
Intermediate Languages for Optimization
Luke Maurer

December 12, 2015

1 Introduction
The compiler is a complex beast. As a program transforms from a source code
comprehensible to humans into a machine language suitable for hardware exe-
cution, it must pass through several stages, including parsing, optimization, and
code generation. At each stage, the code may be translated from one form to
another. Some of these forms, such as abstract syntax trees (ASTs), are closely
related to the source or target languages, but many fall in between: they are
intermediate representations, or IRs.

IRs serve several purposes. They are essential for mitigating the complexity
of any minimally sophisticated compiler. Also, they make the compiler more
flexible, and thus more useful, by abstracting out finer details of the source or
target language, thus allowing the same compiler to target different hardware
platforms or to implement several source languages.

The subtlest purpose of an IR, however, is to empower optimization. Op-
timizers are necessarily heuristic and conservative—they need to gather data
to make informed decisions, both in the hope of improving the code and to
be certain not to introduce errors. Thus, an informative IR is a must. Each
property the IR tracks has a cost, however, both in the resources for calculating
and storing the property and in the need to maintain it whenever the code is
altered. The design space is large, therefore, and the criteria for a good IR
depend on the form of the source language (or previous IR), the requirements of
the target architecture (or next IR), and the set of algorithms to be performed
by the particular compilation stage. Generally speaking, a good IR is

1. straightforward to build from the incoming code, with a clear mapping for
each language construct;

2. sufficiently informative to support optimization, so that common analyses
need only be implemented once;

3. sufficiently flexible to allow changes to be made while preserving correct-
ness and consistency; and

4. straightforward to translate into the next representation.

1

To study the breadth of possibilities, authors and researchers look at IRs
not as mere data structures but as programming languages unto themselves,
with well-defined semantics independent of a particular implementation. Such
an intermediate language (IL) crystallizes the design of an IR, giving it a precise
characterization removed from the intricate details of the implementation, and
allowing its properties to be stated, proved, and compared to those of other
languages. This paper will look at a few of the most important kinds of ILs for
optimization, studying their features and differences, and finally proposing one
for use in the Glasgow Haskell Compiler (GHC).

The plan is as follows: Compilers can be broadly categorized by the fami-
lies of languages they implement. As such, we will look at ILs for imperative
languages (Section 2) and functional languages (Section 3) separately. In Sec-
tion 4, we will look at the specific challenges facing GHC, stemming from the
particular features of the lazy functional language Haskell. Then, in Section 5,
we introduce our own IL, currently being implemented in a patch to GHC. We
conclude in Section 6.

2 Languages for Imperative Optimizations
2.1 Three-Address Code
A three-address code is a language comprised of linear sequences of instructions
of fixed size, resembling assembly code. A typical instruction might be

A← B + C,

indicating a destructive assignment of B + C to the variable A. Depending
on the particular language, A, B, and C might be abstract variables, or they
might be well-defined registers or memory locations on a target architecture. In
the latter case, we have abstracted away only the precise syntax of assembly
language, but no other details of the target hardware, making this an ideal form
for peephole optimization [DF80]. This is the lowest-level form of optimization,
operating at the level of individual instructions, looking only at a small window
(a “peephole”) at a time to find opportunities to combine instructions and save
CPU cycles.

Typically, a three-address code expresses control through labels and jumps.
Each instruction may carry a label identifying it as a possible target for a jump.
A jump can be either conditional, occurring only if some condition is met, or
unconditional. Thus a routine in three-address code to sum the members of an
array a of length n might be:

2

i ← 0
s ← 0

loop:
c ← i − n
ifge c then done
t ← a @ i
s ← s + t
i ← i + 1
jump loop

done:
return s

Here ifge c done is a conditional jump that executes when c ≤ 0, and
jump loop is an unconditional jump. Note that any complex expressions have
been broken down—the programmer probably wrote s += a[i], but this three-
address code requires the array access and the addition to be separate instruc-
tions.

2.2 Control-Flow Graphs
Three-address codes are effective for expressing programs, but a simple list of
instructions is unwieldy for performing analyses and manipulation. Therefore
it is typical to construct a control-flow graph, or CFG, to represent the control
flow as edges connecting fragments of the program.

Note that CFGs do not themselves comprise a language; the CFG is an in-
memory representation that holds code in an underlying language, such as a
three-address code. Nonetheless, it is important to the study of intermediate
languages because the static single-assignment form (Section 2.3) exploits the
CFG that is assumed to be available.

A vertex in a CFG embodies a basic block, a sequence of instructions that
proceeds in a straight line. No instruction in the program jumps into the middle
of a basic block, and the only jump in the block can come at the end. Thus all
internal jumps go from the end of one basic block to the beginning of another.
The CFG then records each block as a vertex and each jump as an edge. For a
given block, the blocks that may jump to it are its predecessors and the blocks
it may jump to are its successors. See Fig. 1 for an example.

The CFG makes reasoning about and manipulating the control flow much
easier. For instance, the basic form of dead-code elimination (DCE) finds in-
structions that will never run and deletes them. Without a CFG, one would
have to scan the code for jumps to find labels that are never targeted; with a
CFG, one simply checks which blocks have no predecessors.

3

i← 0
s← 0
jump loop

loop:
c← i− n

ifge c then done else next

next:
t← a @ i

s← s + t

i← i + 1
jump loop

done:
return s

Figure 1: The control-flow graph for a simple array-sum program.

a ← x + y
b ← a + 3
c ← b + z
d ← a + 3
a ← d + c
e ← a + 3
return e

⇒

a ← x + y
b ← a + 3
c ← b + z
a ← b + c
e ← a + 3
return e

Figure 2: An example of common-subexpression elimination.

4

2.3 Static Single-Assignment Form
Consider the code in Fig. 2. Clearly the computation of d is redundant; we
should remove it and replace references to d with b. This is an important opti-
mization called common-subexpression elimination, or CSE. But note something
crucial to this analysis: the value of a did not change between the assignments
to b and d. We cannot remove e in the same way, because “a + 3” is not the
same value that it was when b or d computed it. Thus, starting from simple
three-address code, any CSE routine must perform some analysis involving so-
called available expressions and reaching definitions, walking through the code
and working out all the ramifications of each assignment for other instructions
[App98a; ASU86].

This need is the basis of dataflow analysis. At its core is the question, “What
are the possible values of this computation?”

The chief cause of complexity in dataflow analysis is mutability. If there
is an intervening assignment to a variable, then two different occurrences of
the variable generally don’t refer to the same value, and thus we can’t take
an expression “at face value.” In the above example, a + 3 is not a consistent,
well-defined value, since the value of a changes.

Traditionally, it was up to each optimization to take mutability into account
so that the optimizer only makes valid changes. This added complexity to many
individual algorithms. The static single-assignment form, or SSA form, makes
dataflow obvious by eliminating mutability of variables, thus simplifying many
algorithms and making new ones more feasible.

The code in Fig. 2 is not in SSA form, since there are two assignments to
a. However, in this case we can observe that there are really two “versions” of
a involved, and each occurrence of a refers unambiguously to one or the other.
The assignments to b and d refer to the first version, and the assignment to e
refers to the second. Therefore we can rename the second version to a′:

a ← x + y
b ← a + 3
c ← b + z
a′ ← b + c
e ← a′ + 3
return e

We have obtained the SSA form, guaranteeing that a + 3 has a consistent value
so long as a is in scope.

Renaming suffices for only the simplest cases. Here, for any instruction, we
know which “version” of a is active and thus whether to rename each occurrence
of a to a′. In the presence of control flow, however, one cannot always know
what the “current version” is. Thus we need a way to merge together different
possible values for a given variable.

5

i0 ← 0
s0 ← 0

loop:
i ← ϕ(i0, i ′)
s ← ϕ(s0, s′)
c ← i − n
ifge c then done else next

next:
t ← a @ i
s′ ← s + t
i ′ ← i + 1
jump loop

done:
return s

Figure 3: A routine to sum the elements of an array, in SSA form.

2.3.1 The ϕ-Node

The construct at the heart of SSA is the ϕ-node. A ϕ-node is an instruction of
the form

A← ϕ(B1, . . . , Bn)

appearing at the beginning of a basic block. There should be one argument for
each predecessor to the block. Operationally, it is understood that A will get the
value Bi if the block is entered from its ith predecessor. Thus the conditional
update of a variable is modeled by the creation of a new variable whose value
depends on the control flow. See Fig. 3 for an example, where the index i will
be zero when loop is entered from the beginning of the program but i′ when it
is entered from the jump. Since i′ is i + 1, this causes i to be incremented each
time through the loop, as expected. The accumulator variable s works similarly.

In some ways, SSA form does for dataflow what the CFG does for control
flow by making crucial properties obvious. For instance, another form of dead-
code elimination concerns dead stores, which happen when a value is written
that will never be read. This can happen when two writes are made to the
same variable in succession; the first is a dead store and is wasted. Without
SSA, finding dead stores requires performing a liveness analysis by scanning
backward; with SSA, there cannot be two writes to the same variable, so a dead
store is simply a variable that is never read. Typical implementations maintain
a def-use chain [Cyt+91] for each variable, listing the instructions where it is
used; finding a dead store is then a simple matter of checking for an empty
def-use chain.

SSA is powerful enough to make new optimizations practical as well. For
instance, one of the original applications [RWZ88] was a generalization of CSE
called global value numbering: once we can trust the face value of an expression

6

Variable: x, y, z, . . .

Term: M, N ::= x
∣∣ M N

∣∣ λx. M

Figure 4: The syntax of the untyped λ-calculus.

a + b because the values of a and b can’t change, it becomes practical to, say,
identify a + b with b + a.

Since its inception, SSA has become the dominant form of IL both in the
literature and in compilers for imperative languages—GCC, in versions 4.0 on-
ward, uses SSA as its high-level optimization IL [Nov03; Pop06], and the LLVM
framework’s bytecode language is in SSA form [LA04; LLVM15].

3 Languages for Functional Optimizations
Compilers for functional languages sometimes use or extend representations
from the imperative world. However, especially for high-level optimization, it is
more common to employ a simpler functional language, in much the same way
that the typical three-address code follows the imperative model.

3.1 The λ-Calculus
Three-address codes represent imperative programs by a minimum of constructs.
Similarly, Church’s λ-calculus [Bar84] boils functional programs down to their
essentials: functions, variables, and applications. A function is represented as
λx. M , where x is a variable and M is the function body in which x is bound;
application of M to N is written simply as the juxtaposition M N . See Fig. 4.

An advantage of the λ-calculus is that its semantics can be given purely as
a system of simplification rules, or rewrite rules, on the terms themselves. The
crucial one is called the β-rule, which in its most general conventional form is

(λx. M) N ⇒M{N/x}

This says that to apply a known function λx. M to an argument N , you take
the body M and substitute N for the occurrences of x. (We haven’t yet said
what terms are allowed as N or how to apply the rule on a subterm of a larger
term; these are specified by the evaluation order.) Applying the β-rule is called
β-reduction.

The other rule is the α-rule, which simply says that we can rename a variable
bound by a λ without changing the term’s meaning, so long as we do so con-
sistently. Applying the α-rule is called α-conversion. Because they are subject
to α-conversion, variables have local scope, in much the way they do in most
programming languages. For instance, since λx. x and λy. y are equivalent by
the α-rule, no program’s behavior can depend on the choice of x or y.

7

This is the whole of the syntax of the plain untyped λ-calculus, but the lan-
guage is already rich enough to have spawned a whole field of research. Indeed,
the untyped λ-calculus is universal, that is, Turing-complete—it is expressive
enough to encode any program we could want to. For use in a compiler, however,
it would be impractical; besides the sheer awkwardness of, say, representing the
number five as λs. λz. s(s(s(s(s z)))), as is conventional [Hin05], the encoding
would lose the program’s structure, offering little help to an optimizer that
wishes to perform code motion safely and effectively.

Nonetheless, there is little we need to add. First, we need literals and prim-
itives to represent arithmetic sensibly; these are no problem. We’ll deal with
literals and other constants shortly, and primitives can simply be preallocated
variable names.

Second, it helps to have a way to declare local variables and functions, so
we want a let/in form, including a recursive version let rec. Again, these could
be encoded easily in terms of application, but at little gain at the price of lost
information.1 The precise semantics of let differs more widely than that of
function application; the simplest form is a variant of the β-rule,

let x = N in M ⇒M{N/x},

but again, the form of N may be restricted. Also, rather than substitute for all
instances of x at once, one can wait for the value of x to be needed [Ari+95].
For let rec, in particular, one has to be careful; see, for instance, Pierce [Pie02,
chapters 20–21] for a practical treatment.

More significantly, we want structured data and control, namely data con-
structors and pattern matching. A data constructor is a constant with a particu-
lar arity. We write Cn for an unknown data constructor with arity n, but we will
often drop the superscript. Applying Cn to n arguments2 packages the values
as a tagged record. Pattern matching is then performed by a case statement
such as this one:

case M of
C n x1 . . . xn → N
Dm y1 . . . ym → P

This expression evaluates M to a constructor and its arguments, then checks
whether the constructor is C or D, binds the corresponding variables to the
arguments, and evaluates the chosen branch.

For example, the functional version of our array-sum example could be:

sum = λxs. case xs of
Nil → 0
Cons x xs′ → x + sum xs′

1Arguably, we could go without let rec by using fixpoint combinators such as the Y-
combinator, but explicit knowledge of which functions are recursive is often beneficial. For
example, GHC is aggressive about inlining non-recursive functions because doing so cannot
cause the optimizer to loop.

8

Here Nil is the empty list and Cons x xs prepends x onto the list xs. Note
that Nil has arity zero, as do True and False. Zero-arity, or nullary, constructors
thus act as constants. In fact, we can simply treat literals as special syntax for
particular nullary constructors, so we don’t need them as a separate construct.

The semantics of case is specified by a rule called the case rule:

case C n M1 · · · Mn of
...
C n x1 · · · xn → N
...

⇒ N{M1/x1} · · · {Mn/xn}

Hence, we reduce a case by finding the matching branch and substituting the
arguments of the constructor.

We also allow a lone variable to act as a wildcard pattern:

case C n M1 · · · Mn of
...
x → N
...

⇒ N{C M1 · · · Mn/x} (if no other match)

Languages such as ML and Haskell also allow for more complex patterns,
but those can be re-expressed using these simple ones [Pey87]. Also, we don’t
need a separate if construct, since we can define:

if M then N else P ≜
case M of

True → N
False → P

In all, we have the syntax in Fig. 5. Note that for compactness we may use
braces and semicolons instead of separate lines in case and let rec expressions.

To make the language useful for writing or compiling programs, we need to
say a bit more about the semantics than just the rewrite rules as we have seen
them. The rules say what to do, but not in what order. Evaluation orders
comprise a field of study all of their own [Plo75; Ari+95], but for our purposes,
informal descriptions will suffice.

• In all practical languages, evaluation “stops at a lambda.” Bodies of func-
tions are not evaluated until they are called.

• In call-by-value languages, the arguments to a function are evaluated be-
fore the function is called. This amounts to restricting the β-rule:

(λx. M) V ⇒M{V/x}
2Like Haskell, we use curried constructors. For example, Cons x xs is Cons applied to the

arguments x and xs. This avoids needing tuples as a separate construct.

9

Here V stands for a value, which must be a λ-abstraction or a constant.
This also affects let bindings—the definition is evaluated before the body.
Call-by-value let rec is usually allowed to define only λ-abstractions.3

• In lazy languages, function application occurs as soon as the function body
is known, while the arguments are still unevaluated. Lazy let bindings sim-
ilarly go unevaluated at first, and let rec needn’t be restricted, allowing
circular or (conceptually) infinite data structures. To make laziness prac-
tical, implementations use a call-by-need strategy [Ari+95], which ensures
that each value is still only evaluated once.

A related concept is purity. A language is called pure if evaluating an expres-
sion never has any side effects, such as overwriting a variable or performing I/O.
An impure language is thus very sensitive to evaluation order—move the wrong
function call, and Hello World! could become World! Hello. If the language
is call-by-value, impurity is manageable, as one can predict from any function
body the order in which terms will be evaluated. However, in a call-by-need
language, if one writes f M N P , the order in which M , N , and P are evaluated
(if at all) depends entirely on the body of f , which may not even be in the same
module. Thus laziness practically necessitates purity.4

In an IL for optimization, the major impact of evaluation order and purity
is the freedom with which terms can be rearranged. Of course, the purpose of
the optimizer is often to change the order in which things are evaluated, but
doing so in an impure language is hazardous. By contrast, the order in which
expressions appear in a lazy language often does not matter, so the compiler
has a great deal of freedom.

Since it is so rigid, an impure call-by-value λ-calculus is cumbersome as an
optimizing IL, even for call-by-value source languages (though it can serve as an
“abstract source” language [App92, chapter 4]). However, if the source language
is lazy, it may happily be optimized using plain λ-terms—in fact, our λ-calculus
is essentially an untyped version of GHC’s Core language [PL91; San95; PS98].

3.2 Continuation-Passing Style
One advantage of a three-address code as an IL for imperative programs is that
everything is spelled out: Intermediate results are given names. Every aspect
of control flow, including order of operations, is explicit. Manipulating code is
made easier by the regularity, and the similarity to assembly language makes
code generation a simple syntactic translation.

3In a call-by-value language, a variable always stands for a value. So how do we bind the
value of a let rec inside its own definition while it’s being computed? There are workarounds,
such as using a mutable storage cell, but the need is not great enough to justify additional
complication.

4It gets worse: Besides call-by-need, another class of non-strict languages is parallel lan-
guages. These evaluate the arguments and the body simultaneously. Thus, in the parallel
setting, there is no defined order in which side effects in M , N , and P will run.

10

Variable: x, . . .

Constructor: Cn, . . .

Pattern: P ::= _
∣∣ Cn x1 · · · xn

Term: M, N ::= x
∣∣ Cn

∣∣ M N
∣∣ λx. M∣∣ case M of {P1 → N1; . . . ; Pn → Nn}∣∣ let x = M in N∣∣ let rec {x1 = M1; . . . ; xn = Mn} in N

Figure 5: A λ-calculus with data constructors, recursion, and case.

Continuation-passing style [SS75], or CPS, is a way for the λ-calculus to play
much the same role for functional programs. As proved formally by Plotkin
[Plo75], a term written in CPS effectively specifies its own evaluation order, and
any λ-term can be translated into CPS using a CPS transform. As it happens,
CPS gives a name to each intermediate value, just as a three-address code does.
The correspondence to assembly language is not as clear, often necessitating a
lower-level IL acting as an abstract machine [App92, chapter 13]. Nonetheless, λ-
terms in CPS have proven a useful IL for optimizations on functional programs.

The CPS method is simple enough that we can demonstrate it on a simple
language by constructing a “compiler” on paper. We take the source language
to be the one in Fig. 5, given call-by-value semantics. The transform is given
in Fig. 6. Note that we assume throughout that k, k1, etc., are fresh (they
don’t clash with existing names); one could always use names not allowed in the
source language to avoid trouble.

The CPS transform makes each term into a function taking a continuation,
which specifies what to do with the value of the term once it’s computed. Since
the continuation is itself a λ-abstraction, the result of each computation ends up
bound to a variable. This variable then represents either a register or a location
in memory where the value is stored.

We will consider the CPS rules in turn. Since the source language is call-by-
value, any variable x will be bound to a value that has already been computed;
hence, in the variable case, there is nothing more to do and we can pass x
directly to the continuation k.

The key to the CPS transform is the rule for function calls:

C JM NK = λk. C JMK (λf. C JNK (λx. f x k))

Once the CPS term is applied to a continuation k, the first thing to do is to
evaluate the function M . The continuation for M binds its result as f , then
goes on to evaluate the argument N . That result is bound as x. Finally, we
perform the function call proper by invoking f with argument x and the original
continuation k.

11

C JxK = λk. k x

C JM NK = λk. C JMK (λf. C JNK (λx. f x k))
C Jλx. MK = λk. k (λx. λk1. C JMK k1)
C

q
C0y = λk. k C0

C
q
C1y = λk. k (λx1. λk1. k1 (C1 x1))

C JCnK = λk. k (λx1. λk1. k1 (· · · (λxn. λkn. kn (Cn x1 · · · xn))))

C

uwwwv
case M of

P1 → N1
...

Pn → Nn

}���~ = λk. C JMK


λx. case x of
P1 → C JN1K k

...
Pn → C JNnK k


C Jlet x = M in NK = λk. C JMK (λx. C JNK k)

C

uwwwwwwwwv

let rec
f1 = λx1. M1

...
fn = λxn. Mn

in
N

}��������~
=

λk. let rec
f1 = λx1. λk1. C JM1K k1

...
fn = λxn. λkn. C JMnK kn

in
C JN K k

Figure 6: A call-by-value CPS transform.

12

Variable: x, f, k, . . .

Constructor: Cn, . . .

Pattern: P ::= x
∣∣ Cn x1 · · · xn

Value: V, W ::= x
∣∣ λx. M

∣∣ λx. λk. M
∣∣ Cn V1 · · · Vn

Term: M ::= V W
∣∣ V W1 W2∣∣ case x of {P1 →M1; . . . ; Pn →Mn}∣∣ let rec {f1 = λx1. M1; . . . ; fn = λxn. Mn} in N

Figure 7: A CPS language for the λ-calculus in Fig. 5, as produced by the
transform in Fig. 6.

Translating a λ-abstraction is straightforward, though the translated version
takes an extra argument for the continuation with which to evaluate the body.

Constructors appear somewhat more involved, but they are really merely
special cases of functions. It is instructive to derive the CPS form for a con-
structor applied to arguments5:

C
q
C2 M N

y
= λk. C

q
C2M

y
(λf. C JNK (λy. f y k))

= λk. (λk. C
q
C2y (λf. C JMK (λx. f x k)))(λf. C JNK (λy. f y k))

⇒ λk. C
q
C2y (λf. C JMK (λx. f x (λf. C JNK (λy. f y k))))

= λk. (λk0. k0 (λx1. λk1. k1(λx2. λk2. k2(C2 x1 x2))))
(λf. C JMK (λx. f x (λf. C JNK (λy. f y k))))

⇒∗ λk. C JMK (λx. C JNK (λy. k(C2 x y)))

Once the dust settles, the procedure is to evaluate M , bind it as x, evaluate N ,
bind it as y, then apply the data constructor and return.

The other rules are routine: A case evaluates the scrutinee first, then the
continuation chooses the branch. A let evaluates the bound term first, then the
body. A let rec simply binds the function literals and moves on (as suggested
earlier, we assume that a call-by-value let rec only ever binds λ-abstractions).

The IL we get from the CPS transform is the CPS language given in Fig. 7.
All function calls must involve both a function and an argument (or two) that
are values—compile-time constants, variables standing for intermediate results,
and applications of data constructors to values.

As an example, consider again the functional analog of our array-sum code:

sum xs = case xs of
Nil → 0
Cons x xs′ → x + sum xs′

5Application associates to the left, so C2MN parses as (C2M)N .

13

Its CPS form (after some simplification) is:

sum = λxs. λk. case xs of
Nil → k 0
Cons x xs′ → sum xs′ (λy. k (x + y))

Now sum takes a continuation k as an extra parameter. In the Nil case,
the answer is immediately passed to the continuation. In the Cons case, we
perform a recursive call. Since, in the original expression x + sum xs, the first
computation that would be made is the recursive call sum xs, the code for that
call is now at the top of the CPS term. Its continuation will take the result y
from the the recursion, add x, and return to the caller. (Here we suppose that
+ is a primitive in the CPS language and isn’t called using a continuation.)

3.3 Administrative Normal Form
CPS is expressive but heavyweight. A less radical alternative with many, though
not all [Ken07], of its virtues is the administrative normal form, better known
as A-normal form or simply ANF. An ANF term has names for all arguments,
and its evaluation order is spelled out, but function calls are not rewritten as
tail calls.

ANF emerges naturally by considering the inverse of the CPS transform
[Fla+93]. In order to see what reductions of the CPS term do to the original
term, we can consider transforming a λ-term to CPS, performing some reduc-
tions, then transforming it back. Not all reductions in CPS terms are interesting,
however: the CPS transform introduces many λ-abstractions into the program,
and β-reduction on these functions doesn’t correspond to any behavior of the
original term. These reductions are called administrative reductions. In order
to see what the CPS transform does from the perspective of the source language,
then, we can consider translating a term to CPS, performing any administrative
reductions we can, then translating back.

The net result is a language (Fig. 8) in which all nontrivial values have names,
but which is free of the “noise” of administrative reductions. For instance, the
ANF for the sum function, taken using the inverse transform of the simplified
CPS term above, is:

sum = λxs. case xs of
Nil → 0
Cons x xs′ → let

y = sum xs′

in
x + y

Compared to the original code, the only additional syntax is the binding of y
for the partial result from the recursive call.

Many algorithms don’t make direct use of the continuation terms in CPS,
and thus they apply equally well in ANF. For example, SSA conversion (see
Section 3.4.2) works broadly the same way [CKZ03].

14

Variable: x, f, . . .

Constructor: Cn, . . .

Pattern: P ::= x
∣∣ Cn x1 · · · xn

Value: V, W ::= x
∣∣ λx. M

∣∣ Cn V1 · · · Vn

Term: M, N ::= V
∣∣ let x = V W in M∣∣ case x of {P1 →M1; . . . ; | Pn →Mn}∣∣ let rec {f1 = λx1. M1; . . . ; fn = λxn. Mn} in N∣∣ let x = V in M

Figure 8: The ANF language produced by the CPS language in Fig. 7 by an
inverse CPS transform.

Losing explicit continuations is not without cost, however. One downside is
that CPS terms are closed under the β-rule, that is, applying the β-rule to a CPS
term gives another CPS term, so inlining and substitution can be applied freely
in CPS. In contrast, ANF requires some extra renormalization. More seriously,
though ANF enjoys a formal correspondence to CPS, this correspondence gives
no guarantees about important properties such as code size. We will return to
this point in Section 5 when we introduce the sequent calculus.

3.4 Comparing functional and imperative approaches
The functional and imperative worlds often express the same concepts in differ-
ent terms, such as loops vs. recursion. The same is true of ILs—what appear to
be radically different approaches are often accomplishing the same things.

In this section, we use ANF for comparison due to its lightweight syntax,
but everything applies to CPS as well.

3.4.1 Hoisting vs. Floating

Despite coming from such different programming traditions, functional repre-
sentations and CFGs share much in common, and many optimizations apply
in either case under different guises. For example, consider a variation of our
array-sum code (Fig. 9a), where we sum the first k entries of an array starting at
index i0. The loop thus exits when i ≥ i0 + k. This being a three-address code,
i0 + k is broken out into its own computation, which we’ve named h. Notice,
however, that i0 and k never change, and hence neither does h. So it is wasteful
to calculate it again each time through the loop, and loop-invariant hoisting
moves the assignment to h before the loop (Fig. 9b).

Now consider an ANF version (Fig. 9c). It uses a tail-recursive function
in place of the block, but it’s otherwise similar. Precisely the same effect is

15

i ← i0
s ← 0

loop:
h ← i0 + k
c ← i − h
ifge c then done
t ← a @ i
s ← s + t
i ← i + 1
jump loop

done:
return s

(a) In three-address code.

i ← i0
s ← 0
h ← i0 + k

loop:
c ← i − h
ifge c then done
t ← a @ i
s ← s + t
i ← i + 1
jump loop

done:
return s

(b) After hoisting.

let rec
loop i s =

let
h = i0 + k
c = i − h

in
if c ≥ 0 then

done s
else

let
t = a @ i
s′ = s + t
i ′ = i + 1

in
loop i ′ s′

done s = s
in
loop i0 0

(c) In ANF.

let
h = i0 + k

in
let rec

loop i s =
let

c = i − h
in
if c ≥ 0 then

done s
else

let
t = a @ i
s′ = s + t
i ′ = i + 1

in
loop i ′ s′

done s = s
in
loop i0 0

(d) After let floating.

Figure 9: Two representations of a function to compute a partial sum of the
integers in an array, starting at index i0 and including k elements.

16

achieved by let floating—since h’s definition has no free variables defined inside
loop, we can float it outside (Fig. 9d). Note that, in both cases, we need to be
careful that there are no side effects interfering.

3.4.2 Converting between functional and SSA

In the case of SSA, one can do more than show that certain algorithms accom-
plish the same goal. SSA, CPS, and ANF are equivalent in the sense that one
can translate faithfully between them [Kel95; App98b].

Conceptually, it is unsurprising that these forms should be interderivable.
The single-assignment property is fundamental to functional programming, and
the correspondence between gotos and tail calls is well known [Rey98]. There
remain two apparent differences:

Nested structure As usually understood, the SSA namespace is “flat:” though
we insist that each variable is defined once, all blocks can see each defini-
tion. In contrast, CPS and ANF are defined in terms of nested functions
in languages that employ lexical scope. Thus we must ensure that each
variable’s definition remains visible at each of its occurrences after trans-
lation.

ϕ-nodes A ϕ-node has no obvious meaning in a functional language; we must
somehow encode it in terms of the available constructs: functions, vari-
ables, applications, and definitions.

We will consider each of these points in turn.

Nesting: The Dominance Tree The scoping rule for a functional program
is simple: each occurrence of a variable must be inside the body of its binding.
This means something slightly different for λ-bound and let-bound variables,
but the effect is the same.

SSA programs obey a similar invariant: each variable’s definition dominates
each of its uses [App98a]. A block b1 dominates a block b2 if each path in the
CFG from the start of the program to b2 goes through b1 [Pro59]. If we make
each block a function, then, we should be able to satisfy the scoping invariant,
so long as we can nest each block’s function inside the functions for the block’s
dominators. For CPS, blocks will naturally translate into continuations. In
ANF, we can simply use regular functions; functions used for control flow in
this way are often called join points, about which there will be much to say in
Section 5.1.

Fortunately, dominance does form a tree structure, which we can use directly
as the nesting structure for the translated program. As it happens, this domi-
nance tree is something already calculated in the process of efficient translation
to SSA form [Cyt+91].

Figure 10 demonstrates the dominance tree for a somewhat tangled section
of code (Fig. 10a). The CFG is shown in Fig. 10b and the dominance tree in
Fig. 10c. Notice the impact of the edge from b4 to b7. Since a dominator must

17

b0:
i0 ← 0
s0 ← 0

b1:
i ← ϕ(i0, i1)
s ← ϕ(s0, s3)
c1 ← i − n
ifge c1 then b2 else b6

b2:
c2 ← i % 2
ifz c2 then b3 else b4

b3:
t1 ← a @ i
t2 ← t1 ∗ 2
s1 ← s + t2
jump b5

b4:
t3 ← a @ i
s2 ← s + t3
ifz t3 then b7 else b5

b5:
s3 ← ϕ(s1, s2)
i1 ← i + 1
jump b1

b6:
c3 ← s − 100
ifgt c3 then b7 else b8

b7:
s4 ← −1

b8:
s5 ← ϕ(s, s4)
return s5

(a) A program in SSA form.

b0

b1

b2

b3 b4

b5

b6

b7 b8

(b) The CFG for (a).

b0

b1

b2

b3 b4 b5

b6 b7 b8

(c) The dominance tree for (a).

Figure 10: Translating from SSA to CPS or ANF using the dominance tree.

18

lie on every path from b0, b6 does not dominate b7 or b8. If not for that edge, it
would dominate both.

The ϕ-Node as Inside-Out Function Call As a programming-language
construct, a ϕ-node is an oddity. It says what a variable’s value should be
based on the previous state of control flow.6 If we are to reinterpret blocks
as functions, then, each call should cause the ϕ-node to get a different value.
The solution is, of course, that the ϕ-node should become a parameter to the
function, transferring responsibility for the value from the block (function) to
its predecessor (invoker).

This can be formally justified by altering the way we draw the CFG. Since
each entry in a ϕ-node relates the block to one of its predecessors, in a sense the
value “belongs” on the edge of the CFG, not a vertex (see Fig. 11). SSA and
CPS then represent the same information, but with the edge labels in different
places.

The result of translating Fig. 10a to ANF is shown in Fig. 12.

4 GHC
4.1 Lazy Evaluation
A compiler for any functional language has different concerns from those of an
imperative language: higher-order functions and their closures are of paramount
importance, interprocedural analysis is absolutely necessary, and alias analysis
is an afterthought at most. But these are matters of emphasis rather than
fundamental differences, as function application still works largely the same
way; it is merely that one expects a different sort of function to be common in
an ML program from a C program.

Haskell is a more radical departure. Application is as important an operation
as ever, but lazy evaluation turns it on its head. Variable lookup is put into
particularly dramatic relief, as what was a single read could now be an arbitrary
computation! Furthermore, this is not a benign change of execution model—a
naïve implementation has a disastrous impact on performance.

The classical way to implement lazy evaluation is to use a memo-thunk
[HD97; OLT94; SS76]. This is a nullary function closure that will update it-
self when it finishes executing; on subsequent invocations, the new version will
immediately return the cached answer. It is an effective strategy, and one might
think that it merely shifts work from before a function is called to the first time
its argument is needed. Unfortunately, this thought overlooks an important
fact about modern hardware: an indirect jump, i.e., one to an address stored

6Oddly, this has been proposed before as a source language construct! A 1969 paper on
optimization [LM69] suggested a novel form of declaration that would insinuate assignments
to a variable at given line numbers in a program. Arguably, then, the ϕ-node was anticipated
nearly twenty years beforehand, though of course its suitability in a source language is dubious.
(To be sure, in an era where goto was popular, this would have been less clear.)

19

i0 ← 0
s0 ← 0
jump loop

loop:
i← ϕ(i0, i′)
s← ϕ(s0, s′)
c← i− n

ifge c then done
else next

next:
t← a @ i

s′ ← s + t

i′ ← i + 1
jump loop

done:
return s

(a) The CFG for Fig. 3.

i0 ← 0
s0 ← 0
jump loop

loop:
c← i− n

ifge c then done
else next

next:
t← a @ i

s′ ← s + t

i′ ← i + 1
jump loop

done:
return s

i = i0

s = s0

i = i′

s = s′

(b) The same, but moving ϕ-node
values to the edges.

i0 ← 0
s0 ← 0
jump loop(i0, s0)

loop(i, s):
c← i− n

ifge c then done
else next

next:
t← a @ i

s′ ← s + t

i′ ← i + 1
jump loop(i, s)

done:
return s

(c) A modified CFG form with parameterized labels, similar to continuations in CPS.

Figure 11: Moving ϕ-node values into the predecessors.

20

λa. λn.
let rec

b0 = let
i0 = 0
s0 = 0

in
let rec

b1 i s = let
c1 = i − n

in
let rec

b2 = let
c2 = i % 2

in
let rec

b3 = let
t1 = a @ i
t2 = t1 ∗ 2
s1 = s + t2

in
b5 s1

b4 = let
t3 = a @ i
s2 = s + t3

in
if t3 = 0 then b7 else b5 s2

b5 s3 = let
i1 = i + 1

in
b1 i1 s3

in
if c2 = 0 then b3 else b4

b6 = let
c3 = s − 100

in
if c3 > 0 then b7 else b8 s

b7 = let
s4 = −1

in
b8 s4

b8 s5 = s5
in
if c1 ≥ 0 then b2 else b6

in
b1 i0 s0

in
b0

Figure 12: The program from Fig. 10a, in ANF.

21

in memory rather than wired into the program, is much slower than a call to
a known function, as it interferes with the pipelining and branch prediction
that are crucial to performance. And in order to have a variable stand for a
suspended computation, it must store the address of some code that will be
executed, thus necessitating an indirect jump for each occurrence of each argu-
ment. Some improvements can be made—we can use tagged pointers to avoid
an indirect call in the already-evaluated case, for instance [MYP07]. But we
cannot avoid at least one indirect function call per evaluated memo-thunk.

The GHC optimizer’s fundamental task, then, is to avoid lazy evaluation as
much as possible. Like polymorphism before it, laziness is a luxury for program-
ming but a catastrophe for performance.

4.2 The Core Language
There were two important design principles [PS98] behind the design of Core:

1. Provide an operational interpretation. Given the severe penalties asso-
ciated with lazy evaluation, GHC cannot afford to be blasé about fine
details of evaluation order. Yet we would not want Core to be bogged
down by operational details. Ideally, then, we want to choose constructs
judiciously, so as to remain focused on the mission to eliminate laziness.

2. Preserve type information. Since type information is erased at run time,
it is tempting to throw away types as soon as possible. But some passes,
such as strictness analysis, can make good use of types if they are avail-
able. Perhaps more importantly, however, a typed IL can be of enormous
use in developing the compiler itself by allowing an IL-level type checker
to detect bugs early [PM97]: “It is quite difficult to write an incorrect
transformation that is type correct.”
Though GHC does not, one can also use typed representations for formal
verification. If the target language of a transform has a suitable type
system, one can prove powerful faithfulness properties such as full ab-
straction [Plo77], which means roughly that a translation does not expose
implementation details that could not be observed in the source language.
This is an important security property—the detail in question could be
someone’s password! For instance, a typed presentation of closure conver-
sion [MMH96] has been proved fully abstract [AB08], meaning not only
that the conversion preserves meaning, but also that code written in the
target language cannot “cheat” by inspecting a function’s closure (perhaps
to find a password). By employing a typed assembly language [Mor+98],
a whole compiler could, in principle, be proved fully abstract.

The first consideration led to refined semantics for let and case and to the
use of unboxed types and values. The second consideration led to the use of the
polymorphic λ-calculus, better known as System F.

22

Variable: x, y, z, . . .

Type Variable: α, . . .

Data Constructor: Cn, . . .

Type: τ ::= (see Fig. 14)
Pattern: P ::= _

∣∣ x
∣∣ Cn x1 · · ·xn

Term: M, N ::= x
∣∣ Cn

∣∣ λx : τ. M
∣∣ Λα. M

∣∣ M N
∣∣ M τ∣∣ let x : τ = M in N∣∣ let rec {x1 : τ1 = M1; . . . ; xn : τn = Mn} in N∣∣ case M of {P1 →M1 | · · · | Pn →Mn}

Figure 13: The GHC Core language as of 2006 (GHC 6.6), before coercions were
added.

4.3 Syntax
The syntax of Core is given in Fig. 13. Besides the types, there are few surprises
at the syntactic level.

4.4 Semantics
The operational reading of a let is that it allocates a thunk. Thunks are also
allocated for nontrivial function arguments.7 A case of an expression M always
forces the evaluation of M down to weak head-normal form, or WHNF, meaning
that a pattern match is always done on a λ, a literal, or a constructor application.

The semantics of let and case allow GHC to reason about space usage and
strictness. An evaluation that might otherwise remain suspended can be forced
by putting it in a case, which doesn’t necessarily actually perform any pattern
matching—the pattern can simply be some x to bind the result of computation,
just as in the CPS form for a call-by-value language.

For example, suppose we are compiling a function application f(x+y), where
it is known that f is a strict function—that is, one that is certain to force its
argument to be evaluated. Since we know that x + y will be forced, it would
be wasteful to allocate a memo-thunk for it. We’d end up with a closure in
the heap, only for it to overwrite itself with the result of the addition. Possibly
worse, evaluating the thunk would entail an indirect call, when we know right
now what the call will be! Much better, then, to force the evaluation early by
writing case x + y of {z → f z}.

7Some older versions of GHC enforced an ANF-like restriction that arguments be atomic;
in these versions of Core, lets were the only terms that allocated thunks. Even in current
GHC, however, Core is translated into a lower IL called STG, which does have this restriction,
so function arguments that aren’t variables still wind up getting let-bound.

23

Type Variable: α, . . .

Type Constructor: T, . . .

Type: τ, σ ::= α
∣∣ T

∣∣ τ σ
∣∣ τ → σ

∣∣ ∀α : κ. τ

Kind: κ ::= ⋆
∣∣ #

∣∣ κ1 → κ2

Figure 14: Types in the GHC Core language.

Giving let and case these specific meanings relieves Core of needing any
explicit constructs for dealing with memory or evaluation order, keeping the
syntax very light.

4.5 Types
The Core type system is shown in Fig. 14. The basis of the language is System
F, or more specifically System Fω, otherwise known as the higher-order poly-
morphic λ-calculus. This system describes both types, such as Int and Bool,
and type constructors, such as Maybe and List. List is not itself a datatype per
se; it takes a parameter, so that List Int is a type. Thus types, themselves, have
types, which are called kinds.

Kinds come in three varieties: The kind ⋆ is the kind of typical datatypes like
Int and Bool. Arrow kinds κ1 → κ2, like arrow types, describe type constructors:
List and Maybe have kind ⋆ → ⋆. The kind # is particular to the Core type
system; it is the kind of unboxed datatypes.

4.6 Unboxed Types
As mentioned above, a primary objective of Haskell optimization is to reduce
laziness. To this end, GHC made an unusual choice for a lazy-language com-
piler by expressing true machine-level values in its high-level IL [PL91]. This
demonstrates that the difference between “high-level” and “low-level” is often a
matter of design—if some aspect of execution on the target machine is absolutely
crucial, it can be worth encoding that aspect at the high level.

Boxed types are those represented by a pointer to a heap object (often an
unevaluated thunk) and include all types that appear in standard Haskell code.
Unboxed types are represented by raw memory or registers. For instance, an
Int# is a machine-level integer, what C would call an int. This has two major
ramifications:

1. A term of unboxed type must be computed strictly, rather than lazily. An
Int# is represented by an actual native integer, not a thunk, so there is
no mechanism for lazily computing it.
Therefore, an argument or let-binding must be a simple variable or literal
(as in ANF), not an expression that performs work8, since these constructs

24

represent suspended (lazy) computations. Work returning an unboxed
value must take place under a case, which as always serves to fix evaluation
order.

2. Since types are (eventually) erased by the compiler, polymorphic functions
rely on the uniform representation (pointer to heap object) of boxed types.
Since unboxed types have different representations, they cannot be used
as parameters to polymorphic types or functions.
Core enforces this restriction by giving unboxed types the special kind #.
A type variable or type constructor must be of kind ⋆ or an arrow kind
built from ⋆s (such as (⋆→ ⋆)→ ⋆). Since List has kind ⋆→ ⋆ and Int#
has kind #, then, List Int# is a kind error.

The payoff is that, in many ways, Int is just like any other datatype, and
the same optimizations that eliminate constructors for other datatypes work to
keep arithmetic unboxed. For instance, this is how GHC defines the addition
operator in Core:9

data Int = I# Int#
(+) :: Int → Int → Int
x + y = case x of

I# x# → case y of
I# y# → case x# +# y# of

s# → I# s#

Here +# is the primitive addition operator. The innermost case is necessary
because x# +# y# is a term of unboxed type and thus cannot be used directly
as the argument to I#.

Now consider the optimization of the term x + y + z. A naïve interpretation
would compute x + y, getting back a boxed integer s, then compute s + z. Thus
the box created for s is thrown out immediately, performing unnecessary work
and straining the garbage collector.

Let us see, then, what GHC does with it. Since (+) is so small, applications
of it will always be inlined, so after inlining (that is, substituting and then
β-reducing), we have:

(x + y) + z

⇒


case x of

I# x# → case y of
I# y# → case x# +# y# of

s# → I# s#

 + z

8The actual invariant is a bit more subtle. Some expressions of unlifted type can be let-
bound or passed as arguments, but only if they are known to evaluate quickly without side
effects or possible errors. Such expressions are called ok-for-speculation, because there is no
harm in executing them speculatively in the hopes of saving work later, say by moving them
out of a loop.

9Actually, the operator belongs to a type class and is therefore defined for many types
besides Int.

25

⇒ case


case x of

I# x# → case y of
I# y# → case x# +# y# of

s# → I# s#

 of

I# a# → case z of
I# z# → case a# +# z# of

I# t# → I# t#

Next, the case-of-case transform applies twice, moving the other case all the
way in:

⇒ case x of
I# x# → case y of

I# y# → case x# +# y# of
s# → case I# s# of

I# a# → case z of
I# z# → case a# +# z# of

t# → I# t#

Note that the case-of-case transform has exposed the box-unbox sequence as a
redex—case I# s# of . . . can be reduced at compile time. Thus we eliminate
the case and substitute s# for a#:

⇒ case x of
I# x# → case y of

I# y# → case x# +# y# of
s# → case z of

I# z# → case s# +# z# of
t# → I# t#

Now we have efficient three-way addition, the way one might write it by hand:
unbox x and y; add them; unbox z; add to previous sum; box the result. More-
over, no special knowledge of (+) was required; merely applying the same algo-
rithms used with all Core code exposed and eliminated the gratuitous boxing.

4.7 Coercions and System FC

A primary requirement of any typed IL is that it can embed the type system
of the source language. As type systems become more sophisticated, including
features such as dependent types [XP99; BDN09; Bra13], one might see reason
for concern: can we retain the benefits of typed ILs without making them
unwieldy?

Fortunately, the answer appears to be “yes,” at least so far. GHC’s ex-
tensions to Haskell have begun to intermingle typing and computation with
features such as generalized algebraic datatypes [Pey+06; XCC03] and type
families [CKP05]. These have been accomodated in Core by the addition of
a much simpler extension, the coercion [Sul+07]. This extended λ-calculus is
called System FC .

26

The essential idea is that complex features of the type system can be handled
entirely by the source-level typechecker, which annotates the generated Core
with pre-calculated evidence, i.e., proofs showing that terms have the required
types. These annotations take the form of type-safe casts

M ▷ γ,

where M has some type τ and γ is a coercion of type10 τ ∼ τ ′, proving that τ
and τ ′ are equivalent—so far as Core is concerned, they are the same type.

4.7.1 Example: Well-Typed Expressions

For example, consider generalized algebric datatypes (GADTs), a popular fea-
ture allowing datatypes to express constraints succinctly. The traditional exam-
ple of a GADT is one for well-typed expressions:

data Expr a where
Lit :: a → Expr a
Plus :: Expr Int → Expr Int → Expr Int
Eq :: Expr Int → Expr Int → Expr Bool
If :: Expr Bool → Expr a → Expr a → Expr a

Because different constructors produce terms with different types, a nonsen-
sical term like Plus (Lit 3) (Lit True) is a compile-time error. Even better, we
can write a well-typed interpreter:

eval :: Expr a → a
eval e = case e of

Lit a → a
Plus x y → eval x + eval y
Eq x y → eval x == eval y
If b x y → if eval b then eval x else eval y

Clearly the GADT representation is convenient, as even though expressions
can denote different types, there is no need to tag the returned values or to
check for error cases. However, the source-level typechecker’s job is now trickier.
Notice that this single case-expression has different types in different branches:
the Plus branch returns an Int, but the Eq branch returns a Bool. So the
typechecker needs to keep track of types that change in different cases. Here
it is only the return type that changes, but if eval took a second parameter of
type a, that parameter’s type would change as well.

We promised that the added complexity of GADTs could be isolated from
the Core type system. GHC’s typechecker keeps this promise by rewriting a
GADT like Expr as a regular datatype:

data Expr a where
10Somewhat confusingly, the literature sometimes refers to coercions as types whose kinds

have the form τ ∼ τ ′. The distinction is not consequential.

27

Lit :: a → Expr a
Plus :: Expr Int → Expr Int → a ∼ Int → Expr a
Eq :: Expr Int → Expr Int → a ∼ Bool → Expr a
If :: Expr Bool → Expr a → Expr a → Expr a

We have kept the GADT syntax, but Expr is now a traditional datatype—its
constructors all return Expr a, no matter what a is chosen to be. The caveat is
that Plus requires a proof that a is actually Int, and similarly with Eq, so we
still can’t use Plus to create an Expr Bool.

Here is how eval is desugared into Core11:

eval :: Expr a → a
eval e = case e of

Lit a → a
Plus x y γ → (eval x + eval y) ▷ γ−1

Eq x y γ → (eval x == eval y) ▷ γ−1

If b x y → if eval b then eval x else eval y

Now the Plus and Eq branches can access the coercion γ stored in the Expr .
In the Plus case, γ has type a ∼ Int. Now, eval x + eval y has type Int, and we
must return an a, so γ’s type is “backwards”—we need Int ∼ a. But of course
type equivalence is symmetric, so we can always take the inverse γ−1. The Eq
case is similar.

Typechecking is now straightforward. The only novelties are the coercions,
and these are not hard.

5 Sequent Calculus for GHC
As mentioned in Section 3.3, ANF is more concise than CPS, yet it is formally
equivalent. Thus reasoning about the observable behavior of a term’s CPS trans-
lation carries over to its ANF form [Fla+93]. However, an optimizing compiler
is concerned with much more than observable behavior—the equivalence can
tell us only which transformations are correct, not which are desirable. Thus
it is worth considering what we might be trading for the syntactic economy of
ANF or plain λ-terms.

5.1 Case Floating and Join Points
When dealing with plain λ-terms, one important operation is called case floating
[San95; PS98]. In general, if the first step of evaluating some term will be to
evaluate a case, then the case can be brought to the top of the term. An easy

11Technically, the if becomes a case in Core.

28

case is when a case returns a function that will be applied:

(case b of
True → λy. x + y
False → λy. x ∗ y

)
5⇒

case b of
True → (λy. x + y) 5
False → (λy. x ∗ y) 5

⇒
case b of

True → x + 5
False → x ∗ 5

As can be seen, the purpose of case floating is generally to bring terms together
in the hope of finding a redex, i.e., an opportunity to perform a compile-time
computation. Here, the case was always returning a λ, so moving the applica-
tion inward lets the function call happen at compile time.

One possible concern is that the argument has been duplicated. What if this
5 were instead some large expression?

(case b of
True → λy. x + y
False → λy. x ∗ y

)
⟨BIG⟩ ⇒⇒

case b of
True → x + ⟨BIG⟩
False → x ∗ ⟨BIG⟩ -- Oops!

The β-reduction may be a Pyrrhic victory if it causes code size to explode—
consider that the branches may, themselves, be case expressions, leading to
exponential blow-up. The obvious solution, which GHC uses whenever a value
is about to become shared, is to introduce a let-binding:

(case b of
True → λy. x + y
False → λy. x ∗ y

)
⟨BIG⟩ ⇒⇒

let
arg = ⟨BIG⟩

in
case b of

True → x + arg
False → x ∗ arg

In general, this is valid only in a lazy language; if this were a call-by-value
language, we would have changed the order of evaluation by evaluating ⟨BIG⟩
first. If b were an expression with side effects, it would take some care to
rearrange the term so that BIG is computed at the right time and yet we can
still eliminate our redex.

In contrast, CPS does not need case floating as a special case, and it will
avoid the sharing issue even in a call-by-value language. Here is the call-by-value
CPS form of our term:

λk.

λk1. case b of
True → k1 (λy. λk2. k2 (x + y))
False → k1 (λy. λk2. k2 (x ∗ y))

 (λf . C J⟨BIG⟩K (λy. f y k))

29

The CPS form of the case expression is now applied to the continuation that
serves to evaluate ⟨BIG⟩ and apply it as an argument to whichever function
comes out of the case. A simple β-reduction moves that continuation’s use into
the branches, bringing the case to the top without any special rule:

λk. let
k1 = λf . C J⟨BIG⟩K (λy. f y k)

in
case b of

True → k1 (λy. λk2. k2 (x + y))
False → k1 (λy. λk2. k2 (x ∗ y))

Here we have used a variation on β-reduction that let-binds the argument rather
than substituting it.

Eliminating the redex, the way we did with the λ-term, is trickier but doable.
As is, we would need to inline k1 at both call sites, which would duplicate ⟨BIG⟩
all over again. But we can instead give ⟨BIG⟩ its own binding and (since f was
chosen fresh) float it out:

λk. let
arg = λk. C J⟨BIG⟩K k
k1 = λf . arg (λy. f y k)

in
case b of

True → k1 (λy. λk2. k2(x + y))
False → k1 (λy. λk2. k2(x ∗ y))

⇒∗

λk. let
arg = λk. C J⟨BIG⟩K k

in
case b of

True → arg (λy. k (x + y))
False → arg (λy. k (x ∗ y))

Since k1 became small, we inlined it in the branches, and now those branches
use x and arg directly, just as in the λ-term.

None of these procedures were specific to case statements; only floating and
careful inlining were required. And floating can be performed aggressively on
the CPS form, since there is no danger of changing evaluation order [Plo75].

What about ANF? Remember that ANF is derived from CPS by performing
all administrative reductions, then translating back to direct style. So the naïve
ANF transform duplicates the context of any case. In practice, of course, imple-
mentations are smarter, avoiding administrative reductions that would duplicate
too much code. The leftover continuations, which would have disappeared due
to administrative reductions, are then called join points:

30

let
j = λf . let

arg = ⟨BIG⟩
in
f arg

in
case b of

True → j (λy. x + y)
False → j (λy. x ∗ y)

Now, in CPS, every function call is a tail call and thus function application,
including continuation invocation, is cheap. In ANF, however, function calls
generally entail all the usual overhead12, so if we don’t treat j specially somehow,
we will introduce that overhead in making j a function.

Fortunately, j is special: like a continuation, it is only ever tail-called. Fur-
thermore, it is only used in the context that defined it, and not under a λ-
abstraction. Therefore all calls to j will return to the same point. Hence there
is no need to push a stack frame with a return address in order to invoke it, and
we can generate code for it as we would a continuation in a CPS IL.

So we can create join points when translating to ANF, and we can recognize
join points during code generation so that calling them is efficient. Have we
regained everything lost from CPS to ANF? Unfortunately, no. The problem is
that join points may not stay join points during optimization.

Suppose our term, now in ANF with a join point, is part of a bigger expres-
sion:

let
g = λx. let

j = λf . let
arg = ⟨BIG⟩

in
f arg

in
case b of

True → j (λy. x + y)
False → j (λy. x ∗ y)

in
case g 1 of
⟨HUGE⟩

Now suppose that this is the only reference to g (it does not appear in ⟨HUGE⟩).
12It may seem from this discussion that ANF itself imposes function-call overhead compared

to CPS. In fact, it merely makes implicit again what CPS expresses explicitly—a continuation
closure represents the call stack, including the return pointer, as a λ-term. Code generation
can either treat continuations specially and implement them using the usual call stack, or
simply let them be values like any other, using heap-allocated “stack frames” and forgoing the
stack entirely. By doing the latter, SML/NJ easily implements the call/cc operator, which
allows user code to access its continuation, with little overhead [App98a, §5.9].

31

Thus we want to inline the call g 1 so we can remove the binding for g altogether.
We can start by performing the β-reduction:

case



let
j = λf . let

arg = ⟨BIG⟩
in
f arg

in
case b of

True → j (λy. x + y)
False → j (λy. x ∗ y)


of

⟨HUGE⟩

This term is no longer in ANF. To renormalize, first we float out the let:

let
j = λf . let

arg = ⟨BIG⟩
in
f arg

in

case

 case b of
True → j (λy. x + y)
False → j (λy. x ∗ y)

 of

⟨HUGE⟩

Then, as before, we need to perform case floating. This time we’re doing the
case-of-case transformation [PS98; San95]. It is similar to the previous “app-of-
case” case, so we’ll need to make another join point. (Incidentally, here GHC
would need to make a join point as well; the trick it used earlier to float out
⟨BIG⟩ won’t help.)

let
j = λf . let

arg = ⟨BIG⟩
in
f arg

j2 = λz. case z of
⟨HUGE⟩

in
case b of

True → j2 (j (λy. x + y))
False → j2 (j (λy. x ∗ y))

We’re back in ANF, but notice that j is no longer a join point—it’s now called
in non-tail position. Thus the function-call overhead has crept back in.

32

Term Variable: x, f, . . .

Cont. Variable: k, . . .

Data Constructor: Cn, . . .

Type: τ ::= (see Fig. 14)
Coercion: γ ::= (omitted)
Pattern: P ::= x

∣∣ Cn x1 . . . xn

Term: M ::= x
∣∣ Cn

∣∣ λx : τ. M
∣∣ Λα : κ. M

∣∣ µk : τ. K

Continuation: E ::= α
∣∣ M · E

∣∣ τ · E
∣∣ ▷γ · E∣∣ case of{P1 → K1; . . . ; Pn → Kn}

Command: K ::= ⟨M |E⟩
∣∣ let rec {B1; . . . ; Bn} in K∣∣ let B in K

Binding: B ::= x = M
∣∣ cont α = E

Figure 15: The syntax for Sequent Core.

5.2 Introducing Sequent Calculus
Clearly it is hazardous to represent join points as normal functions and expect to
find them later still intact. Thus we would like a representation that treats them
fundamentally differently. In particular, it would help to enforce syntactically
the invariant that a join point must be tail-called. Needing to systematize the
notion of “tail call” leads us to consider an encoding that makes control flow
explicit, like CPS. CPS is syntactically heavy, however. More importantly, if
one is not careful, it may not be simple to translate between a CPS language and
Core. As when SSA was introduced to GCC [Nov03], we propose to integrate
a new IL into a mature and complex compiler, so we would like to be able to
interoperate with existing components as much as possible.

The sequent calculus was invented by Gerhard Gentzen in his study of logic,
in order to prove properties of his other system, natural deduction [Gen35].
Decades later, it was realized that natural deduction is intimately related to the
λ-calculus by what is now called the Curry–Howard isomorphism [How80]. More
recently, there has been interest in the similar way that the sequent calculus can
be seen as a programming language [Her95]. We propose an IL called Sequent
Core (Fig. 15), based on a lazy fragment of a sequent calculus, Dual System FC ,
that incorporates the type system of System FC .

The sequent calculus divides the expression syntax into three categories:
terms, which produce values; continuations, which consume values; and com-
mands, which apply values to continuations. Thus, computation is modeled as
the interaction between a value and its context.

Most of the term forms are familiar. The novel one is the µ-abstraction,

33

whose syntax is borrowed from Parigot’s λµ-calculus [Par92] describing control
operators. It is written µk : τ. K, meaning bind the continuation as k and
then perform the command K. The µ-abstraction arises by analogy with CPS,
which represents each term as a function of a continuation; hence, we distin-
guish continuation bindings. Keeping this distinction, as well as other syntactic
restrictions compared to CPS, makes it simple to convert freely between Core
and Sequent Core as needed.

The continuations comprise the observations that can be made of a term:
we can apply an argument to it (either a value or a type argument); we can cast
it using a coercion; we can perform case analysis on it; or we can return it to
some context.

A command either applies a term to a continuation or allocates using a let
binding. Either a term or a continuation may be let-bound, either recursively
or non-recursively. Note that recursive continuations don’t arise from translat-
ing Core, but just as join points could be recognized before, we can perform
contification [Ken07; FW01] to turn a consistently tail-called function (even a
recursive one) into a continuation.

In Sequent Core, however, we do not risk accidentally “ruining” a continua-
tion. Consider again our problematic term:(case b of

True → λy. x + y
False → λy. x ∗ y

)
⟨BIG⟩

Here it is as a term in Sequent Core:

µk.

⟨
µk1.

⟨
b

∣∣∣∣∣∣
case of

True → ⟨λy. µk2. ⟨(+) | x · y · k2⟩ | k1⟩
False → ⟨λy. µk2. ⟨(∗) | x · y · k2⟩ | k1⟩

⟩ ∣∣∣∣∣∣ ⟨BIG⟩ · k
⟩

As before, we can share the application between the two branches as a join point.
The lazy form of the µβ rule for applying a continuation is:

⟨µk. K |E⟩ ⇒ let cont k = E in K

Thus we can perform a µβ-reduction (renaming k1 as j):

µk. let
cont j = ⟨BIG⟩ · k

in⟨
b

∣∣∣∣∣∣
case of

True → ⟨λy. µk2. ⟨(+) | x · y · k2⟩ | j⟩
False → ⟨λy. µk2. ⟨(∗) | x · y · k2⟩ | j⟩

⟩

Now, what happens in the troublesome case-of-case situation in Sequent Core?
Suppose, again, there is a larger context:

case
(case b of

True → λy. x + y
False → λy. x ∗ y

)
⟨BIG⟩ of

⟨HUGE⟩

34

Our simplified Sequent Core term becomes:

µk0.

⟨
µk. let

cont j = ⟨BIG⟩ · k
in⟨

b

∣∣∣∣∣∣
case of

True → ⟨λy. µk2. ⟨(+) | x · y · k2⟩ | j⟩
False → ⟨λy. µk2. ⟨(∗) | x · y · k2⟩ | j⟩

⟩


∣∣∣∣∣∣∣∣∣∣∣
case of
⟨HUGE⟩

⟩

Recall that GHC’s case-of-case transform would be pulling the outer case into
both branches of the inner case. It would make a join point to avoid duplicating
⟨HUGE⟩, but then it would still “ruin” j. But here, a simple µβ-reduction,
subsituting for k afterward, gives:

µk0. let
cont j = ⟨BIG⟩ · case of

⟨HUGE⟩
in⟨

b

∣∣∣∣∣∣
case of

True → ⟨λy. µk2. ⟨(+) | x · y · k2⟩ | j⟩
False → ⟨λy. µk2. ⟨(∗) | x · y · k2⟩ | j⟩

⟩
We pull the case into j, where it has a chance to interact with ⟨BIG⟩, perhaps
by matching a known constructor.

Observe that this would be a very unnatural code transformation on Core:
normally, it would never make sense to move an outer context into some let-
bound term. If nothing else, it would change the return type of j, from that of
⟨BIG⟩ to that of the branches ⟨HUGE⟩, which a correct transformation rarely
does. But the invariants of Sequent Core make case-of-case a simple substitution
like any other. In particular, since continuations are only typed according to
their argument type, j has no “return type,” so substituting the outer context
for k preserves types. Also, invariants about how k must be used (see below)
ensure that we haven’t changed the outcome of any code path.

5.3 Type and Scope Invariants
A command is simply some code that runs; it has no type of its own. A well-
typed command is simply one whose term and continuation have the same type.
Similarly, a continuation takes its argument and runs, so it doesn’t have an
“outgoing type” any more than a term has an “incoming type.”

This may be worrisome—have we allowed control effects into our language?
Haskell (and hence Core) is supposed to be a lazy language whose evaluation
order is loosely specified, yet so far, it seems we would allow terms that discrim-
inate according to evaluation order. For example:

µk. let
cont j1 = case of {_ → ⟨“Left first” | k⟩ }
cont j2 = case of {_ → ⟨“Right first” | k⟩ }

in
⟨(+) | (µk1. ⟨() | j1⟩) · (µk2. ⟨() | j2⟩) · k⟩

35

In this term, whichever operand to (+) is evaluated first will pass a string
directly to the continuation k, interrupting the whole computation and revealing
the evaluation order. We have already seen how freely GHC rearranges terms
because such changes are not supposed to be observable to Haskell programs;
thus allowing programs such as this would be disastrous. If nothing else, the
above term has no counterpart in Core, and again, we would like to interoperate
with the large body of code extant in GHC.

On the other hand, we do not want to compromise flexibility. A rule such
as “k must occur free in each branch” would disallow having different branches
return through different join points. Selective inlining and known-case opti-
mizations can cause branches to diverge dramatically. Indeed, there is nothing
objectionable about this term, which is superficially similar to the one above:

µk. let
cont j1 = case of {_ → ⟨“It was true” | k⟩ }
cont j2 = case of {_ → ⟨“It was false” | k⟩ }

in⟨
b

∣∣∣∣∣∣
case of

True → j1 ()
False → j2 ()

⟩

The solution is simple, as suggested by Kennedy [Ken07]. We impose the
scoping rule that continuation variables may not appear free in terms. Thus, we
say terms are continuation-closed. This forbids j1 and j2 from being invoked
from argument terms, where they constitute an impure computation, but not
from case branches, where they are properly used to describe control flow.

It should be clear, then, that if the evaluation of the term µk. K completes
normally, k must be invoked. An informal proof: If K has no let cont bindings,
then invoking k is “the only way out.”13 If there is a local continuation (i.e., a
join point) declared, then it can only recurse to itself or invoke k, and if it only
recurses then computation does not complete normally. If there is a join point
j1 and then another join point j2, then it may be that j2 is invoked, but it must
eventually defer to k or to j1 (and thus eventually to k) or else loop forever; and
so on. By induction, either execution fails, or it succeeds through k.

The “inevitability” of a µ-bound continuation makes translating from Se-
quent Core back into Core easy. If we see the command ⟨M |E⟩, we can say
confidently that the normal flow of control passes to E, so we translate E as the
context of M . That is, we translate it as a fragment of syntax to be wrapped
around M . For instance, writing D (for “direct style”) for the translation to
Core, we have:

13Note that, in general, a command has the structure of a tree of case expressions with
continuation variables at the leaves. Without let cont, there is no way to bring new contin-
uation variables into scope, and no terms (including arguments in continuations) may have
free continuation variables, so only k may occur free at all. There may be branches with no
continuation variables, since an empty case statement is allowed (typically when it is known
that a term crashes or loops, so its continuation is dead code). Hence the stipulation at the
start that computation “computes normally.”

36

D

t⟨
M

∣∣∣∣∣ case of
True → K1
False → K2

⟩|
=

caseD JM K of
True → D JK1K
False → D JK2K

Thus, we can easily return to Core after working in Sequent Core. There is
some overhead in translating back and forth, but early experience suggests it is
tolerable.

6 Conclusion
As we have seen, there are many tradeoffs in designing an intermediate language.
Some are clear-cut, such as how much low-level detail to expose—too little, and
the optimizer cannot make important decisions about safety and efficiency; too
much, and the IL becomes unworkable to implement or to reason about. Other
design points are subtle, such as the use of continuations in a functional IL.
Convenient approximations, such as functions as join points, may be hazardous.
We hope to have found the “sweet spot” in Sequent Core, which expresses control
flow, but with a minimum of syntactic weight, and which retains the strong
typing that continues to prove useful in reasoning and in compiler development.

Our preliminary implementation of Sequent Core, in the form of a new sim-
plifier module for GHC and a few other reimplemented optimization passes, does
in fact find cases much like our iterated case-lifting examples. Further avenues
of inquiry include:

• What more use can we make of the knowledge exposed by the Sequent Core
syntax, namely which definitions are join points versus normal functions?
For instance, there is indication that lambda-lifting, whereby local func-
tions are rewritten as global ones, is beneficial for many regular functions
but not for continuations. We hope to implement a Sequent-Core-based
lambda-lifting pass to explore this question.

• Currently, the only contification performed is similar to what GHC does
in translating from core to the lower-level IL, STG. Kennedy [Ken07] and
Fluet and Weeks [FW01] outline more aggressive contification algorithms.
Calls to continuations are always cheaper, so we expect that the more we
can contify, the better.

• As yet, we have only considered reworking various Core-to-Core optimiza-
tion passes in Sequent Core, but in some ways, STG is similar to Sequent
Core (it includes a let-no-escape declaration meant for join points). It is
possible that translating straight from Sequent Core to STG would im-
prove generated code by losing less information in translating through
Core; it is very likely to make for a simpler and faster translation rou-
tine, as there would be no need for on-the-fly contification, as is currently
performed.

37

References
[AB08] Amal Ahmed and Matthias Blume. “Typed closure conversion pre-

serves observational equivalence”. In: ICFP 2008. Proceedings of
the 13th ACM SIGPLAN international conference on Functional
programming. (Victoria, BC, Canada, Sept. 20–28, 2008). Ed. by
James Hook and Peter Thiemann. ACM, 2008, pp. 157–168. isbn:
978-1-59593-919-7.

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Prin-
ciples, Techniques, and Tools. Addison-Wesley, 1986. isbn: 0-201-
10088-6.

[App92] Andrew W. Appel. Compiling with Continuations. Cambridge Uni-
versity Press, 1992. isbn: 0-521-41695-7.

[App98a] Andrew W. Appel. Modern Compiler Implementation in ML. Cam-
bridge University Press, 1998. isbn: 0-521-58274-1.

[App98b] Andrew W. Appel. “SSA is Functional Programming”. In: SIG-
PLAN Notices 33.4 (1998), pp. 17–20.

[Ari+95] Zena M. Ariola et al. “The Call-by-Need Lambda Calculus”. In:
POPL’95. Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. (San
Francisco, California, USA, Jan. 23–25, 1995). Ed. by Ron K. Cytron
and Peter Lee. ACM Press, 1995, pp. 233–246. isbn: 0-89791-692-1.
url: http://dl.acm.org/citation.cfm?id=199448.

[Bar84] H.P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.
Revised Edition. Studies in Logic and the Foundations of Mathe-
matics 103. Amsterdam: North Holland, 1984. isbn: 0-444-07508-5.

[BDN09] Ana Bove, Peter Dybjer, and Ulf Norell. “A Brief Overview of Agda
- A Functional Language with Dependent Types”. In: TPHOLs 2009.
Theorem Proving in Higher Order Logics, 22nd International Con-
ference. (Munich, Germany, Aug. 17–20, 2009). Ed. by Stefan Berghofer
et al. Vol. 5674. Lecture Notes in Computer Science. Springer, 2009,
pp. 73–78. isbn: 978-3-642-03358-2.

[Bra13] Edwin Brady. “Idris, a general-purpose dependently typed program-
ming language: Design and implementation”. In: J. Funct. Program.
23.5 (2013), pp. 552–593.

[CKP05] Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton
Jones. “Associated type synonyms”. In: ICFP 2005. Proceedings of
the 10th ACM SIGPLAN International Conference on Functional
Programming. (Tallinn, Estonia, Sept. 26–28, 2005). Ed. by Olivier
Danvy and Benjamin C. Pierce. ACM, 2005, pp. 241–253. isbn:
1-59593-064-7.

38

[CKZ03] Manuel M. T. Chakravarty, Gabriele Keller, and Patryk Zadarnowski.
“A Functional Perspective on SSA Optimisation Algorithms”. In:
Electr. Notes Theor. Comput. Sci. 82.2 (2003), pp. 347–361.

[Cyt+91] Ron Cytron et al. “Efficiently Computing Static Single Assignment
Form and the Control Dependence Graph”. In: ACM Trans. Pro-
gram. Lang. Syst. 13.4 (1991), pp. 451–490.

[DF80] Jack W. Davidson and Christopher W. Fraser. “The Design and
Application of a Retargetable Peephole Optimizer”. In: ACM Trans.
Program. Lang. Syst. 2.2 (1980), pp. 191–202.

[Fla+93] Cormac Flanagan et al. “The Essence of Compiling with Contin-
uations”. In: PLDI 1993. Proceedings of the ACM SIGPLAN’93
Conference on Programming Language Design and Implementation.
(Albuquerque, New Mexico, USA, June 23–25, 1993). Ed. by Robert
Cartwright. ACM, 1993, pp. 237–247. isbn: 0-89791-598-4.

[FW01] Matthew Fluet and Stephen Weeks. “Contification Using Domina-
tors”. In: ICFP ’01. Proceedings of the Sixth ACM SIGPLAN In-
ternational Conference on Functional Programming. (Firenze (Flo-
rence), Italy, Sept. 3–5, 2001). Ed. by Benjamin C. Pierce. ACM,
2001, pp. 2–13. isbn: 1-58113-415-0.

[Gen35] Gerhard Gentzen. “Untersuchungen über das logische Schließen. I”.
German. In: Mathematische Zeitschrift 39.1 (1935), pp. 176–210.
issn: 0025-5874.

[HD97] John Hatcliff and Olivier Danvy. “Thunks and the λ-Calculus”. In:
J. Funct. Program. 7.3 (1997), pp. 303–319. url: http://journals.
cambridge.org/action/displayAbstract?aid=44093.

[Her95] Hugo Herbelin. “A λ-Calculus Structure Isomorphic to Gentzen-
Style Sequent Calculus Structure”. In: CSL ’94. Computer Science
Logic, 8th International Workshop, Selected Papers. (Kazimierz,
Poland, Sept. 25–30, 1994). Ed. by Leszek Pacholski and Jerzy
Tiuryn. Vol. 933. Lecture Notes in Computer Science. Springer,
1995, pp. 61–75. isbn: 3-540-60017-5.

[Hin05] Ralf Hinze. “Church numerals, twice!” In: J. Funct. Program. 15.1
(2005), pp. 1–13.

[How80] William A. Howard. “The Formulae-as-Types Notion of Construc-
tion”. In: To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism. Ed. by J.P. Seldin and J.R. Hindley. New
York: Academic Press, 1980.

[Kel95] Richard Kelsey. “A Correspondence between Continuation Passing
Style and Static Single Assignment Form”. In: IR’95. Proceedings
of the ACM SIGPLAN Workshop on Intermediate Representations.
(San Francisco, CA, USA, Jan. 22, 1995). Ed. by Michael D. Ernst.
ACM, 1995, pp. 13–23. isbn: 0-89791-754-5.

39

[Ken07] Andrew Kennedy. “Compiling with continuations, continued”. In:
ICFP 2007. Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming. (Freiburg, Germany, Oct. 1–
3, 2007). Ed. by Ralf Hinze and Norman Ramsey. ACM, 2007,
pp. 177–190. isbn: 978-1-59593-815-2.

[LA04] Chris Lattner and Vikram S. Adve. “LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation”. In: CGO
2004. Proceedings of the 2nd IEEE / ACM International Sympo-
sium on Code Generation and Optimization. (San Jose, CA, USA,
Mar. 20–24, 2004). IEEE Computer Society, 2004, pp. 75–88. isbn:
0-7695-2102-9.

[LLVM15] LLVM language reference manual. 2015. url: http://llvm.org/
docs/LangRef.html.

[LM69] Edward S. Lowry and C. W. Medlock. “Object code optimization”.
In: Commun. ACM 12.1 (1969), pp. 13–22.

[MYP07] Simon Marlow, Alexey Rodriguez Yakushev, and Simon Peyton
Jones. “Faster laziness using dynamic pointer tagging”. In: ICFP
2007. Proceedings of the 12th ACM SIGPLAN International Con-
ference on Functional Programming. (Freiburg, Germany, Oct. 1–3,
2007). Ed. by Ralf Hinze and Norman Ramsey. ACM, 2007, pp. 277–
288. isbn: 978-1-59593-815-2.

[MMH96] Yasuhiko Minamide, J. Gregory Morrisett, and Robert Harper. “Typed
Closure Conversion”. In: POPL’96. Conference Record of POPL’96:
The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Papers Presented at the Symposium. (St.
Petersburg Beach, Florida, USA, Jan. 21–24, 1996). Ed. by Hans-
Juergen Boehm and Guy L. Steele Jr. ACM Press, 1996, pp. 271–
283. isbn: 0-89791-769-3.

[Mor+98] J. Gregory Morrisett et al. “From System F to Typed Assembly
Language”. In: POPL ’98. Proceedings of the 25th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. (San
Diego, CA, USA, Jan. 19–21, 1998). Ed. by David B. MacQueen and
Luca Cardelli. ACM, 1998, pp. 85–97. isbn: 0-89791-979-3.

[Nov03] Diego Novillo. “Tree SSA A New Optimization Infrastructure for
GCC”. In: Proceedings of the 2003 GCC Developers’ Summit. 2003,
pp. 181–193.

[OLT94] Chris Okasaki, Peter Lee, and David Tarditi. “Call-by-Need and
Continuation-Passing Style”. In: Lisp and Symbolic Computation
7.1 (1994), pp. 57–82.

40

[Par92] Michel Parigot. “��-Calculus: An algorithmic interpretation of classi-
cal natural deduction”. In: Logic Programming and Automated Rea-
soning. Ed. by Andrei Voronkov. Vol. 624. Lecture Notes in Com-
puter Science. Springer Berlin Heidelberg, 1992, pp. 190–201. isbn:
978-3-540-55727-2.

[Pey87] Simon L. Peyton Jones. The Implementation of Functional Program-
ming Languages. Prentice-Hall, 1987.

[PL91] Simon L. Peyton Jones and John Launchbury. “Unboxed Values
as First Class Citizens in a Non-Strict Functional Language”. In:
FPCA 1991. Proceedings of the 5th ACM Conference on Functional
Programming Languages and Computer Architecture. (Cambridge,
MA, USA, Aug. 26–30, 1991). Ed. by John Hughes. Vol. 523. Lec-
ture Notes in Computer Science. Springer, 1991, pp. 636–666. isbn:
3-540-54396-1.

[PS98] Simon L. Peyton Jones and André L. M. Santos. “A Transformation-
Based Optimiser for Haskell”. In: Sci. Comput. Program. 32.1-3
(1998), pp. 3–47.

[PM97] Simon Peyton Jones and Erik Meijer. “Henk: a typed intermediate
language”. In: TIC 1997. (Amsterdam, The Netherlands, June 8,
1997). 1997.

[Pey+06] Simon Peyton Jones et al. “Simple unification-based type inference
for GADTs”. In: ICFP 2006. Proceedings of the 11th ACM SIG-
PLAN International Conference on Functional Programming. (Port-
land, Oregon, USA, Sept. 16–21, 2006). Ed. by John H. Reppy and
Julia L. Lawall. ACM, 2006, pp. 50–61. isbn: 1-59593-309-3.

[Pie02] Benjamin C. Pierce. Types and programming languages. MIT Press,
2002. isbn: 978-0-262-16209-8.

[Plo75] Gordon D. Plotkin. “Call-by-Name, Call-by-Value and the λ-Calculus”.
In: Theor. Comput. Sci. 1.2 (1975), pp. 125–159.

[Plo77] Gordon D. Plotkin. “LCF Considered as a Programming Language”.
In: Theor. Comput. Sci. 5.3 (1977), pp. 223–255.

[Pop06] Sebastian Pop. “The SSA representation framework: semantics, anal-
yses and GCC implementation”. PhD thesis. École Nationale Supé-
rieure des Mines de Paris, 2006.

[Pro59] Reese T. Prosser. “Applications of boolean matrices to the analysis
of flow diagrams”. In: Papers presented at the December 1-3, 1959,
eastern joint IRE-AIEE-ACM computer conference. ACM. 1959,
pp. 133–138.

[Rey98] John C. Reynolds. “Definitional Interpreters for Higher-Order Pro-
gramming Languages”. In: Higher-Order and Symbolic Computation
11.4 (1998), pp. 363–397.

41

[RWZ88] Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck. “Global
Value Numbers and Redundant Computations”. In: POPL ’88. Pro-
ceedings of the Fifteenth Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. (San Diego, Califor-
nia, USA, Jan. 10–13, 1988). Ed. by Jeanne Ferrante and P. Mager.
ACM Press, 1988, pp. 12–27. isbn: 0-89791-252-7.

[San95] André L. M. Santos. “Compilation by Transformation in Non-Strict
Functional Languages”. PhD thesis. University of Glasgow, 1995.

[SS76] Guy Lewis Steele, Jr. and Gerald Jay Sussman. Lambda: The Ul-
timate Imperative. AI Memo 353. Massachusetts Institute of Tech-
nology, Artificial Intelligence Laboratory, Mar. 1976.

[Sul+07] Martin Sulzmann et al. “System F with type equality coercions”. In:
TLDI ’07. Proceedings of the 2007 ACM SIGPLAN International
Workshop on Types in Language Design and Implementation. (Nice,
France, Jan. 16, 2007). Ed. by François Pottier and George C. Nec-
ula. ACM, 2007, pp. 53–66. isbn: 1-59593-393-X.

[SS75] Gerald Jay Sussman and Guy Lewis Steele, Jr. Scheme: An inter-
preter for untyped lambda-calculus. AI Memo 349. Massachusetts In-
stitute of Technology, Artificial Intelligence Laboratory, Dec. 1975.

[XCC03] Hongwei Xi, Chiyan Chen, and Gang Chen. “Guarded recursive
datatype constructors”. In: POPL 2003. Conference Record of POPL
2003: The 30th SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. (New Orleans, Louisiana, USA, Jan. 15–
17, 2003). Ed. by Alex Aiken and Greg Morrisett. ACM, 2003,
pp. 224–235. isbn: 1-58113-628-5.

[XP99] Hongwei Xi and Frank Pfenning. “Dependent Types in Practical
Programming”. In: POPL ’99. Proceedings of the 26th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. (San
Antonio, TX, USA, Jan. 20–22, 1999). Ed. by Andrew W. Appel
and Alex Aiken. ACM, 1999, pp. 214–227. isbn: 1-58113-095-3.

42

