components currently included in ACT-R. These include 
reinforcement learning similar to production utilities (Nason & Laird, 2004) and partial 
matching and production compilation for episodic memory (Nuxoll & Laird, 2004) and 
working memory activation (Nuxoll, Laird, & James 2004). 
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Appendix D: Development Environments 
In using these three architectures, models are created in a different development 
environment. The basic modeling environment for creating cognitive models is discussed 
for each of the architectures. Details of creating artifacts (i.e., the task interface), while 
important, is not a focus area of this paper. See the documentation of the architectures for 
more details on artifact creation. 

ACT-R 
The latest version, 5.0, of the ACT-R development environment is freely available via the 
internet (http://act-r.psy.cmu.edu/software/). Windows, Mac, and Linux releases are all 
supported, with integrated development environments for Windows and Macs. The web 
page also contains an introductory tutorial, references, and a series of seven additional 
tutorials designed to familiarize the user with ACT-R. The windows installation also 
included a detailed user’s manual. 
 
The integrated development environment (IDE) is shown in Figure 14. Shown are 
separate windows for chunk types, chunks, production, system settings, debugging, 
buffer viewing, artifact viewing, artifact creation, logging, and IDE control. While the 
provided IDE is useful, it is not up to the standard of modern IDEs such as Eclipse.  

 
Figure 14. ACT-R IDE for Windows 
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EPIC 
The current EPIC architecture is not available on the project website 
(http://www.umich.edu/~bcalab/epic.html) for downloading. Access to EPIC was 
obtained by taking a seminar on modeling in EPIC, where EPIC was run on a Mac. This 
is the only operating system currently supported by EPIC (Hornof, 2004, personal 
communication). Cognitive models, such as the example shown in Figure 8, are 
constructed in a text editor. After compiling the architecture and development 
environment, it is used to load cognitive models and allow artifacts to use the models to 
complete tasks. Similar to ACT-R, the EPIC IDE allows the user to check the contents of 
buffers (e.g., perceptual buffers), the state of working memory, etc. in order to debug 
models.  
 
The EPIC development environment is lacking in three specific areas as compared to 
ACT-R and Soar. The first is the lack of a stand alone development environment. The 
second is that Windows and Linux are not supported. The final area is in up-to-date and 
comprehensive architecture documentation and introductory tutorials. 

Soar 
The latest Windows, Linux, and Mac versions of Soar are available on the project 
webpage (http://sitemaker.umich.edu/soar). The installation includes five tutorial 
chapters, detailed documentation, a development environment and a runtime 
environment. Models are created in a development environment (Figure 15) that includes 
a limited amount of syntactic verification and model development assistance. 

 
Figure 15. Soar model editor 
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Models are executed and debugged in the Soar runtime system, shown in Figure 16. 

 
Figure 16. Soar runtime engine 

While the Soar development environment has a production rule interface that is slightly 
better than that of ACT-R, the syntax checking mechanism still allows a significant 
number of beginner mistakes to pass through. There are also a larger number of special 
symbols (relative to ACT-R and EPIC) and ways of arranging productions that the 
development environment does simplify. 

 
 
 


