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Using Computational Cognitive Modeling to Validate and Advance 

Multitasking Theories

Abstract

Humans routinely perform multiple tasks simultaneously.  Understanding the 

capabilities and limits of human multitasking not only helps design efficient 

devices to enhance human performance, but also helps uncover the nature of 

human cognition.  Research on multitasking is difficult because multitasking 

performance is inevitably influenced by many factors such as a person’s 

perceptual, cognitive and motor capabilities, as well as the strategies adopted for 

managing the conflicts among tasks.  Decades of experimental-psychology 

research has identified many of the invariable factors that influence multitasking, 

but it is cognitive modeling that shows the potential in integrating the factors and 

making quantitative predictions about the performance.

This paper reviews the results of past research on multitasking performance, and 

stresses the increasingly important role that cognitive modeling has played in this 

research endeavor.  The paper discusses multiple resource theory in detail, which is 

the current predominant theoretical framework in psychology that incorporates 
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various sensorimotor and cognitive factors.  Cognitive architectures (primarily 

EPIC and ACT-R) are shown here to appropriately implement the majority of such 

factors in the form of computational simulation.  The benefits of this integrated, 

computational approach is revealed in modeling studies of PRP (psychological 

refractory period) tasks.  

The paper also discusses the influence of task strategies on multitasking 

performance.  This type of exploration is uniquely enabled by cognitive modeling, 

because the production system adopted by most cognitive architectures provides a 

means to formally express task strategies.  The research on task strategies has shed 

light on many cognitive functions such as executive processing and human 

adaptation to a task environment.  

Studies on driving are discussed because driving is a major application domain of 

multitasking.  Several driving models are reviewed and their advantages and 

drawbacks are analyzed.  The paper concludes by summarizing the advantages of 

cognitive modeling over traditional experimental approach and suggesting future 

research directions for cognitive modeling of multitask performance.
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Introduction

Today, enabled by powerful digital devices, people often engage in multiple tasks at the same 

time in a variety of scenarios.  Typical everyday scenarios include texting while walking or 

taking notes on a phone while talking with someone.  Although these scenarios do not require 

high efficiency, they can still disrupt people’s daily activities if the interaction with the devices is 

too involved.  Other multitasking scenarios, however, demand high efficiency because they often 

have an impact on personal and public safety.  For example, manually operating a GPS while 

driving is a very dangerous multitasking activity, and a poorly designed user interface can 

exacerbate the problem.  Similarly, devices in emergency vehicles are complex and difficult to 

use, and yet the drivers often have to operate them while driving due to the demands of their 

work (Richtel, 2010).  Multitasking scenarios are not only a concern of the mobile industry, but 

also an issue that may occur in the traditional desktop environment.  For example, operators in 

control centers, such as emergency response centers and air traffic control centers, are often 

presented with a tremendous amount of information that needs constantly monitoring and 

responding.  Perhaps even a small increase in efficiency can help the control centers improve 

public safety and potentially save millions of losses per year.

Despite the increasing prevalence of multitasking, there are not many agreed-upon theories to 

guide user interface design to better support multitasking.  At the level of theoretical psychology, 

there is still debate regarding whether people can truly respond to multiple tasks at the same time 

(Meyer & Kieras, 1997a; Pashler, 1989).  At the level of applied psychology,  there are no 

definite conclusions regarding how to effectively reduce the interferences between two tasks.  
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For example, in driving research, many studies show that visual displays can distract drivers 

(e.g., Wierwille, 1993), but some other studies suggest that speech-based user interfaces for 

certain tasks may bring more interferences (e.g., Lee, Caven, Haake, & Brown, 2001).  It is not 

surprising to see such diverse results given that the multitasking domain often involves very 

complex and highly dynamic tasks.  Even in simple multitasking scenarios, the interplay among 

sensorimotor and cognitive factors can become very complex.  It is thus very difficult to study 

the effect of each factor independently.  To better support multitasking, a better understanding of 

the fundamental capabilities of human information processing is needed, as well as a framework 

that allows researchers to examine the effects of integration of various factors.

To construct an integrated theory on multitasking, one effective method is to build computational 

cognitive models.  In computational cognitive modeling, different stages and aspects of human 

information processing, such as visual perception and manual motor control, are simulated with 

different software modules.  The implementation of such a software module is often a 

computational realization of a psychological theory.  The integration of these software modules 

leads to cognitive architectures, within which a variety of psychological theories can be 

integrated and tested.  Cognitive architectures substantially reduce the need of repetitively 

building modules of well-studied human information processes and enable modeling at a higher 

level of abstraction such as task strategies.  Because most computational architectures also make 

assumptions about the time needed to complete various cognitive, perceptual, and motor 

processes, they can make predictions about task completion time.  Perhaps because of this unique 

feature, cognitive modeling has been shown to be very effective in helping design systems for 
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time-critical, high-performance tasks (e.g., Foyle & Hooey, 2008).  Because many multitasking 

scenarios also require high efficiency, there should be a good synergy between cognitive 

modeling and multitasking studies.

The goal of this paper is to show that cognitive modeling is an important method for validating 

and advancing multitasking theories in both science and engineering.  The next, second, section 

introduces the basic concepts of cognitive modeling.  Two main cognitive architectures are 

discussed in detail as they are those most frequently used in the HCI research.  The third section 

reviews theories that address two main research questions in multitasking:  Where does the 

interference come from and how does strategic control affect performance?  Cognitive modeling 

is extensively used in answering these questions.  The fourth section discusses studies on 

multitasking while driving.  Several modeling studies of driving are introduced in this section as 

well.  Driving is selected as the main topic for applied multitasking research because it is a 

relatively demanding task and because improving driving efficiency and safety will broadly 

impact people’s everyday lives.  The last section summarizes the advantages of cognitive 

modeling over traditional experimental approach to multitasking research, and proposes possible 

future research directions for modeling.
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Cognitive Modeling

Cognitive modeling as a methodology to improve user interface design was proposed by Card, 

Moran, and Newell (1983), who have introduced three modeling approaches: Keystroke Level 

Modeling (KLM), GOMS (Goals, Operators, Methods, and Selection rules), and Model Human 

Processor (MHP).  The goal of these modeling approaches is to provide predictions, primarily 

about time to complete a task, such that alternative user interfaces can be evaluated even before 

conducting extensive user studies.  All three methods require the analysts to decompose the 

process of doing a task into a set of primitive operators, but MHP’s operators are defined at a 

finer level than those of KLM and GOMS.  For example, to represent mental processes, KLM 

has defined a single operator which always takes 1.2 s to complete, whereas MHP has defined 

several memory and goal manipulating operators.  Although the simplification of KLM and 

GOMS is perhaps a good way to provide preliminary evaluations for a design, they are not 

sufficient for acquiring accurate estimates of task execution time.

While KLM and GOMS were designed for practical applications, MHP was more of a theoretical 

development for exploring the limits of cognitive science in simulating human behaviors.  

Following a computer metaphor, the MHP architecture characterizes human information 

processing with a set of memory storages and processors.  The perceptual processors, the eye and 

ear processors, handle the inputs from the environment.  They transform perceptual information 

into symbols and store them in visual and auditory working memory.  The cognition processor 

then makes decisions based on the symbols presented in the working memory and in the long-

term memory, and send commands to the motor processor.  All the processors are parameterized 
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by their cycle time, and the two working memory systems are parameterized by their storage 

capacity, memory decay time, and symbol code type (such as visual or semantic).  MHP is the 

first of its kind to integrate decades of psychological theories on memory, perception, and motor 

into one unified system.

Although MHP was not computationally realized, it influenced the development of 

computational cognitive architectures, with the two most pertinent to HCI being EPIC (Kieras & 

Meyer, 1997) and ACT-R/PM (Byrne & Anderson, 2001).  The following two sections introduce 

the features of EPIC and ACT-R, and discuss how these features could be useful for modeling 

multitasking scenarios.

EPIC

Figure 1 summarizes the overall structure of EPIC (Executive Process-Interactive Control).  

Similar to MHP, EPIC consists of several perceptual and motor processors as well as a cognitive 

processor.  However, EPIC’s implementation of the perceptual and motor processors 

encompasses more recent and better developed theories.  In addition, EPIC uses a formal 

programming language, production rules, to express the processes executed by the cognitive 

processor.  To model a task, the analyst needs to build a simulated task environment in a program 

and codify the presumed users’ task strategies in production rules.  The cognitive architecture 

uses the production rules to run through the simulation and produce various predictions.  

Although EPIC in its current form is still too complex to be used in routine user interface design, 
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it is well positioned for studying the general effects that occur in a class of tasks, particularly 

multimodal multitasking tasks.

EPIC’s visual processor and oculomotor processor capture some basic properties of the human 

eyes, making it possible to simulate the complex visual interactions involved in multimodal 

multitasking scenarios.  EPIC’s visual processor is perhaps the only computational 

implementation that takes into account the physical property of the eyes, i.e. the varying density 

of the receptors on the retina.  EPIC’s simulated retina consists of three zones, each with a 

standard radius: the fovea (1º), the parafovea (7.5º), and the periphery (60º).  Consistent with 

Figure 1.  The overall structure of EPIC.  The right side of the diagram shows the 

components of the architecture, and the left side shows the simulated task environment 

and the input and output devices.  Image from Kieras (2004).

Software Architecture Overview EPIC Principles of Operation 7/19/04 2

Software Architecture Overview

Conceptual Organization

Conceptually, the EPIC architecture (Figure 1) consists of a set of interconnected processors that operate

simultaneously and in parallel.  The external environment is represented in the software by a Task Environment

Module, or device. Although conceptually the external device is not the same kind of thing as the psychological

processors, it is simply represented as an additional processor that runs in parallel with the EPIC processors.  The

device module is programmed in C++, and its programming has no psychological significance except that it represents

the external environment and how it interacts with the simulated human.  This document currently does not provide

any information on how to program the device module, but does describe the interface that connects the device with

the simulated human.

Task 
Environment 

Cognitive 
Processor

Working
Memory

Production Rule
Interpreter

Vocal Motor
Processor

Visual
Input

Auditory
Input

Long-Term
Memory

Auditory
Processor

Visual
Processor

Production 
Memory

Ocular 
Motor

Processor

Tactile
Processor

Manual 
Motor

Processor

Simulated 
Interaction 

Devices

Figure 1. Overall diagram of the EPIC cognitive architecture, showing the task environment module and the EPIC
components.  The EPIC processors are shown as shaded ovals or boxes.  The visual and auditory perceptual
processor actually contains a series of processors and stores. 

Implementation of parallel processor activity

Some basic concepts of how the EPIC software works are important to understand.  The EPIC software simulates the

activity of several processors that run simultaneously and in parallel, with information moving among them.  The

EPIC software uses a simple approach to performing this simulation, but there are certain limitations and pitfalls

involved.

The EPIC software uses an event-driven simulation approach implemented with Object-Oriented Programming

methodology.  Each processor is represented as an object instantiated from a class such as Cognitive_processor. The

processors respond to Event objects that are sent to them from other processors.  There is a single global object, the

Coordinator, which has a queue of Event objects. Each Event object (called simply an event from here on) contains a

pointer to the processor that is supposed to receive the event, a time at which the event is supposed to arrive at its

destination processor (in milliseconds), and other data about the event. The event queue is ordered by the time in each

event.  The Coordinator takes the first item out of the queue, sets the "master clock" that contains the current

simulation time to the time of the event, and then sends the event to the destination processor. When that processor has

completed its handling of the event, the Coordinator takes the next event out of the schedule queue and repeats the

process.  Thus the simulation's current time advances not in single increments, but in jumps depending on the arrival

time of the individual events.
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past research (Sanders & McCormick, 1987), in EPIC some properties of the stimuli such as 

color are made available to the whole retina, whereas other properties such as textual information 

are only made available to smaller zones.  This visual perceptual feature allows the architecture 

to correctly implement parallel processing of the visual information.  For example, it allows a 

driving model to attend to the front roadway while also noticing the red octagonal stop sign in 

the periphery.  EPIC’s oculomotor processor further enhances the visual system by simulating 

eye movements to orient the high-resolution vision to appropriate stimuli.  The implementation 

of the oculomotor enables the architecture to predict eye movement patterns, which can be a very 

helpful guidance for user interface design.

EPIC’s motor system permits a certain degree of concurrency among different movements, 

which can be used to model highly practiced, expert performance in some multitasking 

scenarios.  Except for aimed movements, motor movements in EPIC such as keypresses 

generally involve three stages: movement preparation, movement initiation, and movement 

execution (Kieras & Meyer, 1997).  Although each stage only allows processing of one 

movement, different stages can process different movements in parallel.  Due to this pipelined 

processing mechanism, a chain of keypresses would take less time than the same number of 

separated keypresses, allowing for modeling of expert-level performance.

EPIC’s support for multitasking not only exists at the perceptual and motor level, but also at the 

cognitive level.  While most cognitive architectures permit only one production rule to fire 

during a cycle in order to prevent conflicts among multiple rules, EPIC chooses to drop this 
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limitation and allows any number of production rules to fire during each cycle.  Although this 

architectural decision makes it more difficult to build models because conflicts may arise from 

incompatible rules, it is perhaps a more suitable assumption for modeling multitasking 

performance as has been suggested by some studies (Meyer & Kieras, 1997a, 1997b).

None of the above mechanisms were specifically designed for modeling multitasking, but by 

accurately representing the current knowledge about human performance at the cognitive, 

perceptual and motor level, EPIC was able to tackle some very complex multitasking scenarios 

(e.g., Kieras & Meyer, 1997).  ACT-R takes a similar approach, and it is widely used to model 

learning, psychological laboratory tasks, and some large scale HCI tasks.

ACT-R

Figure 2 shows the overall structure of ACT-R (Adaptive Control of Thought–Rational).  Similar 

to EPIC, ACT-R also consists of a set of perceptual and motor modules (the analogs of 

processors) as well as a production system to simulate cognition.  Each module communicates 

with the production system through a buffer.  ACT-R’s buffers are similar to EPIC’s working 

memory in that the contents in the buffers determine which rule should be fired.  The difference 

is that a buffer can hold only one memory chunk, whereas the working memory in EPIC has no 

capacity limit.
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One of the strengths of ACT-R is its highly developed declarative module, which simulates a 

human’s long-term declarative memory system.  Most psychologists believe that there are two 

types of long-term memory: procedural memory, which stores skills, and declarative memory, 

which stores facts and events.  Procedural memory is represented by production rules in both 

ACT-R and EPIC.  Declarative memory, however, is handled differently in the two architectures.  

In ACT-R, declarative memory is organized as chunks.  Each chunk has several attributes that 

store properties of a symbol and its relations to other symbols.  A chunk has an activation level, 

which determines its likelihood to be retrieved and its retrieval latency.  Using the activation 

level, ACT-R can model several phenomena of the long-term declarative memory system.  For 

example, memory decay is characterized by the logarithmic decrease of the activation level 

Figure 2.  The overall structure of ACT-R, noted with presumed corresponding 

brain regions for each component.  Image from Anderson et al. (2004).

the total picture and explains the role of the parts and why they exist.
(pp. 17–18)

Newell (1990) enumerated many of the advantages that a uni-
fied theory has to offer; this article develops two advantages
related to the ones he gives. The first is concerned with producing
a theory that is capable of attacking real-world problems, and the
second is concerned with producing a theory that is capable of
integrating the mass of data from cognitive neuroscience methods
like brain imaging.
The remaining sections of this article consist of two major parts

and then a conclusion. The first major part is concerned with
describing the ACT–R theory and consists of five sections, one
describing the overall theory and then four sections elaborating on
the major components of the system: the perceptual-motor mod-
ules, the goal module, the declarative module, and the procedural
system. As we describe each component, we try to identify how it
contributes to the overall integration of cognition. The second
major part of the article consists of two sections illustrating the
applications of an integrated architecture to understanding our two
domains of interest. One section describes an application of the
ACT–R theory to understanding acquisition of human skill with a
complex real-world system, and the other section describes an
application to integrating data that come from a complex brain
imaging experiment.

The ACT–R 5.0 Architecture

Figure 1 illustrates the basic architecture of ACT–R 5.0. It
consists of a set of modules, each devoted to processing a different
kind of information. Figure 1 contains some of the modules in the
system: a visual module for identifying objects in the visual field,

a manual module for controlling the hands, a declarative module
for retrieving information from memory, and a goal module for
keeping track of current goals and intentions. Coordination in the
behavior of these modules is achieved through a central production
system. This central production system is not sensitive to most of
the activity of these modules but rather can only respond to a
limited amount of information that is deposited in the buffers of
these modules. For instance, people are not aware of all the
information in the visual field but only the object they are currently
attending to. Similarly, people are not aware of all the information
in long-term memory but only the fact currently retrieved. Thus,
Figure 1 illustrates the buffers of each module passing information
back and forth to the central production system. The core produc-
tion system can recognize patterns in these buffers and make
changes to these buffers, as, for instance, when it makes a request
to perform an action in the manual buffer. In the terms of Fodor
(1983), the information in these modules is largely encapsulated,
and the modules communicate only through the information they
make available in their buffers. It should be noted that the EPIC
(executive-process/interactive control) architecture (Kieras,
Meyer, Mueller, & Seymour, 1999) has adopted a similar modular
organization for its production system architecture.
The theory is not committed to exactly how many modules there

are, but a number have been implemented as part of the core
system. The buffers of these modules hold the limited information
that the production system can respond to. They have similarities
to Baddeley’s (1986) working memory “slave” systems. The buff-
ers in Figure 1 are particularly important to this article, and we
have noted cortical regions we think they are associated with. The
goal buffer keeps track of one’s internal state in solving a problem.
In Figure 1, it is associated with the dorsolateral prefrontal cortex

Figure 1. The organization of information in ACT–R 5.0. Information in the buffers associated with modules
is responded to and changed by production rules. DLPFC ! dorsolateral prefrontal cortex; VLPFC !
ventrolateral prefrontal cortex.

1037AN INTEGRATED THEORY OF THE MIND
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across time.  The implementation of the declarative module enables ACT-R to model learning 

processes.  By contrast, EPIC does not have such comprehensive facilities for handling 

declarative memory.  In EPIC, declarative memory is simply initialized and put into working 

memory at the beginning of a simulation.  For modeling highly practiced, expert performance, 

however, this simplified declarative memory system is less problematic because, in these cases, 

long-term memory retrieval tends to be fast and is close to working memory retrieval time (25 

ms in EPIC).

The central difference between ACT-R and EPIC, which also leads to distinct approaches to 

modeling multitasking, is ACT-R’s commitment to a central bottleneck theory.  ACT-R’s 

production system can only fire one rule within a cycle.  If multiple rules’ conditions are 

matched, the rule with the highest utility is selected to fire.  Although an ACT-R model can still 

have temporal-overlapping processes across different modules, it cannot make multiple cognitive 

decisions at the same time.  By contrast, EPIC has no restriction on how many rules can fire 

within a cycle.  This distinction underlies a long-lasting debate regarding how the observed 

interference among multiple tasks should be interpreted.  Issues related to this topic will be 

discussed in the next section.

Both EPIC and ACT-R are well developed cognitive architectures.  Although currently they are 

still too complex to be used in routine user interface designs, they are, as shown next, very useful 

for exposing the implications of various multitasking theories.
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Theories of Multitasking

To design user interfaces that better support multitasking, two questions need to be answered: (a) 

What are the invariable factors that cause interferences among multiple tasks, and (b) how can 

strategic control influence performance?  The first question relates to humans’ fundamental 

information processing capacities, which is always a central concern of human performance 

research.  Knowing the answer to this question will help establish design guidelines that can 

effectively reduce multitasking interference.  The second question is unique to multitasking, as 

people tend to have a great deal of flexibility in choosing how to allocate efforts and when to 

switch tasks in a multitasking scenario.  Knowing the answer to this question can help design 

interfaces that motivate users to more efficiently and safely (essential for some tasks such as 

driving) complete a task.

Cognitive modeling has played a key role in the research endeavor to answer both questions.  As 

shown next, even a very simple laboratory dual-task experiment may involve complex 

interactions that entail a cognitive architecture integrating theories at all levels.  Moreover, the 

production system adopted by most cognitive architectures provides a formal approach to 

studying task strategies involved in multitasking scenarios.

Invariable Factors in Multitasking

Although many studies (cf. Navon & Gopher, 1979) have shown that multitasking performance 

can vary considerably even for an individual, there are some invariable, structural factors that 

can affect even the simplest multitasking situation.  The psychological refractory period (PRP) 
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experimental paradigm has been frequently used to study such invariable factors.  In PRP 

experiments, participants are required to do two choice-reaction tasks concurrently, with Task 2’s 

stimulus appearing slightly after Task 1’s.  The reaction time (RT) of Task 2 or of both tasks are 

often found longer than that of the single task performance (Welford, 1952).  These results 

suggest that at some point during a PRP trial, which usually lasts less than two seconds, the two 

tasks must have interfered with each other in some way.

Early theories such as the global single channel hypothesis (Craik, 1948) and the unitary-

resource theory (Kahneman, 1973) attempted to define the invariable factors in multitasking, but 

they failed to account for many interference effects observed in empirical studies.  The global 

single channel hypothesis states that all stages involved in information processing constitute a 

single channel, which is occupied by a task in an all-or-none fashion.  This hypothesis was 

rejected by some PRP studies (e.g., Karlin & Kestenbaum, 1968), which showed that when the 

two tasks are initiated at exactly the same time, Task 2’s RT increases by an amount that is less 

than Task 1’s RT, suggesting that the two tasks must have overlapped for a period.  This 

overlapping, however, can be explained by the unitary-resource theory, which postulates a single 

resource that has a fixed amount of capacity and can be shared by parallel tasks.  The unitary-

resource theory predicts that all processes, if they draw similar amount of resources, should 

introduce similar interferences to another task.  However, studies have shown that just by 

changing the response modality of one task in the PRP experiments while maintaining the same 

level of task difficulty, the interference between the two tasks can be substantially changed 
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(McLeod, 1977).  This result indicates the possibilities of structural factors that affect different 

stages or aspects of the task execution process.

The current prevalent multitasking theory is the multiple resource theory (Navon & Gopher, 

1979; Wickens, 2002), which incorporates several factors at the perceptual-motor and the 

cognitive level to account for multitasking interferences.  As an extension of the unitary-resource 

theory, the multiple resource theory postulates a structure of several resource pools, with each 

pool having its own divisible capacity.  Based on the past empirical findings, Wickens (1980) 

proposed a three-dimensional taxonomy of the resources, with the three dimensions being 

modalities, codes, and stages.  Tasks that utilize the same resources have the greatest 

interferences.  For example, this theory predicts that two auditory tasks presented at the same 

time (e.g., dichotic listening) produce a greater interference than an auditory task combined with 

a visual task.

Figure 3 illustrates Wickens’ three-dimensional taxonomy.  In this diagram, the horizontal axis 

represents the stage dimension, the vertical axis represents the modality dimension, and the axis 

pointing out represents the code dimension.  The stage dimension consists of three phases: 

perception, cognition, and responding.  But in this taxonomy, the perception and cognition stages 

share the same resources, as can be seen in the diagram that there is no division between them.  

The modality dimension, which consists of visual and auditory modalities, only extends to the 

perception stage, i.e. at the cognition and responding stage, visual and auditory information is 

assumed to be processed by the same set of resources.  Because of this, the modality dimension 
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is also referred to as the perceptual modality dimension.  The code dimension, which consists of 

spatial and verbal codes, exists at all three stages.  Wickens assumed that at the responding stage, 

manual responses only use spatial codes and vocal responses only use verbal codes.  Thus, the 

two responding resources are called manual spatial and vocal verbal resources.  Besides the three 

major dimensions, Wickens also proposed a fourth dimension that only exists at the visual 

perception stage, the dimension of focal vs. ambient visual processing.  The discussion in this 

section will be structured around the three major dimensions, and the fourth dimension is 

regarded as a component of the perceptual processing stage.

Although there are still many debates around the multiple resource theory, it servers as a good 

framework to navigate through a plethora of possible structural factors revealed by the past 

research.  The rest of this section discusses those factors along each dimension and shows how 

cognitive architectures implement them and use them to study complex multitasking scenarios 

that cannot be easily tackled by the multiple resource framework.
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Figure 3.  A taxonomy of multiple resources.  Image from Wickens (2002).

mechanisms which might de®ne resources. This particular set of dimensions pro-
vided the basis for one particular multiple resource model, which is the focus of the
remainder of the paper.

4. The four-dimensiona l multiple resource model
The multiple resource model proposes that there are four important categorical and
dichotomous dimensions that account for variance in time-sharing performance.
That is, each dimension has two discrete `levels’. All other things being equal (i.e.
equal resource demand or single task di0culty), two tasks that both demand one
level of a given dimension (e.g. two tasks demanding visual perception) will interfere
with each other more than two tasks that demand separate levels on the dimension
(e.g. one visual, one auditory task). The four dimensions, shown schematically in
®gure 1, and described in greater detail in the following pages, are processing stages,
perceptual modalities , visual channels, and processing codes. Consistent with the
theoretical context of multiple resources, all of these dichotomies can be associated
with distinct physiological mechanisms.

4.1. Stages
The resources used for perceptual activities and for cognitive activities, e.g. involving
working memory, appear to be the same, and those resources are functionally
separate from those underlying the selection and execution of responses (®gure 2).
Evidence for this dichotomy is provided when the di0culty of responding in a task is
varied and this manipulation does not a/ect performance of a concurrent task whose
demands are more perceptual and cognitive in nature or, conversely, when increases
in perceptual cognitive di0culty do not much in¯uence the performance of a con-
current task whose demands are primarily response-related.

This stage dichotomy can be supported by physiological evidence. In a series of
experiments by Isreal et al. (1980a, b), the amplitude of the P300 component of an
evoked brain potential elicited by a series of counted tones is assumed to re¯ect the

Multiple resources and performance prediction 163

Figure 1. Three-dimensional representation of the structure of multiple resources. The
fourth dimension (visual processing) is nested within visual resources.



The perceptual modality dimension

The perceptual modality dimension is divided into visual and auditory modalities.  Many studies 

have shown that concurrent cross-modal (e.g., auditory-visual) perceptual processing can be 

done more efficiently than concurrent unimodal processing (e.g., visual-visual).  For example, 

Rollins and Hendricks (1980) showed that messages presented only through auditory stimuli are 

more difficult to process than messages presented partly through visual stimuli and partly 

through auditory stimuli.  The fact that humans have dedicated organs (eyes and ears) and brain 

regions (Kandel, Schwartz, & Jessell, 2000) for processing the two types of sensory stimuli also 

suggests that there should be less interference across the two perceptual modalities.  The 

question, though, is what interferences exist for information delivered within the same modality.

Parts of the intra-modal interferences arise from the physical constraints of the sensory organs.  

For vision, the main constraint is the limited size of the fovea region.  While certain information 

(e.g., color and motion) can be perceived in the periphery, some other information (e.g., text) 

requires an eye movement to center the foveal vision to that object.  Because an eye movement 

typically takes about 200 ms to initiate and 10-100 ms to complete (Duchowski, 2007), this lag 

alone can cause considerable interference between visual tasks (Meyer & Kieras, 1997b).  For 

hearing, the physical constraint has to do with how sound is perceived by the mechanoreceptors 

in the ears (Kandel et al, 2000).  Particularly, sounds with similar frequencies have strong 

interferences as they stimulate the same set of mechanoreceptors (Moore, 1986).
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Selective attention is another source of the intra-modal interferences.  Selective visual attention 

can bias processing towards one part of the visual periphery (Moore & Armstrong, 2003; 

Sperling & Melchner, 1978), and selective auditory attention can bias processing towards one 

side of the ears (Cherry, 1953).  It is still not clear whether attention filters raw sensory 

information (also known as early selection model, Broadbent, 1958) or just affects higher-level 

analysis such as semantic analysis (also known as late-selection model, Deutsch & Deutsch, 

1963), but the common implication of these two possible mechanisms is that information from 

the stimuli that have not been attended may be lost.

The higher efficiency of cross-modal perceptual processing and the interferences of the unimodal 

processing are implemented in ACT-R and EPIC.  To implement parallel cross-modal processing, 

both architectures have separate processors for handling visual and auditory stimuli, and these 

processors can work concurrently with no interference.  To implement the intra-modal 

interferences, however, the two architectures have taken different paths.  ACT-R relies on 

selective attention to access information from the outside world.  Since this attention mechanism 

can only be directed to one location at a time, an ACT-R model cannot simultaneously perceive 

multiple stimuli.  By contrast, EPIC’s implementation of intra-modal interferences focuses on the 

physical properties of the perceptual modalities.  For example, visual information from the 

stimuli is filtered by the graded resolution of the retina, and is “selected” by eye movements 

rather than internal attention.  EPIC omits the effect of selective visual attention because in most 

real world tasks, it is tightly coupled with eye movements (Findlay & Gilchrist, 2003). 
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Although neither ACT-R nor EPIC implements the frequency interference that occurs in the 

auditory modality, their auditory modules are capable of explaining another interference which 

may occur more frequently in HCI tasks.  This interference is that when there is too much 

auditory information presented at the same time (e.g., listening to the GPS instructions while 

having a conversation with a passenger), only a certain amount can be processed and retained.  In 

ACT-R and EPIC, the processed auditory information are stored in working memory and decays 

within a short span of time, usually around 2 seconds.  To delay a memory item’s decay in the 

auditory working memory, the model needs to employ a rehearsal strategy, which was 

demonstrated by Kieras, Meyer, Mueller, and Seymour (1999) using EPIC’s auditory and vocal 

modules.  The rehearsal strategy periodically subvocalizes items in the auditory working memory 

and then stores them again in the memory through a shortcut channel that exists in the 

architecture.  Even with the rehearsal strategy, however, the amount of auditory information that 

can be retained is still limited because if there are too many chunks in the auditory working 

memory, some chunks may decay before they get subvocalized.  This mechanism may be useful 

for modeling tasks that involve extensive dialogs, such as the telephone operator task (Kieras, 

Wood, & Meyer, 1997).

With the above perceptual processing characteristics implemented in the EPIC architecture, 

Kieras and Meyer (2000) successfully modeled a dual task experiment that employed extensive 

auditory and visual stimuli.  The dual task consisted of a tracking task and a choice-reaction task 

presented on separated displays.  The tracking task required the participants to center the tracking 

cursor on a moving target with a joystick.  The choice-reaction task presented series of moving 
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stimuli accompanied by spatialized auditory alerts to signal their change of status.  Participants 

could only respond to a stimulus when it became active (denoted by a color different from white 

or black).  EPIC’s implementation of the visual and auditory processing is key to correctly 

modeling participants’ performance of this task.  For example, EPIC’s implementation of the 

retina zones allows the model to simulate how participants efficiently identified the location of 

the active stimuli with peripheral vision.  EPIC’s implementation of the auditory processing 

allowed the model to simulate how participants switched tasks using auditory alerts as cues.  

This dual task was difficult to analyze using traditional statistical methods, but with cognitive 

modeling Kieras and Meyer were able to extract and study the effects of the visual and auditory 

interference between the tasks.

Overall, the perceptual modules of EPIC and ACT-R are capable of modeling very complex 

multitasking scenarios.  Though some aspects still need improvement, the current 

implementation can automatically take into account a variety of human multitasking 

characteristics such as the independent processing of visual and auditory information, the 

capacity of visual processing over the entire visual field, and the capacity of auditory working 

memory.  These implementations were shown to be vital for studying complex tasks that cannot 

be easily examined through traditional statistical methods.  The following section shows that in 

the response modalities, cognitive modeling have achieved a similar success.
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The code dimension

In Figure 3, the code dimension of Wickens’ taxonomy consists of spatial and verbal codes.  

These two codes represent two hypothesized types of memory storage employed in cognitive and 

perceptual-motor processing.  Under the assumption of separated spatial and verbal codes, the 

multiple resource theory predicts that two tasks utilizing the same codes would incur strong 

interference, whereas a combination of a spatial task and a verbal task would incur small 

interference.  This prediction has been verified by a few studies.  For example, Brooks (1968) 

found that when recalling information about a line diagram, a task that requires spatial thinking, 

it takes much longer for the participant to point at the response in a spatial array than to speak the 

response.  By contrast, when recalling information about a sentence, it takes longer to speak the 

response than to point at it.  Research on driving (Recarte & Nunes, 2000) also shows that 

spatial-imagery tasks would greatly reduce a driver’s visual scan area, whereas verbal tasks 

would cause a much smaller impairment.  These results suggest that spatial thinking and verbal 

thinking may indeed operate on different resources.

Although there is some evidence to support the separation between spatial and verbal codes at 

the perception and cognition stages, it is questionable whether this separation should be extended 

to the response stage.  Wickens (2002) argued that the strong interference occurred between 

responses made by the same modality because they shared the same code.  However, this 

interference could also be explained in that the responses share the same modality resources such 

as hands or voice.  The latter explanation is arguably more parsimonious because it represents 
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the physical and biological separation that exists instead of a hypothetical construct, that of 

processing codes.

Preferring the more parsimonious theory, EPIC and ACT-R adopted the shared-modality view in 

explaining interference that occurs at the response stage.  Their implementation of the response 

modalities largely follows Rosenbaum’s (1980) motor programming framework.  In this 

framework, motor processing—including manual, ocular, and vocal processing—generally goes 

through three stages: preparation, initiation, and execution.  Each stage only allows processing of 

one movement at a time.  This movement-production bottleneck is the key to explaining the 

interference between concurrent responses.  For example, it predicts strong interference between 

concurrent manual responses because both hands share the same manual motor processor (Kieras 

& Meyer, 1997), and the execution or preparation of one movement has to wait until that of the 

other movement is completed.  A manual response and a vocal response, however, can be 

processed more efficiently because they are handled by separate processors and can be executed 

in parallel without interferences.

EPIC and ACT-R’s implementation of motor programming can be used to explain many effects 

that were attributed to spatial-verbal codes, and can even predict when and how the interference 

may occur.  For example, Martin-Emerson & Wickens (1997) conducted an experiment that 

consisted of a tracking task and an arrow-discrimination task.  The arrow-discrimination task 

requires the participant to press a key in response to a left or right arrow that periodically 

appeared above the tracking task.  The study found a considerable interference between the two 
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tasks, and both tracking error and reaction time (RT) increase as the separation between the two 

tasks’ display increases.  Wickens (2002) attributed the interference to the sharing of the spatial 

processing codes.  However, Kieras, Meyer, Ballas and Lauber (2000) found that a model with 

just the movement production bottleneck can also explain the effect.  Their model shows that the 

two tasks, though both fall into Wickens’ category of spatial tasks, do not always interfere with 

each other on all three processing stages.  In fact, the response selection stage of the arrow-

discrimination task was done while tracking was in progress.  The multiple resource theory 

cannot make such detailed inference, nor can it predict how exactly the interaction unfolds in 

such multitasking scenarios.

The stage dimension

In the stage dimension, Wickens’ taxonomy separates resources between the response stage and 

the perceptual-cognitive stages, but it does not separate resources between the perceptual stage 

and cognitive stage.  Isreal, Chesney, Wickens, and Donchin (1980) provided some support for 

this way of resource separation.  They showed that the manipulation of the response difficulty 

does not change the event-related potential (ERP) response that is assumed to be correlated with 

the perceptual-cognitive activities.

EPIC and ACT-R went one step further and assume that perceptual and cognitive processing 

stages also use different resources.  In these two cognitive architectures, the cognitive processor 

and the perceptual processors operate independently without interferences.  This separation 

between cognitive and perceptual processing resources is supported by many brain imaging and 
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brain lesion studies (see Kandel et al., 2000), which show that decision-making mainly relies on 

the prefrontal cortex, whereas perception relies on other brain structures.

The prior discussion on perceptual modality dimension and code dimension has suggested that 

concurrent perceptual processes or concurrent responding processes would interfere with each 

other if they share the same modalities, but it remains to be answered whether there is 

interference among concurrent cognitive processes.  ACT-R and EPIC take different positions on 

the issue of cognitive interferences:  ACT-R assumes that the cognitive processor can only 

execute one rule within a cycle (a cognitive bottleneck), whereas EPIC assumes no limitations.  

This difference reflects a controversy on this issue that exists in the past few decades of 

psychological refractory period (PRP) studies.

The next section discusses modeling of PRP experiments.  The PRP modeling studies serve as a 

great example of exploiting the various sensorimotor and cognitive functions implemented in 

cognitive architectures.  These studies also reveal the potential of computational modeling in 

advancing cognitive science.

Putting together all the invariable factors

Figure 4 shows the structure of a typical PRP experiment and illustrates how the interaction of 

the two tasks might unfold under the view of two competing theories.  In this graph, Task 1 and 

Task 2 start in close succession, with the stimulus of Task 2 appearing slightly after that of Task 

1.  The interval between the presentation of the two tasks’ stimuli is called the stimulus onset 
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asynchrony (SOA), and it is a primary factor manipulated in PRP experiments.  In PRP 

experiments, the reaction time of Task 2 is often found longer than its single task performance, 

and two major theories have been proposed to explain this phenomenon.  The response-selection 

bottleneck (RSB) theory (Pashler, 1989), depicted as Task 2 RSB in Figure 4, assumes that the 

response-selection stage is a single channel and only allows response selection for one task at a 

time.  By contrast, the movement-production bottleneck (MPB) theory (Keele, 1973), depicted as 

Task 2 MPB, allows concurrent perception and response selection, but permits only one 

movement production at a time.

Though both theories can explain why Task 2 RTs are longer in dual task conditions than in 

single task conditions, they lead to different predictions when the difficulty of Task 2’s response 

Figure 4.  A stage model of the processing involved in PRP experiments.  Task 2 RSB 

shows how the processing of Task 2 might proceed under the response-selection 

bottleneck hypothesis, and Task 2 MPB shows the view of the movement-production 

bottleneck theory.
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selection is varied.  Specifically, the RSB theory predicts that the difference between the RT of 

an easy Task 2 and a hard Task 2 will be equal to the difference in the easy and hard response 

selection times, regardless of the duration of the SOA.  In other words, if the RTs of the easy and 

hard Task 2 conditions were plotted against SOA, the RSB theory would predict that the curve of 

the easy condition should parallel the curve of the hard condition.  By contrast, the MPB theory 

predicts diverging curves:  At a short SOA, the easy and hard Task 2 would have the same RTs 

because the post-selection slack would absorb the difference in the two conditions’ response 

selection times; at a long SOA, Task 2 Hard would have longer RT than Task 2 Easy because the 

post-selection slack would no longer exist.

Given the predictions of the two theories, it would seem easy to reject one theory or another 

through experimentation, yet support for each theory has been observed (e.g., Becker, 1976 

observed parallel curves, and De Jong, 1993 observed diverging curves) and no decisive 

conclusions could be drawn.  The inconsistent results found in the PRP literature suggest that the 

simple flowcharts used by the RSB and MPB theories (such as those shown in Figure 4) could 

not adequately encompass the details of an experiment and could not provide accurate 

predictions to support either theory: a more comprehensive approach of modeling the PRP 

procedure was needed.  Computational cognitive modeling seemed to just fit this task, because of 

its ability to produce quantitative predictions and to simulate the fine details of the environment, 

the task procedure, and human information processing.
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Using EPIC, Meyer and Kieras (1997a, 1997b) constructed a series of computational models to 

account for various effects observed in several PRP experiments.  The EPIC cognitive 

architecture does not assume a response-selection bottleneck or any other cognitive bottleneck, 

but it has implemented the movement-production bottleneck by allowing each modality to 

prepare or execute only one movement at a time.  Meyer and Kieras’s models adopted a strategy 

that intentionally defers executing Task 2’s response when Task 2’s response selection finishes 

earlier than Task 1’s.  This strategical response-deferment model guarantees that Task 2 finishes 

after Task 1, as is required by most PRP experiments.

With the movement-production bottleneck and the strategical response-deferment model, Meyer 

and Kieras found that the seemingly inconsistent PRP results can all be accounted for through 

carefully capturing the variations in the experimental setup.  For example, they found that the 

reason that Becker’s (1976) experiment observed parallel RT curves for the two Task 2 

conditions is because Task 1’s response selection was too easy (Task 1 in Becker’s study was a 

binary choice task).  When Task 1’s response selection is very easy, there is essentially no slack 

time for Task 2 because Task 1 may have completed well before Task 2’s movement production 

begins.  Since there is no slack time, the difference between the RTs of Task 2 easy and hard 

conditions would be constant across SOAs.  Similarly, parallel curves can also occur when 

perceiving Task 2’s stimulus requires an eye movement, which delays the actual perception 

process and effectively increases SOA by about 125 ms (Meyer & Kieras, 1997b).  Because of 

this delay, Task 1 may finish before Task 2’s movement production begins even at short SOAs, 

which again results in zero slack time for Task 2 and produces parallel curves.
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Figure 5 shows the results of Meyer and Kieras’ models for Hawkins, Rodriguez and Reicher’s 

(1979) three experiments.  These experiments differed in the modalities used for delivering Task 

1’s stimuli and producing the responses.  The first experiment presents Task 1’s stimuli through 

audio, and requires participants’ vocal responses.  The second experiment uses a visual-vocal 
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Figure 5.  Results from Meyer and 

Kieras’ (1997a) models for Hawkins et 

al.’s (1979) experiments.  Three 

experiments were modeled, each with a 

different stimulus-response modality 

combination for Task 1.  The solid lines 

are the empirical data, and the dashed 

lines are the model predictions.  The open 

symbols represent the data for Task 1, and the solid symbols for Task 2.

THEORY OF EXECUTIVE COGNITIVE PROCESSES 47

1200

1000

800-

600

400
1200-

Easy Task 2
Hard Task 2

(A) Auditory-Vocal Task 1

MeanRT
Taskl Task 2

(B) Visual-Vocal Taskl

MeanRT
Taskl Task2

Easy Task 2
Hard Task 2

600-

400
0 200 400 600 800 1000 1200

SOA (me)

Figure 20. Results from simulations with the strategic response-defer-
ment (SRD) model for further conditions of Hawkins, Rodriguez, and
Reicher's (1979) psychological refractory period study. Large symbols
on solid curves denote empirical mean reaction times (RTs); small sym-
bols on dashed curves denote simulated mean KIs. Filled circles and
triangles represent Task 2 KIs when response selection in Task 2 was
easy or hard, respectively; unfilled circles and triangles represent corre-
sponding Task 1 KB. A: Simulated versus empirical mean KIs in an
auditory-vocal Task 1 combined with a visual-manual Task 2. B: Simu-
lated versus empirical mean KB in a visual-vocal Task 1 combined with
a visual-manual Task 2. C: Simulated versus empirical mean KIs in a
visual-manual Task 1 combined with a visual-manual Task 2. SOA =
stimulus onset asynchrony.

executive process used the same production rules as before, and
many of the numerical parameter values stayed the same (see
Table 4). For example, the means of the auditory and visual
stimulus-identification times, response-selection times, and
movement-production times did not change. Instead, the most
important new addition was simply that vocal responses were
involved and had a somewhat longer transduction time than did
manual responses (120 vs. 10 ms).

This assumed difference in transduction times for the vocal
and manual response modalities had several justifications. Artie -
ulatory movements may begin significantly before their resultant
sounds are detectable physically (Ladefoged, 1975). Such dif-
ferential onsets would account for why vocal Task 1 RTs were
longer than manual ones in the Hawkins et al. (1979) study.
Also, if the vocal RT increase stems from a late peripheral
source, it could account for why the Task 2 RTs were not corre-
spondingly longer compared with what happened when Task 1
required manual responses. The Task 2 R3s should remain virtu-
ally unchanged because the executive process typically starts
unlocking Task 2 soon after early internal events (action initia-
tion) associated with Task 1 being done rather than after late
external events involving physical response transduction.

Simulated mean RTs. In light of these considerations, Figure
20A shows simulated mean RTs (dashed curves) produced by
the SRD model for the Hawkins et al. (1979) study with an
auditory-vocal Task 1. Here, the fit between the simulated and
empirical mean Task 1 RTs was again at least moderately good
(RMSE = 21 ms). There also was at least a moderately good
fit (R2 = .976, RMSE = 34 ms) between the simulated and
empirical mean Task 2 RJs. In particular, the simulated mean
Task 2 RTs faithfully mimiced the observed interaction between
SOA and Task 2 response-selection difficulty. Of course, this
was what we would expect when the stimulus modalities of
Tasks 1 and 2 allow response-selection processes for the two
tasks to overlap temporally, yielding postselection slack in Task
2 RTs and PRP curves from Family 1 of the SRD model.

Nevertheless, some discrepancies between the present simu-
lated and empirical mean Task 2 RTs were noticably greater
than those in our previous simulations for the auditory-manual
Task 1 (cf. Figure 19D). Specifically, consider what happened
when Task 2 involved two S-R pairs and the SOA was very
short (0 < SOA =s 200 ms). Under such circumstances, the
simulated mean Task 2 RTs exceeded the empirical mean Task
2 RTs by 50 ms or more. This occurred because the empirical
mean Task 2 RTs declined more steeply (slope = —1.3) than
did the simulated ones (slope = —1.0) over the interval of very
short SOAs.

There also were other discrepancies between the simulated
and empirical mean Task 2 RTs at longer SOAs (i.e., SOAs =
600 and 1,200 ms) when Task 2 was easy. In these cases, the
simulated RTs fell below the empirical ones by about 50 ms.
This excessive drop happened despite the simulated Task 2 RTs
having a shallower slope than the empirical Task 2 RIs did at
very short SOAs.

Theoretical implications. Although their absolute magni-
tudes were not great, the preceding discrepancies significantly
exceeded the 10-ms standard errors of the empirical mean Task
2 RTs that accompanied the auditory-vocal Task 1. It therefore
appears that the SRD model may require some modification
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executive process used the same production rules as before, and
many of the numerical parameter values stayed the same (see
Table 4). For example, the means of the auditory and visual
stimulus-identification times, response-selection times, and
movement-production times did not change. Instead, the most
important new addition was simply that vocal responses were
involved and had a somewhat longer transduction time than did
manual responses (120 vs. 10 ms).

This assumed difference in transduction times for the vocal
and manual response modalities had several justifications. Artie -
ulatory movements may begin significantly before their resultant
sounds are detectable physically (Ladefoged, 1975). Such dif-
ferential onsets would account for why vocal Task 1 RTs were
longer than manual ones in the Hawkins et al. (1979) study.
Also, if the vocal RT increase stems from a late peripheral
source, it could account for why the Task 2 RTs were not corre-
spondingly longer compared with what happened when Task 1
required manual responses. The Task 2 R3s should remain virtu-
ally unchanged because the executive process typically starts
unlocking Task 2 soon after early internal events (action initia-
tion) associated with Task 1 being done rather than after late
external events involving physical response transduction.

Simulated mean RTs. In light of these considerations, Figure
20A shows simulated mean RTs (dashed curves) produced by
the SRD model for the Hawkins et al. (1979) study with an
auditory-vocal Task 1. Here, the fit between the simulated and
empirical mean Task 1 RTs was again at least moderately good
(RMSE = 21 ms). There also was at least a moderately good
fit (R2 = .976, RMSE = 34 ms) between the simulated and
empirical mean Task 2 RJs. In particular, the simulated mean
Task 2 RTs faithfully mimiced the observed interaction between
SOA and Task 2 response-selection difficulty. Of course, this
was what we would expect when the stimulus modalities of
Tasks 1 and 2 allow response-selection processes for the two
tasks to overlap temporally, yielding postselection slack in Task
2 RTs and PRP curves from Family 1 of the SRD model.

Nevertheless, some discrepancies between the present simu-
lated and empirical mean Task 2 RTs were noticably greater
than those in our previous simulations for the auditory-manual
Task 1 (cf. Figure 19D). Specifically, consider what happened
when Task 2 involved two S-R pairs and the SOA was very
short (0 < SOA =s 200 ms). Under such circumstances, the
simulated mean Task 2 RTs exceeded the empirical mean Task
2 RTs by 50 ms or more. This occurred because the empirical
mean Task 2 RTs declined more steeply (slope = —1.3) than
did the simulated ones (slope = —1.0) over the interval of very
short SOAs.

There also were other discrepancies between the simulated
and empirical mean Task 2 RTs at longer SOAs (i.e., SOAs =
600 and 1,200 ms) when Task 2 was easy. In these cases, the
simulated RTs fell below the empirical ones by about 50 ms.
This excessive drop happened despite the simulated Task 2 RTs
having a shallower slope than the empirical Task 2 RIs did at
very short SOAs.

Theoretical implications. Although their absolute magni-
tudes were not great, the preceding discrepancies significantly
exceeded the 10-ms standard errors of the empirical mean Task
2 RTs that accompanied the auditory-vocal Task 1. It therefore
appears that the SRD model may require some modification
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executive process used the same production rules as before, and
many of the numerical parameter values stayed the same (see
Table 4). For example, the means of the auditory and visual
stimulus-identification times, response-selection times, and
movement-production times did not change. Instead, the most
important new addition was simply that vocal responses were
involved and had a somewhat longer transduction time than did
manual responses (120 vs. 10 ms).

This assumed difference in transduction times for the vocal
and manual response modalities had several justifications. Artie -
ulatory movements may begin significantly before their resultant
sounds are detectable physically (Ladefoged, 1975). Such dif-
ferential onsets would account for why vocal Task 1 RTs were
longer than manual ones in the Hawkins et al. (1979) study.
Also, if the vocal RT increase stems from a late peripheral
source, it could account for why the Task 2 RTs were not corre-
spondingly longer compared with what happened when Task 1
required manual responses. The Task 2 R3s should remain virtu-
ally unchanged because the executive process typically starts
unlocking Task 2 soon after early internal events (action initia-
tion) associated with Task 1 being done rather than after late
external events involving physical response transduction.

Simulated mean RTs. In light of these considerations, Figure
20A shows simulated mean RTs (dashed curves) produced by
the SRD model for the Hawkins et al. (1979) study with an
auditory-vocal Task 1. Here, the fit between the simulated and
empirical mean Task 1 RTs was again at least moderately good
(RMSE = 21 ms). There also was at least a moderately good
fit (R2 = .976, RMSE = 34 ms) between the simulated and
empirical mean Task 2 RJs. In particular, the simulated mean
Task 2 RTs faithfully mimiced the observed interaction between
SOA and Task 2 response-selection difficulty. Of course, this
was what we would expect when the stimulus modalities of
Tasks 1 and 2 allow response-selection processes for the two
tasks to overlap temporally, yielding postselection slack in Task
2 RTs and PRP curves from Family 1 of the SRD model.

Nevertheless, some discrepancies between the present simu-
lated and empirical mean Task 2 RTs were noticably greater
than those in our previous simulations for the auditory-manual
Task 1 (cf. Figure 19D). Specifically, consider what happened
when Task 2 involved two S-R pairs and the SOA was very
short (0 < SOA =s 200 ms). Under such circumstances, the
simulated mean Task 2 RTs exceeded the empirical mean Task
2 RTs by 50 ms or more. This occurred because the empirical
mean Task 2 RTs declined more steeply (slope = —1.3) than
did the simulated ones (slope = —1.0) over the interval of very
short SOAs.

There also were other discrepancies between the simulated
and empirical mean Task 2 RTs at longer SOAs (i.e., SOAs =
600 and 1,200 ms) when Task 2 was easy. In these cases, the
simulated RTs fell below the empirical ones by about 50 ms.
This excessive drop happened despite the simulated Task 2 RTs
having a shallower slope than the empirical Task 2 RIs did at
very short SOAs.

Theoretical implications. Although their absolute magni-
tudes were not great, the preceding discrepancies significantly
exceeded the 10-ms standard errors of the empirical mean Task
2 RTs that accompanied the auditory-vocal Task 1. It therefore
appears that the SRD model may require some modification
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Figure 17. Results from Hawkins, Rodriguez, and Reicher's (1979)
study with the psychological refractory period procedure. Filled circles
and triangles represent mean Task 2 reaction times (RTs) obtained when
response selection in Task 2 was easy or hard, respectively. The easy
(circles) condition of Task 2 involved two visual-manual stimulus-
response (S-R) pairs; the hard (triangles) condition involved eight vi-
sual-manual S-R pairs. Unfilled circles and triangles represent corre-
sponding mean Task 1 RTs, which always involved two auditory-manual
S-R pairs. Each mean RT has a standard error of approximately 10 ms.
For Task 2, the interaction between effects of stimulus onset asynchrony
(SOA) and response-selection difficulty on mean RTs was reliable (p
< .01). There were no such effects on mean Task 1 RTs.

were much slower on average in the condition with eight S-R
pairs than in the condition with two S-R pairs (see Figure 17,
filled circles vs. filled triangles; the mean difficulty effect was
about 200 ms at the longest SOA). This temporally localized
difficulty effect was reliable compared with Task 2 RTs' standard
errors of the mean, which equaled about 10 ms on average. At
the shorter (less than 200-ms) SOAs, however, the number of
S-R pairs affected the Task 2 RTs much less (only about 35
ms). Thus, overall, a substantial interaction was present between
the effects of SOA and response-selection difficulty on mean
Task 2 RTs in the Hawkins et al. (1979) PRP study with an
auditory-manual Task 1. This interaction replicates and extends
results reported by Karlin and Kestenbaum (1968; see Figure
3). It also is consistent with the first family of theoretical PRP
curves that the SRD model can produce (see Figure ISA).

Theoretical implications. Given the benchmark results re-
ported by Hawkins et al. (1979), tests may be conducted to
assess how well various models account for participants' perfor-
mance under the PRP procedure. Pursuing this possibility, we
next present a computer simulation that applies a simple re-
sponse-selection bottleneck model in an attempt to fit the mean
RTs in Figure 17. A simulation with the SRD model then is
presented, showing that it actually fits the Hawkins et al. results
much better than does the bottleneck model.

Simulation With the Response-Selection Bottleneck
Model

To conduct simulations with the response-selection bottleneck
model, we followed the general protocol outlined previously.

This entailed three steps: (a) specifying a set of production
rules that can be used to perform the Hawkins et al. (1979)
auditory-manual Task 1; (b) specifying two additional rule sets
that can be used respectively to perform the Hawkins et al. easy
and difficult visual-manual Task 2; and (c) specifying a set
of executive production rules that emulate a response-selection
bottleneck while coordinating task performance as required by
the PRP procedure's standard instructions.

The executive production rules that we specified to emulate
the response-selection bottleneck model are straightforward. On
each simulation trial, they withhold the note "GOAL DO TASK 2"
from working memory until the Task 1 response has been se-
lected and its movement production is well under way. This
complete lockout scheduling precludes any temporal overlap
between the response-selection processes for Tasks 1 and 2, just
as the response-selection bottleneck model requires.

Using the executive and task production rules for the bottle-
neck model, we conducted a series of simulation trials under
conditions like those used in the PRP study by Hawkins et al.
(1979). Our simulation relied on the EPIC architecture. Subject
to constraints imposed by the bottleneck model's complete lock-
out scheduling, EPIC's context-dependent parameters were as-
signed numerical values that maximized the goodness of fit
between simulated mean RTs and the Hawkins et al. data.

Simulated mean RTs for the auditory-manual Task 1. Some
results from this simulation appear in Figure ISA. Here, we
have plotted empirical mean RIs (large circles and triangles on
solid curves) against simulated mean RTs (small circles and
triangles on dashed curves) produced by the response-selection
bottleneck model for the Hawkins et al. (1979) auditory-manual
Task 1. The obtained fit was good; its root mean squared error
(RMSE) did not exceed empirical Task 1 RIs' standard errors
of the mean (6 vs. 10 ms, respectively).

Simulated mean RTs for the visual-manual Task 2. In con-
trast, the bottleneck model produces a markedly poorer fit (R2

= .89) between the simulated and empirical mean Task 2 RTs
for the Hawkins et al. (1979) study. Figure 18B illustrates how
bad this fit is. Here, the model's RMSE is large compared with
empirical Task 2 RTs' standard errors of the mean (73 vs. 10
ms). Like Task 2 RTs' empirical means (large symbols on solid
curves), Task 2 RIfc' simulated means (small symbols on dashed
curves) exhibits both large PRP effects at short SOAs and a
large Task 2 response-selection difficulty effect at long SOAs.
However, there is also a large difficulty effect on the Task 2
RTs' simulated means at the shortest SOA, unlike what occurred
in Task 2 RTV empirical means. In essence, the response-selec-
tion bottleneck model fails to mimic the substantial interaction
that Hawkins et al. (1979) found between SOA and difficulty
effects on Task 2 RTs when Task 1 involves auditory-manual
reactions.

Theoretical implications. The inability of the bottleneck
model to account well for empirical mean Task 2 RTs stemmed
from its complete lockout scheduling of response selection. Be-
cause of such scheduling, response selection for Task 2 never
started until after Task 1 was essentially done, so the difficulty
of Task 2 response selection propagated forward to affect Task
2 RTs regardless of the SOA (see Figure 4). That this propaga-
tion did not occur in the Hawkins et al. (1979) study when Task
1 involved auditory-manual choice reactions raises the need for
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Figure 17. Results from Hawkins, Rodriguez, and Reicher's (1979)
study with the psychological refractory period procedure. Filled circles
and triangles represent mean Task 2 reaction times (RTs) obtained when
response selection in Task 2 was easy or hard, respectively. The easy
(circles) condition of Task 2 involved two visual-manual stimulus-
response (S-R) pairs; the hard (triangles) condition involved eight vi-
sual-manual S-R pairs. Unfilled circles and triangles represent corre-
sponding mean Task 1 RTs, which always involved two auditory-manual
S-R pairs. Each mean RT has a standard error of approximately 10 ms.
For Task 2, the interaction between effects of stimulus onset asynchrony
(SOA) and response-selection difficulty on mean RTs was reliable (p
< .01). There were no such effects on mean Task 1 RTs.

were much slower on average in the condition with eight S-R
pairs than in the condition with two S-R pairs (see Figure 17,
filled circles vs. filled triangles; the mean difficulty effect was
about 200 ms at the longest SOA). This temporally localized
difficulty effect was reliable compared with Task 2 RTs' standard
errors of the mean, which equaled about 10 ms on average. At
the shorter (less than 200-ms) SOAs, however, the number of
S-R pairs affected the Task 2 RTs much less (only about 35
ms). Thus, overall, a substantial interaction was present between
the effects of SOA and response-selection difficulty on mean
Task 2 RTs in the Hawkins et al. (1979) PRP study with an
auditory-manual Task 1. This interaction replicates and extends
results reported by Karlin and Kestenbaum (1968; see Figure
3). It also is consistent with the first family of theoretical PRP
curves that the SRD model can produce (see Figure ISA).

Theoretical implications. Given the benchmark results re-
ported by Hawkins et al. (1979), tests may be conducted to
assess how well various models account for participants' perfor-
mance under the PRP procedure. Pursuing this possibility, we
next present a computer simulation that applies a simple re-
sponse-selection bottleneck model in an attempt to fit the mean
RTs in Figure 17. A simulation with the SRD model then is
presented, showing that it actually fits the Hawkins et al. results
much better than does the bottleneck model.

Simulation With the Response-Selection Bottleneck
Model

To conduct simulations with the response-selection bottleneck
model, we followed the general protocol outlined previously.

This entailed three steps: (a) specifying a set of production
rules that can be used to perform the Hawkins et al. (1979)
auditory-manual Task 1; (b) specifying two additional rule sets
that can be used respectively to perform the Hawkins et al. easy
and difficult visual-manual Task 2; and (c) specifying a set
of executive production rules that emulate a response-selection
bottleneck while coordinating task performance as required by
the PRP procedure's standard instructions.

The executive production rules that we specified to emulate
the response-selection bottleneck model are straightforward. On
each simulation trial, they withhold the note "GOAL DO TASK 2"
from working memory until the Task 1 response has been se-
lected and its movement production is well under way. This
complete lockout scheduling precludes any temporal overlap
between the response-selection processes for Tasks 1 and 2, just
as the response-selection bottleneck model requires.

Using the executive and task production rules for the bottle-
neck model, we conducted a series of simulation trials under
conditions like those used in the PRP study by Hawkins et al.
(1979). Our simulation relied on the EPIC architecture. Subject
to constraints imposed by the bottleneck model's complete lock-
out scheduling, EPIC's context-dependent parameters were as-
signed numerical values that maximized the goodness of fit
between simulated mean RTs and the Hawkins et al. data.

Simulated mean RTs for the auditory-manual Task 1. Some
results from this simulation appear in Figure ISA. Here, we
have plotted empirical mean RIs (large circles and triangles on
solid curves) against simulated mean RTs (small circles and
triangles on dashed curves) produced by the response-selection
bottleneck model for the Hawkins et al. (1979) auditory-manual
Task 1. The obtained fit was good; its root mean squared error
(RMSE) did not exceed empirical Task 1 RIs' standard errors
of the mean (6 vs. 10 ms, respectively).

Simulated mean RTs for the visual-manual Task 2. In con-
trast, the bottleneck model produces a markedly poorer fit (R2

= .89) between the simulated and empirical mean Task 2 RTs
for the Hawkins et al. (1979) study. Figure 18B illustrates how
bad this fit is. Here, the model's RMSE is large compared with
empirical Task 2 RTs' standard errors of the mean (73 vs. 10
ms). Like Task 2 RTs' empirical means (large symbols on solid
curves), Task 2 RIfc' simulated means (small symbols on dashed
curves) exhibits both large PRP effects at short SOAs and a
large Task 2 response-selection difficulty effect at long SOAs.
However, there is also a large difficulty effect on the Task 2
RTs' simulated means at the shortest SOA, unlike what occurred
in Task 2 RTV empirical means. In essence, the response-selec-
tion bottleneck model fails to mimic the substantial interaction
that Hawkins et al. (1979) found between SOA and difficulty
effects on Task 2 RTs when Task 1 involves auditory-manual
reactions.

Theoretical implications. The inability of the bottleneck
model to account well for empirical mean Task 2 RTs stemmed
from its complete lockout scheduling of response selection. Be-
cause of such scheduling, response selection for Task 2 never
started until after Task 1 was essentially done, so the difficulty
of Task 2 response selection propagated forward to affect Task
2 RTs regardless of the SOA (see Figure 4). That this propaga-
tion did not occur in the Hawkins et al. (1979) study when Task
1 involved auditory-manual choice reactions raises the need for
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Figure 17. Results from Hawkins, Rodriguez, and Reicher's (1979)
study with the psychological refractory period procedure. Filled circles
and triangles represent mean Task 2 reaction times (RTs) obtained when
response selection in Task 2 was easy or hard, respectively. The easy
(circles) condition of Task 2 involved two visual-manual stimulus-
response (S-R) pairs; the hard (triangles) condition involved eight vi-
sual-manual S-R pairs. Unfilled circles and triangles represent corre-
sponding mean Task 1 RTs, which always involved two auditory-manual
S-R pairs. Each mean RT has a standard error of approximately 10 ms.
For Task 2, the interaction between effects of stimulus onset asynchrony
(SOA) and response-selection difficulty on mean RTs was reliable (p
< .01). There were no such effects on mean Task 1 RTs.

were much slower on average in the condition with eight S-R
pairs than in the condition with two S-R pairs (see Figure 17,
filled circles vs. filled triangles; the mean difficulty effect was
about 200 ms at the longest SOA). This temporally localized
difficulty effect was reliable compared with Task 2 RTs' standard
errors of the mean, which equaled about 10 ms on average. At
the shorter (less than 200-ms) SOAs, however, the number of
S-R pairs affected the Task 2 RTs much less (only about 35
ms). Thus, overall, a substantial interaction was present between
the effects of SOA and response-selection difficulty on mean
Task 2 RTs in the Hawkins et al. (1979) PRP study with an
auditory-manual Task 1. This interaction replicates and extends
results reported by Karlin and Kestenbaum (1968; see Figure
3). It also is consistent with the first family of theoretical PRP
curves that the SRD model can produce (see Figure ISA).

Theoretical implications. Given the benchmark results re-
ported by Hawkins et al. (1979), tests may be conducted to
assess how well various models account for participants' perfor-
mance under the PRP procedure. Pursuing this possibility, we
next present a computer simulation that applies a simple re-
sponse-selection bottleneck model in an attempt to fit the mean
RTs in Figure 17. A simulation with the SRD model then is
presented, showing that it actually fits the Hawkins et al. results
much better than does the bottleneck model.

Simulation With the Response-Selection Bottleneck
Model

To conduct simulations with the response-selection bottleneck
model, we followed the general protocol outlined previously.

This entailed three steps: (a) specifying a set of production
rules that can be used to perform the Hawkins et al. (1979)
auditory-manual Task 1; (b) specifying two additional rule sets
that can be used respectively to perform the Hawkins et al. easy
and difficult visual-manual Task 2; and (c) specifying a set
of executive production rules that emulate a response-selection
bottleneck while coordinating task performance as required by
the PRP procedure's standard instructions.

The executive production rules that we specified to emulate
the response-selection bottleneck model are straightforward. On
each simulation trial, they withhold the note "GOAL DO TASK 2"
from working memory until the Task 1 response has been se-
lected and its movement production is well under way. This
complete lockout scheduling precludes any temporal overlap
between the response-selection processes for Tasks 1 and 2, just
as the response-selection bottleneck model requires.

Using the executive and task production rules for the bottle-
neck model, we conducted a series of simulation trials under
conditions like those used in the PRP study by Hawkins et al.
(1979). Our simulation relied on the EPIC architecture. Subject
to constraints imposed by the bottleneck model's complete lock-
out scheduling, EPIC's context-dependent parameters were as-
signed numerical values that maximized the goodness of fit
between simulated mean RTs and the Hawkins et al. data.

Simulated mean RTs for the auditory-manual Task 1. Some
results from this simulation appear in Figure ISA. Here, we
have plotted empirical mean RIs (large circles and triangles on
solid curves) against simulated mean RTs (small circles and
triangles on dashed curves) produced by the response-selection
bottleneck model for the Hawkins et al. (1979) auditory-manual
Task 1. The obtained fit was good; its root mean squared error
(RMSE) did not exceed empirical Task 1 RIs' standard errors
of the mean (6 vs. 10 ms, respectively).

Simulated mean RTs for the visual-manual Task 2. In con-
trast, the bottleneck model produces a markedly poorer fit (R2

= .89) between the simulated and empirical mean Task 2 RTs
for the Hawkins et al. (1979) study. Figure 18B illustrates how
bad this fit is. Here, the model's RMSE is large compared with
empirical Task 2 RTs' standard errors of the mean (73 vs. 10
ms). Like Task 2 RTs' empirical means (large symbols on solid
curves), Task 2 RIfc' simulated means (small symbols on dashed
curves) exhibits both large PRP effects at short SOAs and a
large Task 2 response-selection difficulty effect at long SOAs.
However, there is also a large difficulty effect on the Task 2
RTs' simulated means at the shortest SOA, unlike what occurred
in Task 2 RTV empirical means. In essence, the response-selec-
tion bottleneck model fails to mimic the substantial interaction
that Hawkins et al. (1979) found between SOA and difficulty
effects on Task 2 RTs when Task 1 involves auditory-manual
reactions.

Theoretical implications. The inability of the bottleneck
model to account well for empirical mean Task 2 RTs stemmed
from its complete lockout scheduling of response selection. Be-
cause of such scheduling, response selection for Task 2 never
started until after Task 1 was essentially done, so the difficulty
of Task 2 response selection propagated forward to affect Task
2 RTs regardless of the SOA (see Figure 4). That this propaga-
tion did not occur in the Hawkins et al. (1979) study when Task
1 involved auditory-manual choice reactions raises the need for
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Figure 17. Results from Hawkins, Rodriguez, and Reicher's (1979)
study with the psychological refractory period procedure. Filled circles
and triangles represent mean Task 2 reaction times (RTs) obtained when
response selection in Task 2 was easy or hard, respectively. The easy
(circles) condition of Task 2 involved two visual-manual stimulus-
response (S-R) pairs; the hard (triangles) condition involved eight vi-
sual-manual S-R pairs. Unfilled circles and triangles represent corre-
sponding mean Task 1 RTs, which always involved two auditory-manual
S-R pairs. Each mean RT has a standard error of approximately 10 ms.
For Task 2, the interaction between effects of stimulus onset asynchrony
(SOA) and response-selection difficulty on mean RTs was reliable (p
< .01). There were no such effects on mean Task 1 RTs.

were much slower on average in the condition with eight S-R
pairs than in the condition with two S-R pairs (see Figure 17,
filled circles vs. filled triangles; the mean difficulty effect was
about 200 ms at the longest SOA). This temporally localized
difficulty effect was reliable compared with Task 2 RTs' standard
errors of the mean, which equaled about 10 ms on average. At
the shorter (less than 200-ms) SOAs, however, the number of
S-R pairs affected the Task 2 RTs much less (only about 35
ms). Thus, overall, a substantial interaction was present between
the effects of SOA and response-selection difficulty on mean
Task 2 RTs in the Hawkins et al. (1979) PRP study with an
auditory-manual Task 1. This interaction replicates and extends
results reported by Karlin and Kestenbaum (1968; see Figure
3). It also is consistent with the first family of theoretical PRP
curves that the SRD model can produce (see Figure ISA).

Theoretical implications. Given the benchmark results re-
ported by Hawkins et al. (1979), tests may be conducted to
assess how well various models account for participants' perfor-
mance under the PRP procedure. Pursuing this possibility, we
next present a computer simulation that applies a simple re-
sponse-selection bottleneck model in an attempt to fit the mean
RTs in Figure 17. A simulation with the SRD model then is
presented, showing that it actually fits the Hawkins et al. results
much better than does the bottleneck model.

Simulation With the Response-Selection Bottleneck
Model

To conduct simulations with the response-selection bottleneck
model, we followed the general protocol outlined previously.

This entailed three steps: (a) specifying a set of production
rules that can be used to perform the Hawkins et al. (1979)
auditory-manual Task 1; (b) specifying two additional rule sets
that can be used respectively to perform the Hawkins et al. easy
and difficult visual-manual Task 2; and (c) specifying a set
of executive production rules that emulate a response-selection
bottleneck while coordinating task performance as required by
the PRP procedure's standard instructions.

The executive production rules that we specified to emulate
the response-selection bottleneck model are straightforward. On
each simulation trial, they withhold the note "GOAL DO TASK 2"
from working memory until the Task 1 response has been se-
lected and its movement production is well under way. This
complete lockout scheduling precludes any temporal overlap
between the response-selection processes for Tasks 1 and 2, just
as the response-selection bottleneck model requires.

Using the executive and task production rules for the bottle-
neck model, we conducted a series of simulation trials under
conditions like those used in the PRP study by Hawkins et al.
(1979). Our simulation relied on the EPIC architecture. Subject
to constraints imposed by the bottleneck model's complete lock-
out scheduling, EPIC's context-dependent parameters were as-
signed numerical values that maximized the goodness of fit
between simulated mean RTs and the Hawkins et al. data.

Simulated mean RTs for the auditory-manual Task 1. Some
results from this simulation appear in Figure ISA. Here, we
have plotted empirical mean RIs (large circles and triangles on
solid curves) against simulated mean RTs (small circles and
triangles on dashed curves) produced by the response-selection
bottleneck model for the Hawkins et al. (1979) auditory-manual
Task 1. The obtained fit was good; its root mean squared error
(RMSE) did not exceed empirical Task 1 RIs' standard errors
of the mean (6 vs. 10 ms, respectively).

Simulated mean RTs for the visual-manual Task 2. In con-
trast, the bottleneck model produces a markedly poorer fit (R2

= .89) between the simulated and empirical mean Task 2 RTs
for the Hawkins et al. (1979) study. Figure 18B illustrates how
bad this fit is. Here, the model's RMSE is large compared with
empirical Task 2 RTs' standard errors of the mean (73 vs. 10
ms). Like Task 2 RTs' empirical means (large symbols on solid
curves), Task 2 RIfc' simulated means (small symbols on dashed
curves) exhibits both large PRP effects at short SOAs and a
large Task 2 response-selection difficulty effect at long SOAs.
However, there is also a large difficulty effect on the Task 2
RTs' simulated means at the shortest SOA, unlike what occurred
in Task 2 RTV empirical means. In essence, the response-selec-
tion bottleneck model fails to mimic the substantial interaction
that Hawkins et al. (1979) found between SOA and difficulty
effects on Task 2 RTs when Task 1 involves auditory-manual
reactions.

Theoretical implications. The inability of the bottleneck
model to account well for empirical mean Task 2 RTs stemmed
from its complete lockout scheduling of response selection. Be-
cause of such scheduling, response selection for Task 2 never
started until after Task 1 was essentially done, so the difficulty
of Task 2 response selection propagated forward to affect Task
2 RTs regardless of the SOA (see Figure 4). That this propaga-
tion did not occur in the Hawkins et al. (1979) study when Task
1 involved auditory-manual choice reactions raises the need for
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Figure 17. Results from Hawkins, Rodriguez, and Reicher's (1979)
study with the psychological refractory period procedure. Filled circles
and triangles represent mean Task 2 reaction times (RTs) obtained when
response selection in Task 2 was easy or hard, respectively. The easy
(circles) condition of Task 2 involved two visual-manual stimulus-
response (S-R) pairs; the hard (triangles) condition involved eight vi-
sual-manual S-R pairs. Unfilled circles and triangles represent corre-
sponding mean Task 1 RTs, which always involved two auditory-manual
S-R pairs. Each mean RT has a standard error of approximately 10 ms.
For Task 2, the interaction between effects of stimulus onset asynchrony
(SOA) and response-selection difficulty on mean RTs was reliable (p
< .01). There were no such effects on mean Task 1 RTs.

were much slower on average in the condition with eight S-R
pairs than in the condition with two S-R pairs (see Figure 17,
filled circles vs. filled triangles; the mean difficulty effect was
about 200 ms at the longest SOA). This temporally localized
difficulty effect was reliable compared with Task 2 RTs' standard
errors of the mean, which equaled about 10 ms on average. At
the shorter (less than 200-ms) SOAs, however, the number of
S-R pairs affected the Task 2 RTs much less (only about 35
ms). Thus, overall, a substantial interaction was present between
the effects of SOA and response-selection difficulty on mean
Task 2 RTs in the Hawkins et al. (1979) PRP study with an
auditory-manual Task 1. This interaction replicates and extends
results reported by Karlin and Kestenbaum (1968; see Figure
3). It also is consistent with the first family of theoretical PRP
curves that the SRD model can produce (see Figure ISA).

Theoretical implications. Given the benchmark results re-
ported by Hawkins et al. (1979), tests may be conducted to
assess how well various models account for participants' perfor-
mance under the PRP procedure. Pursuing this possibility, we
next present a computer simulation that applies a simple re-
sponse-selection bottleneck model in an attempt to fit the mean
RTs in Figure 17. A simulation with the SRD model then is
presented, showing that it actually fits the Hawkins et al. results
much better than does the bottleneck model.

Simulation With the Response-Selection Bottleneck
Model

To conduct simulations with the response-selection bottleneck
model, we followed the general protocol outlined previously.

This entailed three steps: (a) specifying a set of production
rules that can be used to perform the Hawkins et al. (1979)
auditory-manual Task 1; (b) specifying two additional rule sets
that can be used respectively to perform the Hawkins et al. easy
and difficult visual-manual Task 2; and (c) specifying a set
of executive production rules that emulate a response-selection
bottleneck while coordinating task performance as required by
the PRP procedure's standard instructions.

The executive production rules that we specified to emulate
the response-selection bottleneck model are straightforward. On
each simulation trial, they withhold the note "GOAL DO TASK 2"
from working memory until the Task 1 response has been se-
lected and its movement production is well under way. This
complete lockout scheduling precludes any temporal overlap
between the response-selection processes for Tasks 1 and 2, just
as the response-selection bottleneck model requires.

Using the executive and task production rules for the bottle-
neck model, we conducted a series of simulation trials under
conditions like those used in the PRP study by Hawkins et al.
(1979). Our simulation relied on the EPIC architecture. Subject
to constraints imposed by the bottleneck model's complete lock-
out scheduling, EPIC's context-dependent parameters were as-
signed numerical values that maximized the goodness of fit
between simulated mean RTs and the Hawkins et al. data.

Simulated mean RTs for the auditory-manual Task 1. Some
results from this simulation appear in Figure ISA. Here, we
have plotted empirical mean RIs (large circles and triangles on
solid curves) against simulated mean RTs (small circles and
triangles on dashed curves) produced by the response-selection
bottleneck model for the Hawkins et al. (1979) auditory-manual
Task 1. The obtained fit was good; its root mean squared error
(RMSE) did not exceed empirical Task 1 RIs' standard errors
of the mean (6 vs. 10 ms, respectively).

Simulated mean RTs for the visual-manual Task 2. In con-
trast, the bottleneck model produces a markedly poorer fit (R2

= .89) between the simulated and empirical mean Task 2 RTs
for the Hawkins et al. (1979) study. Figure 18B illustrates how
bad this fit is. Here, the model's RMSE is large compared with
empirical Task 2 RTs' standard errors of the mean (73 vs. 10
ms). Like Task 2 RTs' empirical means (large symbols on solid
curves), Task 2 RIfc' simulated means (small symbols on dashed
curves) exhibits both large PRP effects at short SOAs and a
large Task 2 response-selection difficulty effect at long SOAs.
However, there is also a large difficulty effect on the Task 2
RTs' simulated means at the shortest SOA, unlike what occurred
in Task 2 RTV empirical means. In essence, the response-selec-
tion bottleneck model fails to mimic the substantial interaction
that Hawkins et al. (1979) found between SOA and difficulty
effects on Task 2 RTs when Task 1 involves auditory-manual
reactions.

Theoretical implications. The inability of the bottleneck
model to account well for empirical mean Task 2 RTs stemmed
from its complete lockout scheduling of response selection. Be-
cause of such scheduling, response selection for Task 2 never
started until after Task 1 was essentially done, so the difficulty
of Task 2 response selection propagated forward to affect Task
2 RTs regardless of the SOA (see Figure 4). That this propaga-
tion did not occur in the Hawkins et al. (1979) study when Task
1 involved auditory-manual choice reactions raises the need for
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Figure 17. Results from Hawkins, Rodriguez, and Reicher's (1979)
study with the psychological refractory period procedure. Filled circles
and triangles represent mean Task 2 reaction times (RTs) obtained when
response selection in Task 2 was easy or hard, respectively. The easy
(circles) condition of Task 2 involved two visual-manual stimulus-
response (S-R) pairs; the hard (triangles) condition involved eight vi-
sual-manual S-R pairs. Unfilled circles and triangles represent corre-
sponding mean Task 1 RTs, which always involved two auditory-manual
S-R pairs. Each mean RT has a standard error of approximately 10 ms.
For Task 2, the interaction between effects of stimulus onset asynchrony
(SOA) and response-selection difficulty on mean RTs was reliable (p
< .01). There were no such effects on mean Task 1 RTs.

were much slower on average in the condition with eight S-R
pairs than in the condition with two S-R pairs (see Figure 17,
filled circles vs. filled triangles; the mean difficulty effect was
about 200 ms at the longest SOA). This temporally localized
difficulty effect was reliable compared with Task 2 RTs' standard
errors of the mean, which equaled about 10 ms on average. At
the shorter (less than 200-ms) SOAs, however, the number of
S-R pairs affected the Task 2 RTs much less (only about 35
ms). Thus, overall, a substantial interaction was present between
the effects of SOA and response-selection difficulty on mean
Task 2 RTs in the Hawkins et al. (1979) PRP study with an
auditory-manual Task 1. This interaction replicates and extends
results reported by Karlin and Kestenbaum (1968; see Figure
3). It also is consistent with the first family of theoretical PRP
curves that the SRD model can produce (see Figure ISA).

Theoretical implications. Given the benchmark results re-
ported by Hawkins et al. (1979), tests may be conducted to
assess how well various models account for participants' perfor-
mance under the PRP procedure. Pursuing this possibility, we
next present a computer simulation that applies a simple re-
sponse-selection bottleneck model in an attempt to fit the mean
RTs in Figure 17. A simulation with the SRD model then is
presented, showing that it actually fits the Hawkins et al. results
much better than does the bottleneck model.

Simulation With the Response-Selection Bottleneck
Model

To conduct simulations with the response-selection bottleneck
model, we followed the general protocol outlined previously.

This entailed three steps: (a) specifying a set of production
rules that can be used to perform the Hawkins et al. (1979)
auditory-manual Task 1; (b) specifying two additional rule sets
that can be used respectively to perform the Hawkins et al. easy
and difficult visual-manual Task 2; and (c) specifying a set
of executive production rules that emulate a response-selection
bottleneck while coordinating task performance as required by
the PRP procedure's standard instructions.

The executive production rules that we specified to emulate
the response-selection bottleneck model are straightforward. On
each simulation trial, they withhold the note "GOAL DO TASK 2"
from working memory until the Task 1 response has been se-
lected and its movement production is well under way. This
complete lockout scheduling precludes any temporal overlap
between the response-selection processes for Tasks 1 and 2, just
as the response-selection bottleneck model requires.

Using the executive and task production rules for the bottle-
neck model, we conducted a series of simulation trials under
conditions like those used in the PRP study by Hawkins et al.
(1979). Our simulation relied on the EPIC architecture. Subject
to constraints imposed by the bottleneck model's complete lock-
out scheduling, EPIC's context-dependent parameters were as-
signed numerical values that maximized the goodness of fit
between simulated mean RTs and the Hawkins et al. data.

Simulated mean RTs for the auditory-manual Task 1. Some
results from this simulation appear in Figure ISA. Here, we
have plotted empirical mean RIs (large circles and triangles on
solid curves) against simulated mean RTs (small circles and
triangles on dashed curves) produced by the response-selection
bottleneck model for the Hawkins et al. (1979) auditory-manual
Task 1. The obtained fit was good; its root mean squared error
(RMSE) did not exceed empirical Task 1 RIs' standard errors
of the mean (6 vs. 10 ms, respectively).

Simulated mean RTs for the visual-manual Task 2. In con-
trast, the bottleneck model produces a markedly poorer fit (R2

= .89) between the simulated and empirical mean Task 2 RTs
for the Hawkins et al. (1979) study. Figure 18B illustrates how
bad this fit is. Here, the model's RMSE is large compared with
empirical Task 2 RTs' standard errors of the mean (73 vs. 10
ms). Like Task 2 RTs' empirical means (large symbols on solid
curves), Task 2 RIfc' simulated means (small symbols on dashed
curves) exhibits both large PRP effects at short SOAs and a
large Task 2 response-selection difficulty effect at long SOAs.
However, there is also a large difficulty effect on the Task 2
RTs' simulated means at the shortest SOA, unlike what occurred
in Task 2 RTV empirical means. In essence, the response-selec-
tion bottleneck model fails to mimic the substantial interaction
that Hawkins et al. (1979) found between SOA and difficulty
effects on Task 2 RTs when Task 1 involves auditory-manual
reactions.

Theoretical implications. The inability of the bottleneck
model to account well for empirical mean Task 2 RTs stemmed
from its complete lockout scheduling of response selection. Be-
cause of such scheduling, response selection for Task 2 never
started until after Task 1 was essentially done, so the difficulty
of Task 2 response selection propagated forward to affect Task
2 RTs regardless of the SOA (see Figure 4). That this propaga-
tion did not occur in the Hawkins et al. (1979) study when Task
1 involved auditory-manual choice reactions raises the need for



stimulus-response combination, and the third experiment uses a visual-manual combination.  As 

can be seen in the graph, the RTs of Task 2 show very different patterns across the experiments.  

The two curves (solid lines, solid symbols) of the Task 2 diverge in panel (A), but are almost 

parallel in panel (B) and (C).  Such patterns have all been captured by the models.  As can be 

seen in the graph, the predicted RTs closely followed the empirical data points in all three 

experiments for both Task 1 and Task 2.  All models have yielded a very good fit, with most R2 

greater1 than .95.

Several ACT-R models were also developed to explain the PRP effects (Anderson, Taatgen, & 

Byrne, 2005; Byrne & Anderson, 2001), and they have achieved a similar success.  The ACT-R 

architecture has incorporated EPIC’s motor programming framework, but ACT-R features a 

central cognitive bottleneck—only one production rule can fire during a cognitive cycle.  

However, the cognitive bottleneck had a very weak influence on the predictions of the PRP task 

performance, because the ACT-R models all assumed a short response selection process (50 to 

100 ms, compared to EPIC models’ 100 to 250 ms).  Although the ACT-R models brought back 

some controversies to the issue of the cognitive bottleneck, they also confirmed that the 

assumption of the movement-production bottleneck is necessary (Howes, Lewis, & Vera, 2009).

Through computational modeling, researchers found strong support for the MPB hypothesis and 

have reconciled the seeming inconsistencies in the PRP empirical data.  The computational 

models showed that even procedures as simple as PRP experiments may involve complex 
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interactions that cannot be examined through simple flowcharts and qualitative estimations.  

Subtle changes in the experimental design can impact the results and only quantitative modeling 

can take into account these effects.  Cognitive architectures have substantially eased the effort 

needed for quantitative modeling, because they take care of many basic human performance 

characteristics so that a modeler can consider the task on a higher level of abstraction such as 

task strategies.

In sum, the above discussion show EPIC and ACT-R have accounted for the major invariable 

factors that impact multitasking performance at various processing stages and modalities.  Their 

implementation is largely consistent with the multiple resource theory.  When the empirical 

findings are not conclusive, the two architectures have made reasonable assumptions that were 

validated by modeling laboratory tasks such as the PRP experiments.  These models also 

demonstrate the advantages of computational modeling:  It enables researchers to represent any 

detail of the experiment and to make quantitative predictions about the tasks, which in turn can 

be used to validate researchers’ theoretical assumptions.

The invariable factors are just one aspect of the multitasking performance.  The strategies with 

which the users carry out the tasks can also greatly shape the performance.
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The Role of Strategic Control

Early theories regarding human multitasking believe that people adjust their performance 

through resource allocation.  For example, the analysis of performance resource function 

(Norman & Bobrow, 1976) investigates the amount of resource invested in each task to 

determine the likelihood of interference.  However, these early theories were developed based on 

the concept of a universal, homogeneous resource (unitary-resource theory) instead of the 

structural, heterogenous resources assumed by the multiple resource theories.  Because the 

unitary-resource theories have already been replaced by the multiple resource theory, a new 

explanation of strategy control should be based on the control of concrete, structural factors that 

are embraced by the multiple resource theory.

Recently, more and more studies show that strategies that interleave tasks dictate performance 

(Brumby, Salvucci, & Howes 2009; Meyer & Kieras, 1997a, 1997b; Monsell, 2003).  These 

strategies include decisions about when and how to switch tasks.  In a PRP study, Schumacher et 

al. (2001) showed that just by instructing the participants to take a “daring” strategy to execute 

Task 2’s response as soon as possible, the SOA effect could be reduced and even eliminated for 

some participants.  Different task-interleaving strategies can dramatically change the 

performance.

The production system used by most cognitive architectures are particularly suitable for studying 

strategies.  This approach was first used as a formal method to describe humans’ problem solving 
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processes by Newell and Simon (1972).  A production rule is a condition-action statement.  

During each cognitive-processor cycle, which typically lasts a simulated period of 50 ms for 

most cognitive architectures, every production rule’s conditions are tested to determine if they 

match the content in the working memory (or buffers in the case of ACT-R).  If a rule’s 

conditions are matched, the actions of the rule are then executed.  Although building cognitive 

models in production rules is sometimes not as convenient as building models in general 

programming languages, a production system appropriately characterizes the human decision 

process as a collection of low-level stimulus-response (if-then) pairs.  The cognitive processor’s 

cycle time is set to 50 ms, appropriate for the scale of the processing that is simulated (Newell, 

1994).

The rest of the section focuses on strategies in the context of cognitive modeling.  The ability to 

precisely specify strategies in a formal language has greatly advanced the research of strategic 

control.

Executive processes

In cognitive modeling, executive processes are the strategies responsible for interleaving tasks.  

In ACT-R, the executive processes are usually embedded in task processes.  For example, a 

production rule that executes a response for one task might directly prompt the preparation for 

another task.  ACT-R models use this schema because the architecture can only execute one rule 

within a cycle, and managing task transitions with multiple rules would likely inflate the 

predicted task-completion time.  By contrast, the executive rules in EPIC are often decoupled 
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from the task rules because the communication cost between executive and task processes can be 

absorbed by the parallel execution of the rules.  This decoupling gives EPIC the opportunity to 

closely study the executive processes.

Kieras, Meyer, Ballas and Lauber (2000) identified three typical types of laboratory multitasking 

scenarios, each of which requires the executive processes to manage and coordinate resources in 

different ways to achieve good task performance.

The first multitasking scenario identified by Kieras et al. consists of two discrete tasks performed 

in succession.  This procedure, also known as task switching, requires participants to perform 

basic choice-reaction tasks with the same sets of stimuli and responses, but with different 

Stimulus-Response (S-R) mappings across blocks.  A common effect observed in these studies is 

that changing S-R mappings increases RTs for the initial trials of a block, presumably because of 

the need to activate a new set of mappings.  With EPIC, Kieras et al. built a cognitive model to 

account for the task-switching costs observed in their experiment.  The costs are primarily 

predicted by an executive process which cleans up working memory and sets up S-R mappings 

for the next block of trials.  This account was further elaborated by Altmann and Gray (2008), 

who constructed an ACT-R model to show that the task-switching costs can be explained by the 

architecture’s memory activation processes.  These processes were required to switch from an 

already established set of S-R mappings to another set of mappings from block to block.  This 

type of executive processing is potentially very useful to model the impact of inconsistent user 

interface designs such as using non-standard GUI elements.
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The second multitasking scenario identified by Kieras et al. involves two discrete tasks 

performed in parallel.  A good example of this type of task is the PRP paradigm.  As discussed 

earlier, Meyer and Kieras (1997a, 1997b) modeled several PRP tasks with the assumption of a 

movement-production bottleneck and a strategy that ensures Task 1 finishes before Task 2.  The 

strategy does so by caching the response for Task 2 and then retrieving and executing the 

response later when Task 2 is unlocked.  Kieras et al. considered the ability to cache responses as 

the main function of the executive process for the discrete concurrent tasks scenario.

The third multitasking scenario discussed in Kieras et al. (ibid) involves one or more continuous 

tasks.  The continuous tasks can cause many resource conflicts because of the tasks’ constant 

demands on perceptual-motor resources.  One commonly-used laboratory continuous task is the 

tracking task (e.g., Martin-Emerson & Wickens, 1997; Kieras & Meyer, 2000).  To reach a very 

good performance level on this task, participants need to constantly monitor the tracking target 

and adjust the position of the tracking cursor.  When performed concurrently with other tasks that 

also require foveal vision and manual motor control, the tracking task is inevitably interrupted.  

For example, Wickens (1976) showed that when a tracking task was performed concurrently with 

a force-application task that required constant output from the manual motor, the tracking error 

increased by 29%.

To model multitasking scenarios that involve continuous tasks, Kieras et al. (ibid) constructed 

two types of executive processes, each of which manages task-interleaving in a distinct way.  The 
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first type of executive imposes a strictly sequential order between the continuous task and 

another task, whereas the second type of executive allows as much overlap between the tasks as 

possible.  Kieras et al. used these two executives to model Martin-Emerson and Wickens’ (1997) 

dual task.  As discussed in the code dimension section, this dual task consists of a tracking task 

and an arrow-discrimination task.  In the sequential-ordering model, the tracking task is 

immediately suspended when the arrow appears on the screen, and is resumed only after a 

response has been made to the arrow.  In the partial-overlap model, the tracking task is resumed 

at an earlier point in time, just when the visual information has been acquired from the arrow.  

Thus, the partial-overlap model can perform the tracking task while selecting and preparing the 

manual response for the arrow-discrimination task, which greatly reduces interruption to the 

tracking task.  The results of these two models show that the partial-overlap model fits the 

empirical data better than the sequential-ordering model, demonstrating that participants likely 

have used the overlapping strategy to enhance performance on both tasks.

While the above analysis suggested that it is possible to resolve resource conflicts by selecting 

efficient task interleaving strategies, the resulting executive processes were often tailored to 

individual experiments and could not be readily adapted to other tasks.  In addition, it is often 

difficult to build an executive to manage a continuous task because of the numerous ways in 

which a continuous task may interact with another task.  Thus, a general executive, a set of 

production rules that can manage a variety of tasks in different contexts, is desirable.
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Inspired by the way computer operating systems (OS) manage processes, Kieras et al. (ibid.) 

proposed two general executives, which were referred to as conservative general executive and 

liberal general executive.  The conservative general executive manages motor resources using a 

first-come first-serve algorithm.  It assumes that the task processes are “impolite” and grab 

resources without asking for the general executive’s permission.  Once a task acquires a resource, 

the executive simply blocks access to that resource.  If two tasks request the same resource 

simultaneously, the resource is granted to the one with a higher priority.  By contrast, the liberal 

general executive works with polite task processes.  A polite task process always requests the 

executive before using a resource and would not proceed until permission is granted.  This 

schema gives the general executive greater control because it allows the executive to actively 

suspend a low-priority task’s use of a resource and gives it to a high-priority task, increasing the 

efficiency of the high-priority task.  The general executives were tested by modeling Martin-

Emerson and Wickens’ (1997) dual task.  The results show that even without any task-specific 

knowledge, the models still fit the data reasonably well.  Particularly, the liberal general 

executive model’s predicted RT for the arrow-discrimination task had only 7.8% mean absolute 

error.  The executives could be improved further by adding some task-specific knowledge such 

as when to preallocate motor resources.  It is reasonable to assume that with practice, participants 

would become familiarized with the task structure and prepare for the upcoming task in advance.  

Thus, the general executives not only can serve as the basis for building a specialized executive, 

but are also potential candidates for modeling non-expert performance.
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Threaded cognition (Salvucci & Taatgen, 2008) is a general multitasking theory that has been 

used in some ACT-R models.  Threaded cognition is very similar to the above general executive 

approach in that it also assumes an OS style process management.  In this theory, task processes 

compete for resources in a greedy, polite manner.  That is, a task process requests resources as 

soon as possible when needed and releases them immediately when the resources are no longer 

required.  If a task process requests a resource that is already being used, this request is simply 

put on hold until the it is released.  If multiple task processes wait for the same resource, 

threaded cognition ensures that the process that has least recently used the resource will acquire 

the resource first.  This conflict resolution policy is certainly not the only way people interleave 

tasks, but it is a simple, preliminary solution for balancing processing among tasks.

To implement this conflict resolution policy, threaded cognition needs to be built into the ACT-R 

cognitive architecture.  This is different from the way general executives are implemented in 

EPIC, which are constructed as modularized production rules just like other task strategies.  

Although embedding threaded cognition into the architecture reduces the programming effort for 

other modelers, the implementation is less malleable and makes it hard to explore other task-

interleaving strategies.

 

The expressiveness of production rules has enabled a prolific exploration of executive processes, 

but this flexibility also exacerbates the problem of verifying the assumptions of strategies and 

cognitive architectures.  If analysts were allowed to arbitrarily make up strategies, they might 
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build models that overfit one set of data but lack real predictive power for a general class of 

tasks.  Methods that provide constraints and guidance for strategy exploration are thus required.

Constraining strategy exploration

When building cognitive models, analysts often need to conduct an extensive exploration in 

order to find a strategy that fits the observed data reasonably well.  Traditionally, a strategy 

exploration process involves three steps.  First, the analyst conducts task analysis and 

decomposes the task into many small steps.  Second, the analyst proposes strategies for 

accomplishing each step of the task, and implements the strategies in production rules.  Third, 

the analyst runs the model, and compares the model’s predictions with the observed data.  If the 

predictions do not fit, the analyst needs to go back to the second step, and propose different 

strategies that might improve the goodness of fit.

The above strategy exploration process has two problems.  First, this process is post-hoc, it needs 

empirical data to improve the model and the model’s predictive power.  As a result, the model 

might only make accurate predictions for a small range of tasks that require the same set of 

strategies as the original task.  Second, revising production rules introduces many degrees of 

freedom to cognitive modeling (Newell, 1994), generating numerous models that cover a large 

range of predictions.  Despite that the predictions may constitute a large space, researchers often 

choose to present one or two models that produce the best fit to the empirical data in order to 

show the success of the models or the validity of the architecture.  Without proper justification as 

to why certain strategies are chosen and other strategies are ruled out, such a practice would 
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reveal little useful information about the capacity of human information processing or about 

efficient user interface design.

Kieras and Meyer (2000) argued that instead of obsessively searching for the best-fitting model, 

useful information could be derived from the wide range of predictions that are outlined by just 

the fastest-possible and the slowest-reasonable strategies.  These two strategies are built on a 

base strategy that performs the task in a very straightforward way.  The slowest-reasonable 

strategy may include additional steps that represent some characteristics of novice performance 

such as always verifying the visual or auditory feedback given by the device.  By contrast, the 

fastest-possible strategy would fully exploit the capacity of the architecture and use every 

possible way to speed up the performance.  According to Kieras and Meyer’s bracketing 

heuristic, the actual performance should fall between the two extremes.  A designer can use this 

approach to determine what range of performance might be possible for a system, and then make 

design decisions early on.  For example, if the performance of the fastest-possible strategy is still 

slower than required, then the system design may be seriously flawed and should be improved 

even before conducting any user studies.

If the bracketing heuristic is applied to analyze microstrategies on the scale of few hundred 

milliseconds, it can also help identify the potential flaws in a system design.  Gray and Boehm-

Davis (2000) found that when a participant is motivated and given enough practice, he or she 

will adopt microstrategies that produce the optimal performance.  The authors showed that even 

for a task as simple as clicking and moving a mouse, the participants are able to change their 
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strategies at the millisecond level in response to the subtle changes of the task.  Gray and 

Boehm-Davis concluded that if users could not reach the optimal performance as predicted by 

the fastest-possible strategy, then perhaps some design flaws were preventing them from 

adopting the optimal strategy.  For example, the authors found that in a target-acquisition task 

that consisted of several unit tasks, the participants did not reach the predicted optimal 

performance for steps that required moving the cursor to a position at which the target of the next 

unit task would appear.  The authors concluded that the suboptimal performance resulted from a 

lack of clear indications in the UI about which unit task the participants were currently doing and 

which would be the next.  As a result, the participants could not know exactly where the next 

target would appear even after repetitive practice, and they had to adopt a slower strategy for this 

step.  When the bracketing heuristic is applied at the millisecond level, it is easier to infer which 

part of the task and UI is affecting the performance because there are many fewer factors to 

consider within a span of few hundred milliseconds.

One challenge of inferring the microstrategies used by participants is to collect behavioral data 

on the scale of tens to hundreds of milliseconds.  Such data could help reveal the immediate 

states of cognition, which in turn narrow the strategies that need to be explored.  Mouse 

movements, as shown above, provide one source of such data; another source is eye movement 

data because it has a high temporal resolution and it is closely related to visual attention.

In modeling a variation of the NRL dual task, Hornof and Zhang (2010) vividly demonstrated 

how eye movement data can be used to guide strategy exploration in a way that is much more 
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reliable than using reaction time data.  The authors’ initial model for the dual task used a 

hierarchical-sequential strategy, i.e. the model performs only one of the two tasks at any point in 

time.  Such a strategy is usually incorrect for predicting skilled multitasking performance 

because participants, if motivated, can easily find many opportunities to overlap two tasks (e.g. 

they could perceive the stimulus of one task while executing the response for another).  It turned 

out, however, this initial model fit the reaction time data very well.  But the authors did not stop 

there.  They examined the model’s goodness-of-fit to the eye movement data, and found that it 

was in fact far off from how participants performed the tasks:  The predictions were off the time-

course of the eye movement data by 91%.  Further examination of the eye movement data 

revealed that participants adopted a strategy that extensively overlaps the two tasks in order to 

reach high performance on both tasks.  The authors modified the strategy accordingly, and the 

resulting model’s average absolute error was reduced to only 10% for the eye movement data, 

and 7% for the reaction time data.  This synergy between cognitive modeling and eye tracking 

demonstrated by Hornof and Zhang provides a promising approach to analyzing and modeling 

multitasking performance.

Using behavioral data combined with the bracketing heuristic is just one way to constrain 

strategy exploration; other principled ways are still needed, especially for improving the 

effectiveness of predictive modeling.  The key to constraining strategy exploration without 

relying on behavioral data is to realize that people do not change their strategies haphazardly; 

instead, under many circumstances, they behave rationally and adapt their strategies to achieve 

certain goals.  In light of this, Howes et al. (2009) developed the cognitive bounded rational 
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(CBR) analysis to help constrain strategy exploration.  The CBR analysis assumes that people 

always try to maximize subjective expected utility—which is an individual’s judgement or 

instinct about the usefulness of an outcome—under the constraints imposed by the task 

environment and individuals’ perceptual-motor and cognitive capacities.  In the context of 

psychological experiments, maximizing expected utility of a task may involve maximizing 

monetary rewards or minimizing time cost.  In the context of real world tasks such as driving, 

maximizing expected utility tends to mean achieving the optimal balance among many goals, e.g. 

maintaining driving safety, maintaining social contact, and reducing commute time.

Under the assumption of cognitive bounded rationality, the model that gains the most utility—

given that the model and the participant have the same cognitive and perceptual-motor 

parameters—should adopt a similar strategy to what the participant would adopt.  Thus, it should 

be possible for analysts to find the correct model by maximizing the model’s utility rather than 

by fitting the performance data.  Howes et al. demonstrated this analysis by modeling 

Schumacher et al. (1999)’s PRP experiment.  Indeed, they found that strategies that maximize 

each individual’s payoff, as determined by the same payoff evaluation function used in the 

original experiment, also fit the reaction time data very well.  A similar finding was reported by 

Gray, Sims, Fu, and Schoelles (2006), who found that the strategies that minimize the time cost 

of a task accurately predict the observed performance.  These studies demonstrated that the CBR 

analysis is potentially a very effective approach for predictive modeling.  The main drawback of 

the CBR analysis, however, is that for some tasks, people might not be able to arrive at the best 
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strategies on their own (Fu & Gray, 2006).  Despite this limitation, the CBR analysis is a very 

valuable technique that greatly enhances the predictive power of cognitive modeling.

Before cognitive modeling, experimental psychology lacked an effective means to study the role 

of strategic control.  Researchers may have had some ideas about how participants accomplish a 

task, but there was no way to formally express these ideas and test them.  The production system 

adopted by most cognitive architectures changed this by providing a formal language to describe 

hypothesized task strategies.  Because the production rules also directly serve as the script for a 

model to execute a task, task strategies expressed in production systems can be tested via the 

model predictions.  This is a significant step towards understanding the role of strategic control, 

particularly for situations as complex as multitasking scenarios.  Though the expressiveness of 

production rules introduces many degrees of freedom to modeling, several methods were 

developed to constrain and guide exploration of the task strategies.  These methods also sparked 

new insights into issues of strategy selection such as skill acquisition and optimal strategic 

control.

Recently, cognitive modeling was applied to more practical areas such as driving.  The next 

section summarizes some major findings from studies on multitasking while driving, and 

discusses the contribution of cognitive modeling to this research area.
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Multitasking While Driving

Visual and Cognitive Interferences

Prior research has generally identified two types of tasks that impair driving performance: tasks 

that draw visual attention away from the road, and tasks that introduce heavy cognitive 

workload.  Although it seems that the visual and cognitive interferences introduced by these 

tasks were already predicted by the multiple resource theory, understanding how and when such 

interferences may occur would still require a detailed examination of the interactions in a driving 

task.

The two oft-studied driving tasks—hazard detection and maintaining lane position—may both be 

affected by in-vehicle tasks that require visual attention.  As predicted by the multiple resource 

theory, the visual interference between the in-vehicle task and the hazard detection task, such as 

responding to a sudden deceleration of a lead vehicle or detecting pedestrians on the roadway, 

can be mitigated by reducing the distance between the display of the in-vehicle device and the 

driver’s forward line of sight.  Thus, head-up displays (HUD) generally reduce hazard response 

time and increase hazard detection rates compared to head-down displays (HDD) (Horrey, 

Wickens, & Consalus, 2005).  The effect of display separation may be modeled by EPIC through 

its graded retinal availability function.  For example, the flashing brake lights may be set to be 

detectable only within the parafovea (7.5º), or within a fluctuating zone which gets larger as the 

brake lights get larger (cf. Kieras, 2010).  This way, if the model fixates a HDD, the hazard 

events may fall outside of their availably zones and would likely be missed.
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In-vehicle tasks may also impair the performance of maintaining lane position.  Unlike hazard 

detection, the impact of in-vehicle tasks on lane keeping cannot be mitigated by reducing the 

degree of display separation.  Horrey et al. (2005) found that when participants are allowed to 

freely scan between the display of the in-vehicle device and the roadway, both HUDs and HDDs 

increase the variability of the lane-keeping error by a similar amount.

Modeling the lane-keeping task and its interference with the in-vehicle task requires 

understanding the detailed mechanism of steering control.  Wilkie and Wann (2003) proposed a 

locomotion control theory which suggests that drivers use the retinal image of the moving pattern 

of the texture elements, also known as optic flow (Gibson, 1958), to maintain lane position and 

negotiate curves.  Locomotion control via optic flow was not a new concept.  It has been shown 

that blowflies use optic flow to achieve incredibly fast flight control (Bialek, Rieke, de Ruyter 

van Steveninck, & Warland, 1991).  As well, humans use optic flow to control walking (Warren, 

Kay, Zosh, Duchon, & Sahuc, 2001).  Although optic flow is acquired from peripheral vision, it 

requires the eyes to fixate a certain location in order to achieve the optimal locomotion control.  

Wilkie and Wann found that participants generally choose to look ahead 1 to 2.5 s and to “fixate 

a point close to the desired future path” (p. 683).  This strategy produces smaller steering error 

than looking at a fixed point or visually tracking the center of the roadway.  Their finding is also 

supported by Land and Lee (1994), who found that when negotiating curves, drivers generally 

look at the tangent point on the inside of each curve 1 to 2 s before entering it.
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Based on the above findings, Salvucci (2006) developed a steering control model under the 

ACT–R cognitive architecture.  This model assumes that the steering angle is computed based on 

the visual angles of two points: a near point and a far point.  The far point can be one of the three 

targets depending on the task condition: (a) the location at 2 s ahead, as suggested by Wilkie and 

Wann (2003); (b) the tangent point of the upcoming curve, as suggested by Land and Lee (1994); 

or (c) the lead vehicle.  The near point is set at a distance of 10 m from the vehicle.  The decision 

to take into account the near point is motivated by the results of Land and Horwood (1995), 

which showed that the near segment of the road needs to be visible for maintaining low error in 

lane position.  Salvucci (2006) showed that this two-point steering control model produces 

results that largely match the participants’ steering angle and lane position profiles for a curve 

negotiation task.  Despite its success, this model may have overestimated the time needed to 

complete one steering angle adjustment.  Due to the constraints of ACT-R, this steering control 

model needs to alternate visual attention between the far point and the near point.  In EPIC, 

however, the fixation to the near point would be unnecessary because optic flow at the near 

segment of the road can be perceived through peripheral vision while maintaining the gaze on 

the far point, which is also consistent with the eye tracking data acquired from Wilkie and Wann 

(2003) and Land and Lee (1994).

Although it is easy to see how the visual demands of in-vehicle tasks affect driving performance, 

the influence of their cognitive demands is less clear and requires more thoughtful experiments 

to investigate.  Many studies have shown that cognitively demanding tasks such as working 

memory tests, mental imagery rotation, and algorithmic tasks may increase lane departure and 
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drivers’ brake-response time (Alm & Nilsson, 1995; Horrey & Wickens, 2004; McKnight & 

McKnight, 1993; Recarte & Nunes, 2000).  Some real-world in-vehicle tasks such as talking on a 

cell phone also have similar interferences (Strayer & Drews, 2007; Strayer & Johnston, 2001).  

A few studies have suggested some possible mechanisms regarding how cognitive tasks may 

affect driving.  Recarte and Nunes’s (2000) study indicates that the mental imagery rotation task 

may cause the eyes to freeze, which in turn reduces the visual scanning behaviors and the 

likelihood to detect hazard situations.  Strayer and Drews (2007) conducted a series of 

experiments to show that cell phone conversation, while it may not alter the visual scanning 

behavior, can significantly reduce the recognition probability for the objects fixated during 

driving.  Strayer argued that it is this inattentional blindness effect, rather than the manual control 

of a cell phone, that primarily impairs driving performance.

Besides the empirical experiments shown above, some cognitive modeling studies also suggested 

a few alternative explanations for how cognitive workload may interfere with driving.  For 

instance, Salvucci and Beltowska (2008) built a model to account for the effects of a memory 

rehearsal task on lane-keeping and brake-response time.  This model uses threaded cognition to 

interleave the driving task process and the memory rehearsal task process.  As a result, much of 

the interference is accounted for by the central cognitive bottleneck.  That is, because the 

memory rehearsal task occupies many cognitive-processor cycles, the rules for steering and 

responding to brake lights are often postponed, thus increasing the lane-keeping error and brake 

response time.  However, this explanation is somewhat contradictory to the assumption of 

cognitive bounded rationality, because when facing resource conflicts, participants should have 

-48-



postponed the memory rehearsal task rather than the driving task since the latter is more 

important.  The authors’ model, however, does not account for this adaptation.  Another 

weakness of this model is that it relies on a controversial assumption, the central cognitive 

bottleneck.  It is relatively easy to attribute multitasking interference to a cognitive bottleneck 

because there is often no data to dispute such explanations.  But as shown in PRP research, the 

assumption of a cognitive bottleneck may prove to be gratuitous, and there might be other 

explanations that rely on better-established mechanisms.  For example, one alternative 

explanation is that memory rehearsal tasks may influence driving by deactivating driving related 

rules such as regularly checking potential hazards and lane deviations.

Strategic Adaptation in Driving

Despite the visual and cognitive interferences imposed by the in-vehicle tasks, drivers can still, 

to some degree, maintain their driving task performance by adopting good task-interleaving 

strategies.  One strategy that people often use is to limit the duration of each glance on the 

display of the in-vehicle device.  For example, Dingus, Hulse, Antin, & Wierwille (1989) found 

that in their experiments, when interacting with traditional in-vehicle devices such as 

speedometers and climate control gauges, drivers tended to limit their glance duration to 1.6 s.  

Tasks that took longer than this limit were completed by multiple glances with intermittent 

steering control to maintain a low steering error.  Klauer, Dingus, Neale, Sudweeks, and 

Ramsey’s (2006) report, in which the authors analyzed a large amount of data from 100 vehicles, 

also confirmed that eyes-off-road durations of greater than 2 seconds would significantly 

increase individual crash risk.  Tsimhoni and Green (2001) found that the limit of glance duration 
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decreases as visual demands of driving increase.  It appears as if drivers can develop a sense of 

how long the gaze may be safely directed away from the road depending on the driving 

conditions.  Nevertheless, Horrey et al. (2005) found that this self-monitoring strategy is not 

always reliable because the gaze duration sometimes exceeds the limit when the in-vehicle tasks 

become difficult.

The strategies adopted by drivers are often consistent with the basic assumptions of the cognitive 

bounded rational (CBR) analysis, i.e. people tend to select strategies that strike a good balance 

between optimizing performance of the driving task and the performance of other concurrent 

tasks.  For example, Antin, Dingus, Hulse, and Wierwille (1990) found that a moving map draws 

a driver’s gaze more often than does a paper map.  In their task, the drivers need to balance 

between the performance of navigation, i.e. finding the route, and the performance of driving.  

The participants apparently achieved a good balance in both the moving map and the paper map 

conditions:  When the cost of accessing the paper map is high, they chose to memorize the map 

in a few glances so that they can maintain relative good navigation and driving performance; 

when the cost of accessing the moving map is low, they chose to look at the map more frequently  

during driving to maintain low navigation error and short total task-completion time.  This 

shifting from using knowledge in-the-head to using knowledge in-the-world as the cost of 

information-access decreases is also predicted by soft constraints hypothesis (Gray et al., 2006), 

a theory that is in principle very similar to the CBR analysis.
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Another example of drivers adopting the optimal strategy in daily tasks can be found in phone 

number dialing while driving.  By conducting a CBR analysis, Brumby, Salvucci, and Howes 

(2009) showed that the most common strategy for dialing a ten-digit phone number, entering 

digits in chunks of 3-3-4, is indeed more efficient than chunking the digits in any other ways 

such as 2-2-2-3.  They found that if a driver steers the vehicle after dialing the first three digits 

and again after another three digits, it will strike a very good balance between lane position 

control and dialing speed.  Other strategies will either result in a much longer dialing time or 

larger lane deviation.

Most of the results from the above driving studies are consistent with the multitasking theories 

discussed in the previous section, and it is apparent that cognitive models offer insights into the 

complex nature of applied multitasking research.  Although there are so far only a few modeling 

studies on driving, they have already started to show some promising results.  Because of its 

abilities to integrate a variety of psychological theories and to produce quantitative predictions, 

cognitive modeling will likely be applied increasingly often in driving research and other applied 

psychological studies.
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Conclusions

This paper has shown how computational cognitive modeling integrates various theories of 

multitasking, enables extensive investigation on human strategic decisions, and contributes to 

advancing both theoretical cognitive science and applied human performance research.  By  

implementing the invariable sensorimotor and cognitive factors, and by pioneering the research 

of task strategies with a formal language, cognitive modeling has earned its indispensable 

position in multitasking research.

Compared to the multiple resource theory, cognitive modeling offers at least three major 

advantages in studying multitasking performance.  The first advantage is that cognitive modeling 

can fully account for the effects of subtle changes in the experimental design (e.g., the timing of 

stimulus appearance), which helps address some seeming inconsistencies among empirical 

observations.  Meyer and Kieras (1997a) have demonstrated that depending on the timing, 

location, and type of the stimulus of a PRP experiment, there are at least four distinct ways that 

the interactions of the two tasks could play out.  Many prior PRP experiments, however, only 

studied one of the four ways.  This inevitably led to contradictory conclusions.  With cognitive 

modeling, the dynamics of the tasks can be directly derived from the specified experimental 

condition and task strategies.  It is thus much easier for researchers to correctly and 

comprehensively deduce the implications and predictions from a computational simulation than 

from the mere textual descriptions of the theories and the experimental design.
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The second advantage of cognitive modeling over the multiple resource theory is that a 

comprehensively specified cognitive architecture enables researchers to study the cognitive 

system as a whole rather than each component individually.  Traditionally, a psychological study  

usually addresses only one phenomenon and deals with only one aspect of cognition.  As a result, 

cognitive science tends to postulate new cognitive constructs to account for effects that might 

actually be emergent properties of particular strategies (Gray, 2007).  Again, taking the PRP 

research as an example, previous cognitive psychologists only focused on the response selection 

stage and the movement production stage because the two bottleneck theories, response-selection 

bottleneck (RSB) and movement-production bottleneck (MPB), only have to do with these 

processing stages.  To reconcile the conflicting observations found in the PRP literature, a 

plethora of hypotheses were proposed such as Kahneman’s (1973) unitary resource model and 

De Jong’s (1993) hybrid-bottleneck model that consists of both the RSB and MPB.  None of 

these hypotheses, however, was very successful.  Meyer and Kieras’ (1997a) solution did not rely  

on new assumptions, but merely integrated the effects of the perceptual stage.  They showed that 

the stimulus perception time and even eye movements to the stimuli can impact the results.  

Thus, cognitive architectures make the properties of a whole cognitive system more tangible, and 

lead to more parsimonious theories.

The third advantage of cognitive modeling over the multiple resource theory is its ability to make 

quantitative predictions.  Traditionally, the progress of cognitive science involves comparing 

empirical results with a theory’s qualitative predictions.  Such qualitative predictions can either 

be about the patterns of the data, or about comparisons between similar experimental conditions 
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(e.g., which condition’s RT is longer).  Although this procedure of developing cognitive science 

is useful for examining simple phenomena, it has become increasingly insufficient for validating 

cognitive theories that do not have immediate behavioral consequences.  For example, it is 

difficult to validate the RSB theory through its qualitative prediction—the RT curves of the easy 

and hard Task 2 conditions are parallel.  Because this prediction not only depends on the 

cognitive state, but also depends on perceptual and motor processing as well as the interaction 

between the two tasks.  In other words, qualitative predictions of such theories are unstable.  

With cognitive modeling, however, quantitative predictions can be derived and there is no need 

for these predictions to have a prominent shape, because the data itself can be directly compared 

with the empirical results.  As psychological research advances deep into the cognition territory, 

perhaps more and more theories would require quantitative validations from computational 

cognitive models.

Currently, both EPIC and ACT-R have the necessary constructs to account for the majority of 

phenomena observed in multitasking studies, but there remain controversies and unanswered 

questions.  Consistent with many psychological theories, EPIC and ACT-R have separate 

perceptual, cognitive, and motor processors, which can operate in parallel without interfering 

with each other.  However, the two architectures sometimes hold different views regarding the 

specific mechanisms of the interferences within each processor.  For example, EPIC explains 

visual interference as the result of the limited size of the focal vision, whereas ACT-R explains it 

as the result of limited selective attention.  As well, ACT-R assumes that only one rule can be 

executed within a cognitive-processor cycle, whereas EPIC currently assumes no cognitive 
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bottleneck.  Each of these implementations has its own virtues and is perhaps more suitable for 

modeling some tasks than others.  Although combining different solutions (e.g., combining the 

degraded visual acuity function and selective visual attention) might be able to explain more 

data, it may also reduce the parsimony of the architectures.  Thus, more modeling studies are 

needed to resolve the differences between the two architectures and to reach a unified cognitive 

theory.

A good complementary approach to building better architectural modules is to constrain and 

validate strategies.  As discussed in this paper, exploring strategies to fit empirical data at the 

scale of several seconds would likely prove ineffective, because there might be many alternative 

strategies to fit the same set of data.  To address this problem, two methods were proposed: (a) 

fitting the model to empirical data of small timescales, and (b) developing strategies under 

certain principles such as the cognitive bounded rational analysis.  Both methods are very 

effective and their usage has led to important insights into human decision-making.  Therefore, 

instead of introducing more variability into theory validation, cognitive modeling in fact creates 

a unique opportunity for investigating the flexibility of human cognition.

Future research directions

As suggested by the CBR analysis, strategies can be shaped by altering the task utility, but 

people’s subjective estimate of a task’s utility may not match the task’s actual utility, which may 

lead them to select a suboptimal strategy.  In laboratory experiments, the utility or the importance 

of a task is often conveyed through a payoff schema designed by the researchers.  But in reality, 
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this objective measure is often unavailable.  Gray et al. (2006) showed that when not paid, 

people often adapt their strategies to minimize the time cost of a task.  This bias towards 

efficiency, if it also extends to real world tasks, may lead to people’s neglect of other important 

utility such as personal safety.  Future research can explore whether an objective task utility that 

appropriately incorporates safety, efficiency and many other factors can be conveyed through 

sensory stimuli such as visual indicators or buzzes.  If this is possible, they might have a variety 

of important applications such as helping drivers to maintain attention to driving safety.

Regarding the practical applications of multitasking theories, driving will likely continue to be an 

important research subject.  As discussed earlier, some modeling studies of driving have already 

revealed insights that had not been discovered by empirical studies, but these models only 

addressed a few aspects of the task.  For instance, these models often do not consider the hazard 

detection task.  To model the hazard detection task, EPIC is perhaps more suitable than ACT-R 

because EPIC allows parallel processing of the visual stimuli in the peripheral vision, whereas 

ACT-R has to take time to shift its visual attention to examine each stimulus.  Modeling driving 

also puts various multitasking theories such as threaded cognition to the test because driving 

imposes great demands on the cognitive and visual resources.  Thus, building computational 

models of driving will not only benefit user interface design of the in-vehicle devices, but will 

also greatly motivate theory development for cognitive modeling.

Allen Newell, a great scientist in computer science and cognitive psychology, once said: “You 

can’t play 20 questions with nature and win.” (Newell, 1973, p. 1).  He argued that to advance 

-56-



our understanding of psychology, we should not stick to the old way of examining one problem 

at a time.  Instead, we need a unified cognitive system (a cognitive architecture) and a complete 

process model (a production system), and we must analyze complex tasks.  During the last 

twenty years, his vision has gradually come true.  More researchers have begun to examine 

increasingly complex tasks with cognitive modeling.  This, however, is still just a beginning.  

One day, cognitive modeling will perhaps become a routine approach for developing 

psychological theories, and a tutor for designing efficient user interfaces.
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