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Abstract

In general, research related to text analysis assumes that the information con-
tained in text form, although ambiguous, is correct with respect to the domain
to which that text belongs to. This assumption comes in part from the fact that
text analysis has historically been done over scientific documents. As the trend
of taking text understanding to broader domains, such as Internet, we need to
consider the presence of incorrect text in our data set. By incorrect text, we
refer to a natural language text statement which is either false or contradicts
the knowledge of the domain.

We propose the use of Ontology-based Information Extraction (OBIE) to
identify incorrect statement in a text. OBIE, a subfield of Information Extrac-
tion (TE), uses the formal and explicit specification provided by an ontology
to guide the Information Extraction process. OBIE can capture the semantic
elements of the text through its IE component, and it can determine if these
semantics contradicts the domain through its ontology component, concluding
if the text is correct or incorrect.

In the present work, we review the most important topics of Ontology Incon-
sistency that can be relevant for the task of identifying and explaining incorrect
statements, and we also review of the most relevant Information Extraction
research. We believe that research in the detection of logic contradiction in
ontologies (i.e., Ontology Inconsistency) can provide us with useful insight into
identifying incorrect text and determining the specific elements (e.g., axioms)
that participate in the contradiction. On the other hand, research in Informa-
tion Extraction (and OBIE) can provide us awareness about the complexity of
the analysis that can be performed on the text, given the semantics that can be
extracted from it.
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1 Introduction

In general, research related to text analysis assumes that the information con-
tained in text form, although ambiguous, is correct with respect to the domain
to which that text belongs to. This assumption comes in part from the fact that
text analysis has historically been done over scientific documents [34 [66] [68], [69].
Since most of these analysis try to understand text through the discovery of re-
lationships between instances and concepts, it is reasonable to focus on reliable
data for the process. Under the previously described scenario, the incorpora-
tion of mechanisms to deal with incorrectness in text appear to be unnecessary.
However, the correctness of scientific documents cannot be guaranteed even in
the presence of peer reviewed research [46]. Furthermore, as the trend of taking
text understanding to broader domains, such as Internet [3] (17, [50], we need to
consider the presence of incorrect text in our data set. By incorrect text, we
refer to a natural language text statement which is either false or contradicts
the knowledge of the domain.

Most of current research regarding text correctness comes from the edu-
cational domain in the form of assistance tools that can provide automatic
evaluation over student writings. Summaries and essays provide an important
mechanism to judge a student’s understanding of a topic. Because they enhance
long-term retention of information [40], it is an ideal tool when compared with
other evaluation mechanisms (e.g., fill-in the blanks) [74]. However, automatic
understanding of written text such as summaries and essays is a complex task
given the underlying ambiguity of natural language. The advances in Natu-
ral Language Processing (NLP) have allowed major improvements in automatic
text grading, with several commercial applications [7, [24] 25| [83].

Three main approaches can be identified for automatic text grading. The
first approach is based on the identification of coincident words and n-grams.
It includes machine translation techniques [56] and n-gram co-occurrence meth-
ods [44]. N-gram co-occurrence methods have shown to be adequate for auto-
matic text grading, especially when evaluating characteristics such as the fluency
of the text. The second approach uses Natural Language Processing (NLP) tech-
niques, with the most popular being Latent Semantic Analysis (LSA) [24] 25].
LSA treats the text as a matrix of word frequencies and applies Singular Value
Decomposition (SVD) to the matrix to find an underlying semantic space. Based
on the distance between the vector representations of the student’s document
and a golden standard (i.e., correct document) in this semantic space, the sim-
ilarity of the documents is estimated, which can then be transformed into a
grade. LSA has shown to be quite accurate when compared with human grad-
ing. Finally, the third approach is based on Information Extraction (IE) 7} [51],
which intends to capture the underlying semantics of the text. Because auto-
matic text grading needs to determine the meaning (i.e., semantics) behind the
student’s writing, IE is a natural choice for analyzing text. It uses NLP tools
to identify relevant elements from the text, such as concepts, individuals and
relationships. These semantic elements can provide a structural representation
of the information in the text.



All of the previously mentioned methods share a common characteristic, they
do not have an effective way of determining what is incorrect in a text. Methods
such as n-gram co-occurrence and IE-based can identify specific elements in the
text from previously known patterns (e.g., n-gram methods) or expected domain
elements (e.g., IE regular expression patterns). So, in order to find incorrect
text, these methods would require a reference of incorrectness, such as text with
incorrect statements or incorrect facts of domain knowledge. However, because
the incorrectness of a statement can be originated by many different factors,
this reference of incorrectness would need to be very large to provide useful
coverage of content, which would be impractical. In the case of LSA-based
methods, because the correctness of the text is measure regarding its similarity
to a golden standard, determining if a text is incorrect is even more difficult. It is
possible to argue that a low similarity is an indication of incorrectness. Yet, even
a correct text can obtain a low similarity with respect to the golden standard,
if it is written in an unexpected fashion or contain more information [70].

Because we have defined incorrect text as a false or contradicting statement,
it is reasonable to consider logic as a mechanism to identify it. Through logic,
the truth value of a statement (i.e., if statement is true or false) can be deter-
mine from a set of facts. However, we need to know the truth value of these
facts in order verify if the statement from the text is false or not. So, the in-
formation contained in the statement itself is not sufficient to conclude if its
incorrect. Through logic, we can also determine if a statement is a contradic-
tion. Logic contradiction in text is studied by Contradiction Detection, which
tries to identify pairs of sentences that are very unlikely to be true at the same
time [I4]. Tt can uses syntactic and lexical elements from the text [14], or back-
ground statistical knowledge [60] to determine if a pair of sentences contradict
each other. However, with only information from the text itself to support the
validity of the pair of contradicting statements, Contradiction Detection cannot
determine with certainty which of the statements is false.

Domain knowledge can provide us with the required semantics to determine
if a text is false or a contradiction. An ideal formal model for representing the
semantics of domain knowledge is ontology, which is an explicit specification of a
conceptualization [27]. Tt represents knowledge through concepts, relationships
between concepts, and constraints. In Artificial Intelligence, ontologies can
represent domain knowledge in a formal model that permits logical reasoning.
By including the domain ontology in the analysis of a text, we can verify the
correctness of the content by determining its logical implication with respect to
the domain it belongs to. If a statement is a false logical consequence of the
domain knowledge, or if it is a logical contradiction of the domain knowledge,
we consider the statement to be incorrect.

However, because the ontology itself does not have the tools to actually
analyze text, we need a mechanism to capture the semantics of the text in
a logic friendly way. Some of the previously mentioned text analysis methods
produce mathematical representations of the text, such as spacial representation
(e.g., LSA), to study its content. On the other hand, IE transform the text into
a set of entities and relationships between entities, which can easily be mapped



into a logic based representation (i.e., ontology) in the form of logic azioms. This
connection has lead to the use of IE with ontologies in the research area known as
Ontology-based Information Extraction (OBIE) to identify incorrect statement
in a text. OBIE, a subfield of IE, uses the formal and explicit specification
provided by an ontology to guide the Information Extraction process [77].

We propose the use of OBIE to identify incorrect statement in a text. OBIE
can capture the semantic elements of the text through its IE component, and it
determine if these semantics contradicts the domain through its ontology com-
ponent, determining if the text is correct or incorrect. We call this approach
for identifying incorrect text Ontology-based Error Detection. We believe that
research in the detection of logic contradiction in ontologies (i.e., Ontology In-
consistency [35] [61]) can provide us with useful insight into identifying incorrect
text and determining the specific elements (e.g., axioms) that participate in
the contradiction. On the other hand, research in Information Extraction (and
OBIE) can provide us awareness about the complexity of the analysis that can
be performed on the text [4[79], given the semantics that can be extracted from
it.

The reset of the paper is organized as follows. In Section Pl we identify and
review the most important topics of Ontology Inconsistency that can be relevant
for the task of identifying and explaining incorrect statements. In Section Bl
we present a review of the most relevant Information Extraction research. In
Section Ml we offer possible solutions for different expected scenarios.

2  Ontology Inconsistency

In Artificial Intelligence, an ontology is an explicit specification of a conceptual-
ization [27]. This conceptualization provides a formal knowledge representation
through concepts from a domain, and relationships between these concepts.
The term ontology comes from philosophy, where it corresponds to the study
of existence or reality, and as Gruber points out “For knowledge-based sys-
tems, what exists is exactly that which can be represented” [27]. Through
concepts, individuals of these concepts, relations, and constraints, an ontology
provides a vocabulary and a model of the domain it represents. Because of this
domain model, it is possible to perform inference. In this work, we consider
Description Logic based ontologies, as those described through the Web Ontol-
ogy Language (OWL) [63]. OWL is the standard ontology language proposed
by the World Wide Web Consortium (W3C) [I]. Description logic (DL) is a
fragment of first-order logic that is decidable, and it has sound and complete
reasoners [31] 54 [71].

2.1 Description Logic

Description Logic (DL) is a family of logic languages that are used for formal
knowledge representation. Each DL language offers different expressivity. Some
DL can express only atomic negation while others allow hierarchies of relation-



ships (properties). The expressivity of a DL language is tightly connected to
the complexity of reasoning on it. In order to enable more efficient reasoning
services, DL languages have to trade off expressivity [8 [@]. This issue becomes
more significant when we consider that DL is the logical backbone for ontologi-
cal languages such as OWL, which is intended to provide formal representation
for large domains [36].

DL consists of an intentional part (i.e., terminology or TBox) and an ex-
tensional part (i.e., assertion or ABoz). The TBox has intentional knowledge,
as concept definitions, in the form of axioms. The axioms express how com-
plex concepts are built (e.g., through union or intersection of atomic concepts)
or the relationships between concepts (e.g., concept C is equivalent to concept
D). The ABoz has extensional knowledge which describes individuals, and it is
specific to a domain. The description of individuals correspond to the assertion
instances C(a) (or @ : C') which indicates that “instance a is a member of the
concept C.”

The semantics of the elements in the knowledge base is defined by an in-
terpretation (Z). The interpretation consists of a domain (A) and a mapping
function or interpretation(-Z). The function maps the axioms and assertions
of the knowledge base to the domain. An ontology is consistent if it has an
interpretation which satisfies all the ontological axioms. A concept is satisfiable
with respect to the ontology if there is an interpretation of the ontology that
maps the concept to the domain.

2.2 Inconsistency and Ontology

As stated by Haase and Volker [33], if there is a logical contradiction in an
ontology, the ontology becomes meaningless because any type of statement can
be derived from a set of logical axioms that contradict each other. This issue
makes the task of understanding and detecting inconsistencies in an ontology
vital for ontology dependent applications.

Flouris et al. [21] breaks down logical contradiction into inconsistency and
incoherency. An inconsistency occurs when an instance of either a class or of
a property contradicts an axiom of the ontology. More formally, an ontology is
inconsistent if an axiom of the ontology is unsatisfiable. For example, consider
an ontology with the disjoint concepts Professor and Student, and the instance
Student(Fernando). If we add the instance Professor(Fernando), the ontology
will become inconsistent because disjoint concepts cannot share individuals or
subconcepts. On the other hand, an incoherency occurs when an axiom of
the ontology contradicts another axiom. Formally, an ontology is incoherent if
there exists a concept that for any interpretation of the ontology, it leads to
false. Consider the previous example of the ontology with the disjoint concepts
Professor and Student. If we add to the ontology the concept GTF as a subclass
of both Student and Professor, the ontology becomes incoherent.

Flouris et al. [2I] notes that although these two type of logical contradictions
can occur independently, they are highly related. If adding an element to an
ontology keeps its consistency, then the ontology will maintain its coherency.



Because of this tight relation between the two types of contradictions, and
because it most clearly evokes the state of lack of consistency, most authors
define logical inconsistency of an ontology as the logical contradiction that does
not permit any valid interpretation of its axioms (i.e., unsatisfiability) [15] 32]
33| 135 37, [61], [62]. For this work, when referring to logical inconsistency, we
will be considering the most general definition (logical contradiction).

2.3 Change and Inconsistency

As ontologies grow in size and complexity, their development and maintenance
has led to interesting research problems, one of the most important being ontol-
ogy change [22]. Ontology change addresses the generic problem of modifying
an ontology to reflect changes in the domain of interest, to incorporate new
elements to the ontology, or to correct design flaws. Yet, modifying an ontology
can have both unexpected and undesired effects, such as the introduction of
logical inconsistencies.

In their survey, Flouris et al. [22] identifies 10 subfields in ontology change
that can be grouped into three main classes. The first group corresponds to
heterogeneity resolution, which intends to solve the differences between two or
more ontologies by creating mapping functions, discovering relationships be-
tween them, creating intermediary ontologies, or transforming their vocabu-
laries. The second group, which includes ontology evolution, debugging and
versioning, corresponds to the process of keeping or obtaining internal onto-
logical consistency, either through change, or in between versions. Finally, the
third group manages the combination of two or more ontologies into one from
domains with high (merging) or low (integration) overlapping. Since we are
interested in ontology inconsistency, we will focus on ontology evolution and
ontology debugging.

Both ontology evolution and ontology debugging deal with the presence of
inconsistency in an ontology. The difference is that in ontology evolution the in-
consistency comes from modifying or adding new information into the ontology
while in ontology debugging the inconsistency are already present in the ontol-
ogy. As pointed out by Flouris et al. [22], since both fields focus on ontology
contradiction, a solution to one of these problems should be applicable to the
other.

It must be mentioned that although ontology change might also affect syn-
tactical and application driven constraints of the ontology [5, [32], in the present
work we focus on logical inconsistency.

2.4 Dealing with Ontology Inconsistency

Haase et al. [32] have identified three main approaches when dealing with in-
consistency: preventing ontology inconsistency, fixing ontology inconsistency, or
reasoning with inconsistency.



2.4.1 Preventing Ontology Inconsistency

We would prefer that when changing some aspect of an ontology, it can oc-
cur without affecting the consistency of the ontology. However, because of the
nature of the underlying DL language, it is very likely that a modification of
the ontology can lead to an inconsistency. Ontology evolution [32] intends to
provide mechanisms to modify an ontology while keeping it consistent by man-
aging change operations. In the same way, but with focus on knowledge bases,
belief revision defines logical operators that perform consistent changes to the
knowledge base [13| 26]. In both cases, the change must be minimal.

When performing a modification to an ontology, a contradiction might rise
between the old information (in the ontology) and the new information (updated
or added axioms or instances). The consistency can be maintained by either
integrating into the ontology only the elements that do not conflict with it, or by
removing from the ontology the elements that contradict the added information.
Because ontology evolution intends to provide a general framework to manage
change, users can define policies for both situations. In the case of belief revision,
because most changes done to the knowledge bases take the form of updates,
the operators intend to keep consistency with most recent information, such as
Dalal revision operator [13].

In the first case, the consistency of the ontology is kept by integrating el-
ements that do not produce contradictions. Under this approach, Haase and
Stojanovic offer minimal inconsistent subontology for ontology evolution [32].
The method identifies this subontology by constructing an alternative ontology
from the axioms of the original one. The first axioms added to the alternative
ontology is the last axioms added to the original ontology. The following ax-
ioms that are selected must share an entity with any axiom in the alternative
ontology. This approach guarantees that the search of the minimal inconsistent
subontology occurs near the axiom that created the inconsistency (i.e., the last
axiom added into the ontology). The method terminates when an inconsistent
subontology is reached.

The second strategy for avoiding contradiction when modifying an ontology
is to remove older axioms that are inconsistent with the most recent addition of
the ontology. Following this strategy, Haase and Stojanovic propose a mazximal
consistent subontology to discover the origin of the inconsistency by removing
axioms of the ontology that are connected with the last axiom added to the
ontology [32]. On the other hand, Flouris et al. [2I] 23] have proposed an
adaptation of AGM theory into DL. Despite the shortcomings of not manag-
ing correctly all type of changes [41] and some triviality in how some changes
occur [I3], AGM theory is the dominant belief revision theory. This theory
establishes operators to add and remove consistently and coherently elements
from a knowledge base. However, AGM theory requires complex negation of
clauses, which is not a common feature of all description logic languages. In
order to overcome this limitation, Flouris et al. provide definitions for a con-
sistent negation and for a coherent negation [2I]. Although the negations do
not guarantee the minimality of the change, they do follow the intuition behind



AGM contraction operator.

There are two points that might be important to consider about the pre-
sented methods. First, although these consistent change mechanisms try to keep
as close as possible from the original ontology when performing modifications,
the minimality of the change cannot be guaranteed because of the implicit ef-
fects of change that might affect the ontology [I3] 21I]. And second, in general
the strategies of ontology evolution are mostly debugging techniques [32]. The
methods mostly correct the ontology in case an inconsistency is reached, but
they do not offer a consistent evolution of the ontology as offered by change
operators. The main reason seems to be that Haase and Stojanovic allow the
user to define the policies that must be followed to keep the consistency. Haase
and Stojanovic define the evolution of an ontology as managing consistently
change operations on the ontology. Their approach consists of an inconsistency
detection component and change generator component. The inconsistency de-
tection component determines if the ontology is inconsistent, and in the case it
is inconsistent, what subpart of it is causing the inconsistency.

2.4.2 Fixing Ontology Inconsistency

In the case of an ontology that is already inconsistent, we can try to identify
the origin of the inconsistency and determine a mechanism to correct the incon-
sistency. These two tasks are known as Ontology Debugging. In Section 2.5 we
will provide a more in depth analysis of this task.

2.4.3 Reasoning with Inconsistency

In some cases, an ontology with logical contradictions cannot be corrected be-
cause of the ambiguity of the domain represented, or because correcting the
ontology requires modifications that are not feasible. Although the ontology is
not consistent, we still want to provide services when possible, such as reason-
ing. The intuition is that if there is a subontology that is consistent, then we
can obtain correct answer from an inconsistent ontology.

Lembo et al. [43] propose inconsistency-tolerant semantics, where the TBoz
of the ontology is satisfiable, but the ABox is inconsistent. Lembo et al.
propose two semantics to manage inconsistency. The first semantic, named
AR-semantics, removes the minimal set of inconsistent instances. The second
semantic, named CAR-semantics, it applies AR-semantics to Herbrand Base
(grounding of all formulas) of the knowledge base. Since both AR-semantics
and CAR-semantics are intractable, sound approximations are offered. The
later work by Masotti et al. [48], offers an implementation of the approximation
of AR-semantics and CAR-semantics for the DL language DL — Lite 4, which
OWL2’s profile QL is based on. The implementation is an iterative algorithm
that uses some properties of the axioms to identify inconsistent elements in the
ontology. The experiments with different levels of inconsistency and different
sizes of knowledge base show that the AR-semantics approximation scales well
and it is not affected by the level of inconsistency. On the other hand, the CAR-



semantics approximation does not scale because of the computation required for
the Herbrand Base.

In a more general case, where contradictions can appear in any part of the
ontology, Huang et al. [37] and Liu et al. [45] propose the use of selection func-
tions to obtain consistent reasoning. Based on ideas from relevance reasoning
and paraconsistent reasoning, Huang et al. consider that an inconsistent rea-
soner is sound if a formula obtained from an inconsistent theory (ontology)
follows from a consistent subtheory using classical reasoning. Since classical
completeness is impossible in an inconsistent ontology, inconsistent reasoning
considers local completeness, which is the entailment of formulas from the con-
sistent subtheory. The inconsistent reasoner follows a consistent subset, which
is iteratively incremented by a selection function that looks into directly related
axioms that keep the consistency of the current sub theory. Liu et al. extend in-
consistent reasoning by considering the confidence of the reasoning process. By
associating a confidence value to each axiom (probabilistic logic), uncertainty is
modeled into the reasoning process [45]. In each iteration, when a new axiom is
added into the answer set, the confidence values are multiplied to produce the
confidence value of the set.

2.5 Ontology Debugging

The process of correcting an inconsistent ontology is called Ontology Debug-
ging [22]. Ontology Debugging has two main tasks: identifying the elements
from the ontology that are causing the inconsistency, and correcting the in-
consistency. In general, the first task of ontology debugging has become more
relevant because of the overall complexity of identifying the elements that are
causing the inconsistency while in most cases, the correction of the ontology can
be gained by removing the inconsistent elements from the ontology.

We can identify two main approaches to ontology debugging: logic-based
and non-logic based methods.

2.5.1 Logic-based methods

Logic based methods use properties of the underlying DL language to discover
the inconsistency in the ontology. Usually, the inconsistency will be caused by
a small part of the ontology. However, this small set can affect many different
parts of the ontology, leading to many explanations of inconsistency. Because of
this situation, ontology debugging solutions that focus on local clash of concepts
(i.e., inconsistency) can only provide limited results [55]. Based on the definition
of entailment justification by Kalyanpur et al. [39], Horridge et al. [35] identifies
two types of inconsistent subsets of the ontology. First, we have inconsistency
justification, which corresponds to an inconsistent subontology. The second is
an ontology repair, which is the minimal set of inconsistency justifications. This
minimal subset is called repair because, in essence, if it is removed from the
inconsistent ontology, the resulting ontology will be consistent.



In order to find the origin of the inconsistency in an ontology, we need to
first identify all the inconsistency justifications it contains. In the Schlobach
and Cornet [61] approach for debugging inconsistent ontologies with unfold-
able terminologies (atomic left-side defined acyclic axioms), for each unsatisfi-
able concept, they determine the minimal unsatisfiability-preserving sub- TBozes
(MUPS). The MUPS of a concept is the set of axioms that cause the concept to
be unsatisfiable. In their original work, Schlobach and Cornet [61] obtained the
MUPS of each concept through a modified ALC reasoner that inserted trace-
able labels in the axioms when performing consistency check. But because this
approach does not scale well to more expressive DL languages, Schlobach et
al. [62] offer an alternative mechanism to identify each concepts MUPS. Based
on Huang et al. [37] selection function for reasoning with inconsistent ontologies,
Schlobach et al. use an informed search to find concept-relevant axioms. The
set produced by the selection function is then pruned by removing axioms that
do not affect the unsatisfiability of the concepts MUPS.

In the case of Horridge et al. [35], the inconsistent subsets of the ontology
are obtained by a modified version of the single justification algorithm, from
the entailment justification method [39]. This algorithm identifies subsets of
the ontology that are inconsistent through the division of the ontology. The
intuition is that the cause of inconsistency will be in the inconsistent part of
the ontology, and not in the consistent part. It is important to note that it is
possible to remove accidentally the inconsistency when dividing the ontology.
To avoid missing an inconsistent subset, the modified single justification also
analyzes the recombination of the divided parts.

Once we have the set of inconsistency justifications, we need to determine the
repair of the ontology. In the case of Schlobach and Cornet approach, from the
MUPS the minimal incoherence-preserving sub-TBoxes (MIPS) are determined,
which are unsatisfiable sub-TBoxes that can become satisfiable if one atomic
concept is removed. Because each element of the MIPS set comes from some
MUPS, the MIPS set is contained in the union of all MUPS of the original
TBoz. Although the MIPS already identifies the minimal inconsistent set of
the ontology, Schlobach and Cornet offer an even more fine grained solution.
Because inconsistencies can be interpreted as the effect of overspecified concepts,
we can identify the actual concepts that are clashing by generalizing the axioms
of the MIPS. This new set is obtained by the generalized incoherence-preserving
terminology (GIT), where all elements in an axiom of the MIPS, which do not
affect its unsatisfiability, are removed.

On the other hand, Horridge et al. use the Hitting Set Tree algorithm [58]
to identify a repair in the inconsistent ontology from set of justifications of the
inconsistency. Reiter propose the Hitting Set Tree (HST) [58] as a form to
determinate the diagnosis of a faulty system. In a faulty system there can be
multiple reasons that explain the actual error (i.e., conflict sets). Yet in order
to correct or fix the system, it is necessary to identify the minimal conflict set
(diagnosis). Reiters HST finds the diagnosis by learning how the conflict sets
intersect. The HST algorithm iteratively searches or access the set of conflict
sets, and it constructs a tree where each node indicates a conflict set, and the
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edges indicate an element of the conflict set. The set formed by the labels on
the edges along a branch of the HST corresponds to one diagnosis. So, in the
case of ontology inconsistency, the HST can identify the repair of an inconsistent
ontology by constructing a tree with the inconsistent justifications.

Finally, it must be mentioned that although the two approaches previously
presented have an exponential complexity, in most cases they can provide an
answer in a reasonable amount of time. First of all, the exponential complexity
of these methods comes mainly from the fact that they do consistency check-
ing, which is a decidable but intractable problem. In the case of Schlobach
and Cornet approach, when they create the MUPS the algorithm does a consis-
tency check while labeling the axioms. In the case of Horridge et al., the simple
justification algorithm performs many consistency checks in order to identify a
justification. The HST algorithm includes a series of optimizations that intend
to reduce the amount of justifications needed to complete the HST and avoid
following non-interesting or repeated branches of the HST. However, experi-
mental results in both works have shown that it is possible to obtain reasonable
performance in most of the cases.

2.5.2 Non-logic methods

Two methods are presented that do not use the underlying logic as a main
mechanism to determine the origin of the inconsistency. Although based on
different approaches, the following methods can provide interesting insight into
regaining the consistency of an ontology.

As a consequence of their observations in teaching ontology construction,
Wang et al. [72] propose a heuristic approach to detect the cause of inconsis-
tency in an ontology. The method, which is based on common errors, first
identifies a minimal unsatisfiable core of the ontology. Then, the method tries
to identify global conditions that might create general conflicts. These gen-
eral conflicts propagate inconsistency through entailment or inheritance (i.e.,
properties passed through ISA relations between classes). By identifying these
general conflicts, it is possible to reduce the size of the unsatisfiable core since
any correction done to the general axioms (modification or removal) will affect
the entailed axioms.

In order to find the unsatisfiable core and the most general conflict set, the
authors define three categories of causes of unsatisfiability: local, propagated,
and global. Local unsatisfiability is the most easy to detect, and it is directly
produced by an individual or class not following a restriction. Propagated unsat-
isfiability can be produced by ancestor (e.g., subclass is unsatisfiability because
its superclass is unsatisfiable), or by fillers of existential restriction (the filler
is unsatisfiable). Global unsatisfiability are usually related to domain or range
constraints that are not met by some class. Wang et al. have defined around 15
rules to detect causes of unsatisfiability. The authors point out that although
the proposed method is not a complete solution (heuristic), it does cover a large
solution space. Because the rules are based on common situation observed di-
rectly by the authors, other more complex and specific unsatisfiability cases

11



might be missed by their proposed method.

On the other hand, Deng et al. [I5] proposed the use of the Shapley value,
which is a measure borrowed from game theory, to evaluate the level of incon-
sistency of an ontology. The Shapley value is a measurement from game theory
that estimates the contribution of an agent in a multi-agent coalition. It consid-
ers all possible formation of the coalition of agents, and it averages each agent’s
marginal contribution. Deng et al. propose to treat the set of inconsistent ax-
ioms as a coalition of agents. The Shapley value will indicate the contribution
of each axiom in the inconsistency of the ontology. The authors have defined
functions to give numeric values to inconsistent sets of axioms, so it can be plug
into the Shapley equation.

Because Shapley values take into account all possible combination of axioms
to obtain the marginal contribution, the complexity of the proposed approach
is exponential. The authors offer a method to avoid evaluating axioms that
are not related to the inconsistency problem. They define direct structurally
related axioms as axioms that share concept names and role names. A second
optimization method that is proposed considers establishing convergent subset,
which is the maximal inconsistent subset that need to have its value calculated.
Once a subset is convergent, no larger subset needs to be computed. Both
mechanisms provide upper bounds to the size of the subsets to be computed.

An interesting side effect of these two non-logic based methods is that they
provide an implicit correction mechanism. In contrast with logic-based debug-
ging mechanism, which can provide the minimal inconsistent subontology, the
non-logic based methods point out which axioms can be removed from the ontol-
ogy to regain consistency. In the case of Wang et al. heuristic method [72], when
the inconsistency rules detects a problem, it will point to an axiom that is caus-
ing the inconsistency. For Deng et al. game theory approach [15], since there is
a ranking of axioms that participate in the inconsistent subset of the ontology,
the axiom with the highest Shapley value is the most responsible axioms for the
inconsistency. Although these methods do not guarantee that consistency can
be gained by removing the highlighted axioms, they do offer a reasonable hint
in that direction.

3 Information Extraction

Information Extraction (IE) is the task of automatically acquiring knowledge
from natural language text. In the process of extracting, IE attempts to retrieve
specific elements from text such as concepts, relationships, or instances, and it
leaves out irrelevant information to reduce the complexity associated to the task.

The main goal behind IE is to transform unstructured information (i.e.,
text) into structure information (databases, knowledge bases). However, this
transformation of information is not a trivial process because of the inherent
ambiguity of natural language. A fact can be stated in many ways, and a
statement can have more that one interpretation. The complexity of extracting
information from text has kept IE from being more widely adopted, with most
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IE systems being implemented for specific domains.

In order to reduce the complexity of analyzing the text and identifying rel-
evant elements in it, information extraction is divided into subtasks. Some of
these tasks can be seen as steps that need to be fulfilled in order to perform
the following task [2], but in most cases each task can be carried out indepen-
dently [3, B0, [80]. Jurafsky and Martin [38] define the following Information
Extraction tasks:

e Named entity recognition: is the process of detecting and classifying
proper names. It usually consists in determining if a proper noun is the
name of a person, place, and organization. A more specialized version of
this task intends to identify names of genes and proteins [64].

e Coreference resolution: is the process of determining if the mention
of a same or similar name refer to the same entity, and it includes the
resolution of anaphoric references. This process is tightly related to name
entity recognition.

e Relationship extraction: is the process of discovering semantic rela-
tions between entities in the text. This process has become one of the most
researched sub areas of Information Extraction since it is fundamental for
other tasks such as ontology learning [47], knowledge base population [I0],
and semantic annotation [50].

e Event extraction: is the process of identifying events that are related to
the entities in the text. Similarly to entity recognition, there is a need for
coreference resolution since many actors can be participating in an event,
and the text can mention one or more events.

e Temporal analysis: is the process of determining what is the temporal
relations between events. This task intends to identify temporal elements,
such as date and time, that are related to events, and provide a resolution
mechanism that allows ordering of such events.

e Template filling: is the process of identifying documents that have in-
formation in a form that is shared by other documents (i.e., stereotypical)
which allows direct extraction of entities into templates.

As mentioned, in the present work we are interest in analyzing domain spe-
cific information that is present in the text, which can be mapped to an ontology.
This type of information mostly appears in the form of a relationship between
two concepts (property or subsumption relation) or between concept and indi-
vidual (membership). Because of this situation, we will mostly focus on systems
that do relationship extraction.

3.1 Ontology-based Information Extraction

Ontology-based Information Extraction (OBIE) is a subfield of IE, which uses
an ontology to guide the information extraction process. As presented in Sec-
tion 2] an ontology is defined as a formal and explicit specification of a shared
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conceptualization [27]. The concepts and relationships of this conceptualization
are represented through classes, properties, instances and other type of axioms.
This formal and explicit specification guides the extraction process in OBIE [77].

The presence of an ontology in the extraction process does not only provide
guidance in the sense of indicating the specific sentences that need to be looked
into; the ontology can also provide contextual or structural information that
can enhance the extraction process. A clear example is the use of the concepts
hierarchical structure to provide additional information to the extraction [30,
66]. If we know that the concept Killer Whale has type Dolphin, then we can use
information from Killer Whale (e.g., an extractor for this concept) to extract
objects related to Dolphin.

Ontologies in information extraction allows the possibility of Semantic An-
notation. Semantic Annotation is the process of adding meta-data information
that establishes relationships between unstructured data (text) and some entity
that provides context. Although an ontology is not strictly required for semantic
annotation, by annotating a text with ontological entities (formal annotation)
provides formalism and structure of the ontology to the text, which is the main
goal of the Semantic Web [53].

Even when the use of ontologies can improve the extraction process, it has
become more evident in recent years that systems that can be classified as OBIE
have been defined as information extraction systems by their authors. This trend
might reflect the current approach of extraction systems that can be applied of
open domains, such as the Internet. With that in mind, an ontology-based
information extraction system seem constrained and without the flexibility to
scale to the Web. However, we argue that any information extraction system
that focuses on the extraction of relations can be more or less integrated into
an ontology-based information extraction process.

3.2 Classification of Information Extraction

In their survey of Ontology-based Information Extraction, Wimalasuriya and
Dou [TT] offer classification of information extraction systems based on different
characteristics of the systems, such as the extraction methods used, if the system
constructs or updates the ontology, what type of components of the ontology
are extracted, and the source of the text that is used by the system. Yet,
current information extraction systems cannot be easily classified by any of
these features. If we consider the extraction mechanism, most systems use a
blend of techniques such as gazetteer list and linguistic features (part-of-speech,
dependency parse trees) in rule pattern [20, 49] or as feature of a machine
learning based extractor [30, 80]. Most approaches have focus on extracting
instances of concepts and relationship [3], they use available ontologies [30] and
knowledge bases [50], and the Internet is their corpus of analysis [20] 49| BT].
Because most recently IE systems are being applied over very large cor-
pus, such as Internet, a new characteristic has risen that allows to differentiate
between type of extraction systems: the amount of human intervention in the
preparation and deployment of the system. This factor has led to three strategies
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for IE: supervised, semi-supervised, and unsupervised. In some cases, a fourth
type of information extraction system has been proposed: self-supervised sys-
tems. In self supervised systems, the data set used for training the information
extractors is generated by the system itself. However, if we pay attention to
the mechanism of the system, it is possible to distinguish elements that will
classify it as either semi-supervised (e.g., Kylin [73]) system or unsupervised
(e.g., TextRunner [3])

In the following sections we provide more details about each of the strategies.

3.2.1 Supervised systems

Supervised information extraction systems, also known as closed or traditional
information extraction system [4], rely on labeled training sets and handcrafted
extraction patterns to produce high quality extraction from text. However,
because it is not possible to offer labeling to all instances and define patterns to
extract all the possible representations of a relationship, supervised systems tend
to have a limited coverage of possible extractions, and do not always perform
well on new data. Because of this limitation, supervised systems are mostly used
for domain specific extraction, such as OBIE [28| [30, 52]. Based on the type
of information extraction, there are two main strategies followed by supervised
systems [(7]: extraction rules and machine learning.

Extraction rules capture information by identifying specific syntactic and
lexical elements in text, such as keywords [52], part-of-speech labels or other
semantic/syntactic structures. In most cases, extraction rules are simple to de-
sign, and because they are handcrafted, extraction rules can be very accurate.
Although they can be define following regular expression, languages like Sys-
temT’s Annotation Query Language (AQL) [42] and GATE’s Java Annotation
Patterns Engine (JAPE) [11] have been created to specify extraction patterns.
These specially design languages allow the creation of complex extraction rules
through the manipulation of annotations. AQL includes a series of optimiza-
tions that can reduce significantly the execution time of an extraction when
compared to regular expressions based extraction rules [42], while JAPE can
directly execute Java code from the matching of a pattern [11].

On the other hand, machine learning methods such as classification methods
and probabilistic models try to identify which elements from a sentence are part
of the sought after information. However, machine learning techniques are data-
driven, so the performance of these methods depend on the quality and quantity
of the data used for the training. For machine learning based extraction systems,
this tight relation comes from the fact the training data used by the classifier or
sequence model has been labeled by an expert. In the case of extraction rules,
the rules are created and tuned by hand, based on data and knowledge of the
domain.

The Ontology-based Components for Information Extraction (OBCIE) ar-
chitecture offers a two-phase machine learning extraction approach [76]. This
approach determines in the first phase which sentences of a text might contain
extractable information. Since this phase is handled by a classifier, sentences
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are transformed into binary vectors that have features as keywords. In other
words, if a sentence has the first keyword but not the second, then the vector
representation of the sentence will have 1 for the first keyword and 0 for the
second keyword. In the second phase, this approach determines if the sentences
actually has the sought information. This is done by sequence model that uses
an enhanced sentence, which has the labels of a set of lexical and syntactic
features. If we also include the output of the sentences classifier as part of the
input of the sequence model, it is possible to obtain extractions from sentences
that have been incorrectly been classified in the initial phase [29].

3.2.2 Semi-supervised systems

Semi-supervised systems use the connection between sentences and hand built
knowledge bases to learn information extraction models and patterns for spe-
cific relationships. In contrast with supervised systems which have an explicit
link between text and instances, semi-supervised systems have to discover this
connection. In some cases the connection is clear, for example Kylin that ex-
ploits the relation between Wikipedias infoboxes and articles [78] [79, 80]. On
other cases, where the corpus of text is the Web [2, 10, 50, [65], or text in other
language [6], the connection is not that evident.

Although each system follows a different approach on how to determine the
connection between the knowledge base and the text, semi-supervised systems
work in a specific form, following three main steps: instances from knowledge
base are looked up in sentences of the text, selected sentences are transformed
into sets of relevant elements, patterns or models are learned based on the
enhanced sentences.

The first step performed by a semi-supervised system is to identify sentences
that might represent the instances or tuples from the knowledge base. In the
case of Snowball [2], Distant Supervision (DS) [50], and the system by Snow
et al. [65], if a sentence contains a pair of entities that have a relationship in
the knowledge base, the sentence most likely represent the relationship. Even
more, if there is a group of sentences that have the same pair of entities, then
it is very likely that they represent the same relationship. This is not strictly
true since it is possible for a pair of entities to have a sentence that represent
different relationships [59].

On the other hand, Kylin [T9] determines the sentences where the instance
are mention by following a two-phase classification approach. The first classifier
determines if a given document contains the instances sought. If the sentence
does contain the relational instance, then it passes by a sentence classifier that
determines which sentence of the document might have the instance. In the
case of Kylin, the sentence selection process can provide higher quality examples
because it uses Wikipedia articles with their infoboxes. Wikipedias infoboxes
provide a tabular summary of attributes from an article. In other word, the most
relevant information of an article will appear in both the text of the article and
in the infobox of the article.

The second step performed by a semi-supervised system is to determine what
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elements of the sentence are important for the extraction process. In general,
the elements from the sentence are generalized to reduce it from its written form
into a set of features that are shared between sentences. Most systems use as
lexical features (specific words from the sentences), and syntactic features (part-
of-speech, dependency parsing). In some cases, semantic information (named
entity) might be included as feature [2, 50, 65 [79]. In DS considers that al-
though a selected sentences has the relations entities, it is quite possible that
the sentences also have noise. To learn a robust classifier that can manage this
noise, each sentence is transform into a large set of feature. These feature are
lexical and syntactical, and model the words before, after, and in between enti-
ties. In this step sentences are also transformed into a representation that can
facilitate the next task. In DS and in the system by Snow et al. sentences are
transformed into vectors by encoding the features of the sentences, while Kylin
enhance the text with lexical and syntactical labels. In the case of Snowball,
the sentence is transformed into a combination of labeled terms and weighted
terms from the sentence.

The third step is learn from the example sentence. In the case of Snowball,
this task is mostly reduced to evaluate the set of extraction patterns to determine
the best set of extractors for the example sentences. The evaluation is done
by determining a matching score between a pattern and the set of examples
sentences. For Kylin and DS, this task consist on applying a machine learning
technique. Kuylin uses Conditional Random Fields to learn a sequence model
from the sentence. For the Conditional Random Fields, Kylin uses a set of
features such as the actual words from the sentence, part-of-speech, if the word
is a the first or second half of the sentence, as also the output of the sentence
and document classifiers. In the case of Distant Supervision, the system uses
multi-class logistic classifier. The output is a relation name and a confidence
score.

Some systems integrate a fourth step that intends to use the underlying
ontology or representation structure to improve the quality of the extraction
process. Kylin Ontology Generator [80] improves the quality of Wikipedias
infobox ontology by refining the relation between classes and attributes. This
leads to propagate properties and instance through infoboxes, following the
relation between their concepts. In a similar form, Carlson et al. [10] approach
also performs a sharing of instances depending on the logical relation between
concepts. This structure-based refinement is extended by filtering instances that
are mutually excluded (instances of disjoint concepts), or that have an erroneous
type.

After a model or pattern of extraction is learned, new instances can be
extracted from text [81]. These new instances can lead to a new learning process,
that can produce higher quality extractors [78].

3.2.3 Unsupervised systems

Unsupervised systems perform information extraction without requiring any
labeling or specific pattern construction. They perform extraction based on lin-
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guistic features that are embedded in the text. By evaluating the quality of the
relationships extracted, unsupervised systems can learn more robust patterns a
models that provide a higher coverage of the extractions that the system can
perform.

Core to all unsupervised systems are Hearst extraction patterns [34]. Hearst
has identified a small set of specific linguistic structures (combination of lexical
and syntactical elements) that represent an hyponymy relationship between two
or more entities. For example, if the pattern,

NP, such as [NPy, NP, ..., (and|or) NP,]

is applied to the sentence “Motor vehicles such as automobiles, and motor-
cycles...” leads to the extraction of the relations hypony(automobiles,motor
vehicles) and hyponym(motorcycles, motor vehicles). A hyponymy relations be-
tween two entities Ly and L refers to membership relations in the form L is
a (kind of) L;. In this case, hyponymy is roughly equivalent to the ontological
relation between a concept and its super concept.

In order to extract different type of relationships, Hearst original set of ex-
traction patterns have been extended to consider other patterns. New patterns,
such as NPy Verb N P;, have allowed systems like KnowltAll [18, [19] and Tez-
tRunner [3, [] to the extraction of a wide variety of relationship instances. In
their case study, Banko et al. [3] found that this extended set of extraction rules
can cover up to 95% of all binary relationship from their text corpus. However,
because TextRunner combines these extraction rules with either Naive Bayes [3]
or Conditional Random Fields [4], it can produce incoherent and uninformative
extractions. Incoherent extractions are produced when the sequence of decision
lead to an incorrect extractor. Uninformative extraction occur when relevant
information is removed from the relational phrase because it is incorrectly han-
dle.

In order to reduce these erroneous extractions, ReVerb [20] propose a refine-
ment in the extraction patterns by better defining the syntactical structure that
represents the relationship:

Verb((Noun|Adj|Adv| Pron|Det) * (Prep|Particle|Inf.marker))

Because this constraint can deal with phrases that have multiple verbs, it can
mostly eliminate incoherent extractions and reduce uninformative extractions.

Some systems include confidence value as a mechanism to support and val-
idate the extraction process. KnowltAll [I§] measure the quality of an extrac-
tion pattern based on redundancy of instances being extracted together [16].
It queries a search engine with the output of the extraction, and based on the
number of documents retrieved by the query, a probability of correctness is esti-
mated. TextRunner [4] also uses the redundancy estimation of KnowItAll, but
the probability is estimated over the set of normalized (i.e., lemmatized) extrac-
tions. On the other hand, ReVerb [20] learns a logistic regression classifier to
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estimate the confidence of an extraction. The logistic regression classifier uses
a set of syntactic and lexical feature from the sentences. ReVerb also removes
infrequent relations (less than 20 instances) to avoid over specification.

Although the set of general extraction rules should allow the extraction of
most type of relationships (from 85% [20] to 95% [4] of all binary relationships),
it is possible to extend it by learning new extraction rules or robust extraction
models and patterns. From the initial extraction, it is possible to extend the ex-
traction strategy following an approach similar to semi-supervised system. The
initial set of extracted relations are used to learn new extraction patterns [34] [49]
or a extraction model [3, [4]. In the case of Ollie [49], the new extraction pat-
terns are actually templates. From a set of high confidence relations extracted
by ReVerb, Ollie analyze the dependency of the extractions to learn more gen-
eral patterns. By including dependency parsing, Ollie can manage complex
relationships, defined by verb phrase structure, between complex entities. This
leads to higher coverage of the extraction patterns without loosing accuracy.

It must be noted that in general, the unsupervised systems strength is in
the coverage of the extraction rules without the need of a labeled training set.
However, they tend to have a low accuracy when compared with supervised or
semi-supervised systems. If the application requires high coverage over accuracy,
then the best approach is to consider an unsupervised system for the extraction
process.

4 Analysis of Incorrect Statements

In the following section, we propose a set of strategies to perform Ontology-based
Error Detection based on the research reviewed in Section 2l and Section (]

To understand what an incorrect statement is an how to identify it, we need
to define what a statement is and what makes it incorrect. We define a statement
as a proposition expressed in written natural language that has an equivalent
logical representation. The connection between text and logic can easily be seen
at the sentences level. The typological elements of a sentence (subject-verb-
object structure) can be mapped to the triple form by a relationship between
two concepts. For example, the sentence “Herbivores eat plants” is equivalent
to the axiom eat(Herbivores, plants).

We consider that the correctness of a statement is determined by the domain.
Under the intuition that a text from a domain is logically entailed by the domain,
and based on the definition of textual entailment by Dagan and Glickman [12],
we consider a statement to be correct if it can be inferred from the domain
ontology under the interpretation given by the domain ontology. In other words,
a correct statement from a text is the logic consequence of the concepts and
properties that define the domain, which makes the statement also consistent
with respect to the ontology. It is important to note that for a statement to be
correct, it must be entailed from the domain and not only to be consistent with
it. This difference comes from the fact that a statement does not require to be
part of the domain to be consistent with it. For example, let us consider the
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domain of astronomy and a statement regarding gene properties. The statement
most likely will not contradict the domain; however, it cannot be considered
strictly correct for an astronomy text since it is not entailed from the domain.
Statements that are consistent but not entailed from the domain shall be called
incomplete statements. These incomplete statements are neither correct nor
incorrect since it is not possible to determine their truth value from the domain
ontology (open world assumption [57]).

As a consequence of the above definition of correct statement, it seems nat-
ural to consider that a statement is incorrect if it logically contradicts some
aspects of the domain knowledge. As defined by Haase and Stojanovik [32], a
logical contradiction or inconsistency in an ontology is produced by an axiom
(or a statement) that violates a constraint. So, if a statement (e.g., “Planet
Jupiter is a star”) breaches a constraint of the domain (the concepts Planet
and Star cannot share any sub concepts or instances), then the statement is
both inconsistent and incorrect with respect to the ontology.

As previously stated, we propose the use of a combination of Information Ex-
traction (and OBIE) and Ontology Debugging to identify incorrect statements
in texts. Information Extraction will allow us to identify domain statements
(or relationships) from the text while Ontology Debugging tools will provide us
with a mechanism to determine the correctness of the statements. With these
two research areas in mind, we have considered two main approaches to iden-
tify incorrect statements: precomputing incorrectness, and online incorrectness
inference. In the approach of precomputing incorrectness, we upfront determine
what would an inconsistent axiom be. Then, based on this inconsistent ax-
iom, we define an information extractor to identify the incorrect sentence. On
the other hand, in the online incorrectness inference, we extract every possible
statement from the text in a generic way, so we can transform the sentences into
logical clauses or axioms. These axioms are then added to the ontology where
the consistency of the new extended ontology (domain ontology plus axiom from
the text) is tested. In the following section, we give a more detailed discussion
of these two proposed approaches.

4.1 Precomputing Incorrectness

This approach can be seen as Ontology-based Information Extraction (OBIE)
with a small twist. Following the definition of Wimalasuriya and Dou [77], OBIE
uses an ontology to guide the information extraction process. In the precom-
puted incorrectness approach, the domain ontology also guides the extraction
process, but indirectly. The ontology, through a debugging mechanism, pro-
duces a set of axioms which are inconsistent to each other. The information
extraction process is then guided by these inconsistent axioms.

As mentioned, the precomputed incorrectness works in two steps: deter-
mining inconsistent axioms, and extracting statements based on the incorrect
axioms. In the following sections we provide more details into each step.
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4.1.1 Determining Incorrect Axioms

As mentioned, before determining which statements are incorrect, we need to
know how a statement can be incorrect with respect to the domain. Considering
that an ontology only has correct domain information, we need a mechanism or
strategy to infer incorrectness from correct information. In previous work [28]
29], we used Wang et al. heuristic approach [72] that looks for inconsistency
based on the violation of specific ontological constraints. Let us consider the
following example:

Student C Person

Professor C Person
Ontology  Student C —Professor

GradStudent T Student

UndergradStudent C Student

Inconsistent Axiom GradStudent C Professor

In the example, because of the disjointness between the concepts Professor and
Student, they cannot share subclasses or individuals. By creating membership
between disjoint concepts, we are creating an inconsistent axiom. Although
the example seems to be a very simple case of inconsistency, statements that
represent these types of inconsistent axioms are not so unlikely [28].

An interesting aspect of using Wang et al.’s approach is that the inconsistent
axioms can be generated from the ontology before any text is analyzed. This
advantage provides great flexibility for the implementation of the information
extraction process, such as distributed or parallel analysis of text. However,
defining upfront inconsistent axioms has two shortcomes: the incompleteness of
heuristic approach, and the exponential size of the set of inconsistent axioms.
The first problem refers to the incompleteness of the solution with the method
proposed by Wang et al. It is possible that some type of inconsistency cannot
be generated by the method, which leads to not having an extractor that can
identify a statement with that type of error. Yet, it is probable that for any
given domain, there are types of incorrect statements that do not appear in
any text. This can occur when the text being analyzed focus on a subset of
the domain, or when some elements of the domain, although mentioned in the
ontology, are not frequently discussed (e.g., highly abstract concept). In other
words, although completeness is needed for detecting incorrectness, it might not
be a strict requirement for our approach in contrast to domain-awareness [67].

The second problem refers to large set of inconsistent axioms that can be
generated from a small set of consistent axioms. Suppose that our heuristic
method indicates that inconsistent axioms can occur by the erroneous statement
teaches(X, Student), where X can be any concept from our domain ontology
except Professor. If X is Professor, then we would obtained the correct axiom.
Now, if our ontology has n concepts, and each relationship can have the same
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structure as the example, then the size of the set of inconsistent axioms for each
relationship is n — 1. Considering that an ontology can have many relationships,
and this type of incorrect axioms can also be built from the hierarchical relations
between concepts, the amount of inconsistent axioms that can be predefined
from an ontology can grow very fast with respect to the size of the ontology.
This problem has also a linguistic dimension since an axiom can have many
different representations in written natural language.

4.1.2 Information Extraction

After determining the incorrect axioms, we encode them into information ex-
tractors, which are the actual components that do the extraction. As mentioned
in Section Bl information extractors can be based on linguistic patterns and reg-
ular expressions (i.e., extraction rules), or they can be based in some type of
machine learning method [77]. In most cases, extraction rules are relatively ac-
curate, but they are difficult to generalize and do not scale well [52] [82]. On the
other hand, machine learning techniques are data-driven, so the performance
of these methods depend on the quality and size of the data set used for the
training.

When evaluating extractions of incorrect statements, we have found that
rule based extractions have a higher precision (more correct extraction) while
machine learning based extractions have a higher recall (more complete extrac-
tion) [29]. This behavior can be explained by considering how the extractors
are built. The information extractors can be built by considering specific pat-
terns or general patterns. In the case of rule based extractors, the patterns used
for extraction are built by considering very specific lexical and syntactic cues
from the text. It is very possible to have a set of rules to extract one concept
or relationship. With patterns built to extract specific instances, it is more
difficult that an error can occur when detecting an instance to be extracted.
However, the specificity of rule based extraction is also its weakness. If there is
an instance that is not similar to any of the known instances that are used to
construct the patterns, it is most likely that the instance will not be extracted
by any pattern. This weakness leads to a less complete extraction process be-
cause extractors overlook instances that should be extracted. In the case of
machine learning based information extractors, a model is learned which should
fit the training data in a fashion that can guarantee some flexibility to manage
unseen instances. This flexibility produces a more complete extraction process
since the extractor can consider instances that have not been seen yet. And in
a similar way as rule based extraction, this flexibility can also be the weakness
of the machine learning based extraction. Since the model is more general, it is
possible that unrelated elements can be extracted, leading to a lower precision.

In our most recent work, we intend to maximize the overall performance
while taking into account the relation between the type of implementation of
the extractor and the quality of extraction [29] by extending the Ontology-based
Components for Information Extraction (OBCIE) architecture [76]. OBCIE
promotes reusability by defining components to be as modular as possible. Tak-
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ing advantage of OBCIE’s modularity, we propose an hybrid OBIE system that
integrates information extractors of different natures into one platform. In other
words, we have combined rule based extraction with a machine learning based
extraction into a single system. In our hybrid approach, we can create different
configuration of extractors, where each concept can have a rule based extractor
or machine learning based extractor. We found that the overall performance
of the system (F1 measure) with an hybrid setting was higher than that with
only one type of extractor [29]. From these results, we believe that this hy-
brid approach can provide an improvement in the performance for information
extraction.

Since our proposed hybrid extraction system is mainly a proof of concept,
there are at least two extension of this work that have not been analyzed yet.
The first extension is to determine a mechanism that can select the optimal
configuration of extractors. This is a natural extension of our most recent work.
Because there are many possible hybrid configuration, an automatic selection
of configuration based on performance can seen as an optimization problem,
where we intend to optimize the performance of the extraction process. The
second extension is to determine if an aggregation of outputs can improve the
performance of the extraction system with respect to all three metrics (precision,
recall, F1 measure). The idea of aggregation of outputs of different extractors
comes from the results obtained by Wimalasuriya and Dou’s multiple ontology
information extraction approach (MOBIE) [75]. In the case of MOBIE, mapping
between elements of different ontologies can provide guidelines to combine the
different information extractors. In the case of aggregation outputs of different
implementation of extractors, there is no need for any extra information since
both type of extractors represent the same ontological element.

4.2 Online Incorrectness Inference

In online incorrectness inference, the OBIE process is performed in an different
fashion. Instead of having the ontology guiding the extraction process, the IE
is performed based on structural elements from the text, while the ontology
is used to validate the correctness of the statements extracted. Although this
approach differs from the definition of OBIE [77], we argue that it is still an
OBIE process since the approach relies on the domain ontology to determine
the correctness of each statement.

The main goal of this approach is to provide the most complete analysis of
the correctness of a text. In that sense, the extraction process intends to extract
every possible relationship in the text, and the inconsistency analysis use the
complete ontology to infer the correctness or incorrectness of the text. The
online incorrectness inference approach consists of three steps. In the first step,
statements are extracted from the text following an approach similar to open
information extraction. The extraction process provides a transformation of the
statement from its original textual form into a logical bound form. As a second
step, the statements are added to the domain ontology so their correctness can
be determined, and justified if needed. The third and final step is to determine
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the correctness of the statement. In case the statement is inconsistent with
respect to the ontology, we determine why it is inconsistent.

4.2.1 Extraction and Validation of Statements

In order to do IE without guidance of a domain ontology, we can follow strategies
such as unsupervised or semi-supervised information extraction.

In contrast to the extraction stage of the precomputing incorrectness ap-
proach, which focus only on sentences from the text that are directly related
to the domain, the extraction stage in online incorrectness inference following
an unsupervised strategy will intend to identify all relationships that appear
in a text. Because of the large amount of possible relationships that could
be extracted from a document, when adding the extracted statements into the
ontology, we will need a validation stage to guarantee that the extracted state-
ments are related to the ontology. In the case of validating relationships at
the terminology level of the domain (TBoz), it seems feasible to accomplish it
with simple mechanisms, such as gazetteers (i.e., list of words) of ontological
terms. In the case of validating extraction from the assertion level of the do-
main (ABoz), the solutions might not be so trivial. Let us consider the following
example:

Eztraction 1:  Student(Fernando)
Extraction 2:  University(University of Oregon)
Eztraction 3:  studies(Fernando, University of Oregon)

We want to include in our analysis only the extracted relations that address the
domain, which in this case is about universities. From the example, it seems
safe to assume that Fxtraction 1 and Extraction 2 are referring to elements
of the domain. Although FEztraction 8 seems to be also part of the domain,
we can only consider its membership when taking into account FExtraction 1
and FExtraction 2. In the case of our example, if we analyze the elements that
are involved in the relation (e.g., string matching), we might still be able to
determine that the extracted instance is part of our domain; however, this is
not guaranteed.

The filtering of statements in the validation stage intends to reduce the com-
plexity of the analysis of the statements and provides a clearer interpretation of
the correctness of the text. As we will see in the following section, the analysis
of statements that belong to the domain is already a task of high complexity. By
not including unnecessary statements, we are reducing the overall complexity of
the task. On the other hand, if we consider the previously defined incomplete
statement, these statements will most likely be consistent with the domain on-
tology, but they are not entailed by it. So, the analysis of these out of domain
statements are not useful for the task of identifying incorrect statement.

In the case of semi-supervised extraction, the need to provide a validation
of the extraction process is mostly eliminated if we can identify the text that
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is directly linked to the instances that are used in the extraction process. If we
cannot provide these highly related texts, we will need to consider procedures
similar to the ones used for unsupervised extraction. In those cases where
we have assertional elements in the ontology that are connected to a specific
body of documents, we have a new question to answer: how many instances
are needed to perform a semi-supervised extraction? If we consider the results
obtained by Kylin [80], this number cannot be small. Yet, in the case of Kylin,
because of normalization performed to the extraction, the connection between
the instances and the text is reduced. We need to restate the question: how
does the connection between text and knowledge base affects the minimum set
of instances needed to perform a semi-supervised extraction?

4.2.2 Analysis of Extractions

Once we have extracted all the relations from the text and have filtered out
those that are not part of the domain, we proceed to analyze the correctness
of the statements. Because we have moved the text into the ontology, we have
new options when analyzing the text. We have considered two main scenarios
under which we can analyze the correctness of statements:

1. Single statement: each statement is analyzed independently from the
rest of the statements from the text.

2. Multiple statements: a group of statements is analyzed simultaneously.
Since they are considered as a group, it is possible that inconsistency
among the grouped statement might arise. Although the solutions under
this scenario should be independent of the size of the set, since inference
is the main tool used by ontology debugging methods, it is very likely that
large set of statements (statements from a corpus) might require different
strategies than the ones used for smaller sets.

The analysis of single statement consist of determining the correctness (or
incorrectness) of one statement of a text at a time. This analysis can be done
by creating a test ontology which consists of the domain ontology plus the state-
ment we want to analyze. We evaluate the consistency of the test ontology to
determine if the statement is correct or not. If the test ontology is inconsistent,
then we analyze this test ontology to determine the origin of the inconsistency.
In general, the Ontology Debugging methods reviewed in the Section 2.5 can be
applied here. We will focus on the logic-based approaches since we are looking
for a sound and complete solution for correctness analysis.

As seen in the review, logic based ontology debugging methods are formed by
a series of steps, which have some level of similarity between methods. It seems
possible that because of this similarity, they can be combined to provide a more
optimal solution to our problem. For example, we can use a selection function
to determine inconsistent subsets of the ontology [62], and it can be combined
with HST methods to determine the minimal set of inconsistent elements of
the ontology [68] 35]. This minimal subset can be analyzed by the generalized
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incoherence-preserving terminology [61] to determine the actual parts of the
axiom that are involved in the inconsistency. In our case, because we know
the element that is causing the inconsistency, we can simplify the initial search
to determine the subset of the ontology that is inconsistent. For example, the
statement being analyzed can be the seed for the selection function.

Considering that in practice we will be faced with the task of analyzing the
correctness of a complete document and not single sentences, it seems reason-
able to examine how correctness analysis will perform when looking into sets
of statements. A simple and straightforward approach is to sequentially (or in
parallel) apply the solution for single statements to each statement of the doc-
ument. However, if statements are considered independently when analyzed, it
is possible that we might overlook some incorrectness, as the following example
illustrates:

Student C Person
Professor C Person
Ontology  Student C —~Professor
teaches(Professor, Student)
Person(Fernando)

Statement 1 Student(Fernando)
Statement 2 teaches(Fernando, Somebody)

If we analyze the two statement separately, we would find that Statement 1 is
consistent since all individuals that are member of the class Student are also
member of class Person. In the same way, Statement 2 is consistent with the
ontology, and it actually allows us to infer that Professor(Fernando). The
inconsistency of the statements rise only when both of them are considered
simultaneously for the analysis. Statement I is incorrect if Statement 2 is
correct, or Statement 2 is incorrect if Statement 1 is correct.

An alternative approach is to consider the set of statements as a whole
and do the analysis as group rather than individually. As in the last example,
by analyzing the correctness of set of statements, it is possible to identify text
incorrectness that only rises in the presence of more than one statement from the
text. However, although this approach would definitely provide a more complete
solution, it clearly leads to an increase in the complexity of the task of finding
incorrectness. An option is to incrementally analyze the set of statements.
Iteratively, we add statements into the ontology and perform consistency checks.
If there is an inconsistency, we try to identify the origin. This incremental
approach allows us to keep some control over the complexity of the process while
still providing completeness over the analysis. In this approach, a key element is
the order of the statements that are being added into the ontology. For example,
from a text we produce the set of statements S = s1,...,58;,..., 85, ..., Sn (with
i much smaller than j). Let us assume that the inclusion into the ontology
of statements s; and s; together makes it inconsistent. Then, since 7 is much
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smaller than j, in our incremental approach s; will be added many iteration
after s;. If we sort the statements with a selection function, the analysis with
both statements can be performed earlier. Although this efficient ordering of
statements does not reduce the complexity of the consistency check, it can
reduce the complexity when trying to find the origin of the inconsistency.

5 Conclusion

In the present work, we present a review of relevant research for the new area of
Ontology-based Error Detection. We have first considered research on Ontology
Inconsistency, with focus on Ontology Debugging. Afterwards, we have included
research on Information Extraction in which we have classified current research
based on the amount of intervention required for their deployment.

We propose two approaches to perform Ontology-based Error Detection. In
the first approach, we precompute possible inconsistencies that can arise from
the ontology when considering certain type of violation of constraints. Based
on the set of possible inconsistencies, we can develop information extractors to
analyze the text. In the second approach, we perform Information Extraction
on the text to identify all stated relationships. From the set of extracted rela-
tionships, we determine the subset that is in the domain of the ontology. The
domain related relationships are added into the ontology, so we can perform
inference to determine the correctness of the text. In case of inconsistency,
we perform Ontology Debugging to identify the elements that are causing the
inconsistency.

From the results of our initial work, we have determined the feasibility of
detecting domain related errors in text. From the results of this work, plus
insight gained when analyzing the factibility of error detection based on current
research, we have determined a series of issues that can be focus of new research.
The resolution of some of these issues, such as hybrid information extractors,
can lead into improvements beyond error detection.
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