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Abstract—The past several decades have witnessed tremendous strides in the capabilities of computational chemistry simulations,
driven in large part by the extensive parallelism offered by powerful computer clusters and scalable parallel programming methods.
However, cluster computing has also seen flattening processor clock frequencies, unsustainable increases in power requirements, and
more complicated software that accommodates for the vast diversity of modern heterogeneous computer systems. As scientific
methods for modeling and simulating atoms and molecules continue to evolve, software developers struggle to keep up. This position
paper describes the primary challenges that face the computational chemistry community, along with recent solutions and techniques
that circumvent these difficulties. In particular, I describe in detail the 3 primary models used to simulate atoms and molecules:
quantum mechanics (QM), molecular mechanics (MM), and coarse-grained (CG) models. The research literature is rife with examples
that utilize high performance computing (HPC) to scale these models to large and relevant chemical problems. However, the grand
challenge lies in effectively bridging these scales, both spatially and temporally, to study richer chemical models that go beyond
single-scale physics. This paper describes the state of the art in multiscale computational chemistry, with an eye toward improving
developer productivity with upcoming exascale architectures, in which we require productive software environments, enhanced support
for coupled scientific workflows, adaptive and introspective runtime systems, resilience to hardware failures, and extreme scalability.
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1 INTRODUCTION

COMPUTATIONAL chemistry codes comprise some of the
most computationally expensive scientific applications

of all time, which explains why they are often at the fore-
front of high performance computing capabilities, both in
terms of hardware [1, 2] and software [3, 4]. These codes
make use of novel and advanced algorithms, program-
ming models, modern computer architectures, and even
data mining and machine learning techniques [5–12]. For
example, density function theory codes scale to more than
6,000,000 threads [13], large-scale tensor contractions incor-
porate advanced communication optimal algorithms [14],
Hartree-Fock implementations use several novel program-
ming paradigms [15], and molecular dynamics simulations
can cross many orders of magnitude in space and time [16].
These simulations are computationally expensive for many
reasons, the primary of which is their considerable algo-
rithmic complexity. The most accurate models of atoms and
molecules must incorporate quantum mechanics (QM), and
such methods can scale up to O(n8) in practice, where n
corresponds to the number of basis functions used to repre-
sent the system. QM algorithms are some of the most com-
putationally expensive of all practical scientific simulations,
and they are intractable for all but the smallest of chemical
systems. For example, the largest calculations that include
coupled cluster theory simulate only a few dozen atoms.
On the other hand, various forms of density functional
theory are capable of modeling many thousands of atoms,
and classical models can track billions of atoms [17]. In
fact, many chemical models exist, each achieving a different
level of accuracy without incurring the extreme cost of full

QM treatment. QM may not be necessary to understand
dynamic, thermodynamic, and structural properties of a
chemical system, so molecular mechanics (MM) can be used
instead. Furthermore, if MM requires tracking too many
particles and/or too long of time-scales, then coarse grain-
ing (CG) molecular components can still capture relevant
physics. A primary goal of this position paper is to describe
these different models individually, highlighting important
optimizations made, so that simulations can effectively ap-
ply modern high performance computing (HPC) techniques.
However, the grand challenge lies in effectively bridging
these scales, both spatially and temporally, to study richer
chemical models that go beyond single-scale physics.

The development of multiscale and multiresolution
modeling software is important for many computational
physics and chemistry simulations. For example, when
modeling a biological system, certain regions must contain
relatively high detail (such as the active binding site of
an enzyme), while other regions require much less detail
(such as the water solvent that surrounds the enzyme). Of
particular interest are methods that bridge the electronic
structure of relatively small regions, described by QM, with
surrounding parts described by MM. In fact, the scientists
who invented these methods recently won the Nobel prize
in chemistry in 2013 [18]. QM/MM methods have also
inspired adding a third level of coarse-grained resolution with
QM/MM/CG methods in very recent research [19, 20]. Fig-
ure 1 shows an example of a QM/MM/CG system in which
the enzyme is modeled with QM, several proteins modeled
with MM, and the water solvent modeled with CG. The
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Fig. 1: An example of a QM/MM/CG system in which the
enzyme is modeled with QM, several proteins modeled with
MM, and the water solvent modeled with CG. This image is
from [19].

ultimate challenge here is accomplishing adaptive resolution,
which allows for different regions of the simulation domain
to be modeled with more or less granularity, depending on
the desired level of accuracy. Because of its novelty, adaptive
resolution computational software generally lacks thorough
performance analyses and efficient application of modern
optimizations and HPC techniques. This paper describes
the state of the art in multiscale computational chemistry,
with an eye towards improving developer productivity on
upcoming exascale architectures, where we require produc-
tive software environments, enhanced support for coupled
scientific workflows, adaptive and introspective runtime
systems, resilience to hardware failures, and extreme scal-
ability.

The high-level organization of the paper is as follows:

• Section 2: Challenges at extreme scale
• Section 3: Quantum Chemistry models
• Section 4: Molecular Mechanics models
• Section 5: Coarse-Grained models
• Section 6: Multiscale and multiresolution techniques
• Section 7: Relevant applications
• Section 8: Conclusion and future directions.

2 CHALLENGES AT EXTREME SCALE

For several decades, computational scientists have come to
rely on the steady increase of CPU clock rates for improving
the performance of their application codes. Moore’s Law,
the economic observation that the number of transistors
in dense integrated circuit dies roughly doubles every
two years, appears to hold into 2015, but there remains
another serious problem. Dennard Scaling, the observation
that power density remains roughly constant as clock rate
increases and die size shrinks, has unequivocally ended,
which also threatens the end of Moore’s Law. Post-petascale
machines will struggle to overcome this power wall without
drastic adaptations to how computational codes utilize the
features of evolving architectures. This will involve efficient
load balancing in the face of millions of cores, simultaneous
multithreading, vectorizing hardware units, unconventional
non-uniform memory hierarchies, and new programming
models [21].

Rapidly changing programming environments and the
need to scale to millions of cores have lead to a crisis in
computational science, wherein codes often scale poorly,
software engineering practices lack agility and rigor, and
software is difficult to maintain and extend due to increasing
complexity [22]. The computational science community and
culture requires a radical shift towards improving software
productivity to sufficiently adapt to extreme-scale comput-
ing platforms [21–25]. Common themes arise in these re-
ports as to what is most important for effectively navigating
extreme-scale requirements:

• Component or modular software
• Software productivity metrics
• Software methodology and architecture
• Software development infrastructure
• Scientific workflows (often tightly coupled)
• Verification and validation
• Effective development productivity of teams
• Support for legacy codes
• Multiphysics/multiscale component coupling
• Runtime feedback and control

The sections below consider how these topics are addressed
in computational chemistry applications. While these re-
quirements are common to most major computational sci-
ence software projects, computational chemistry codes are
no exception. One goal of this paper is to address how these
requirements are satisfied by previous research and recent
advancements in chemistry simulation software, along with
promising ideas for future improvements. The following
sections will cover advances in computational chemistry ap-
plications, highlighting when any of the above requirements
are well-supported.

3 HPC IN QUANTUM CHEMISTRY

Quantum Chemistry (QC) is the study of atoms and
molecules using a quantum mechanical model. In quan-
tum mechanics, energy is quantized, particles obey the
Heisenberg uncertainty principle, and wave-particle duality
always holds [26]. A thorough introduction to this topic
is beyond the scope of this paper, so instead, we concern
ourselves with the application of QC to the specific domain
described in the next introductory Section 3.1. We then focus
on applications that utilize parallel computing to push the
limits of QC simulations, in terms of their size and higher-
order methods that improve accuracy. Section 3.2 highlights
the fact that there are several categories of QC, each with
a different fundamental approach, and the subsequent sub-
sections describe these categories in more detail. Section 3.3
describes the dominant parallel programming models used
in QC, with a focus on the PGAS model because of its
applicability and its wide-spread acceptance in QC codes.
Finally, Section 3.4 presents and describes some of the more
influential algorithms and methods used in QC codes.

3.1 Introduction and Basics
The goal of QC calculations is to approximately solve
the many-body time-independent Schrödinger equation,
H |ψ〉 = E |ψ〉, where H is the Hamiltonian operator, which
extracts the sum of all kinetic and potential energies, E,
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from the wavefunction, |ψ〉. Here we make the standard
set of assumptions: the Born-Oppenheimer approximation
(in which neutrons are fixed but electrons move freely),
Slater determinant wavefunctions (that easily satisfy the
anti-symmetry principle), and non-relativistic conditions.
After these approximations, our focus resides only on the
electronic terms of the Hamiltonian and the wavefunction:
Helec |ψelec〉 = E |ψelec〉.

The molecular orbitals that express the electronic wave-
function |ψelec〉 consist of a sum of basis functions from set
{φj}. We desire {φj} to be complete, but this is not practical,
since it generally requires an infinite number of functions.
We therefore truncate to a finite n value large enough to
balance the trade-off between accuracy and computational
cost:

|ψi〉 =

n∑
j=1

cij |φj〉 (1)

Typically, each basis function is composed of one or more
Gaussian primitive functions centered at the nucleus location.
As we will see in Section 3.2.1, 6-dimensional integrals
containing these primitives are the dominant computational
component of QC applications. However, because Gaussian
integrals have convenient analytical solutions, the complex-
ity of a single integral is in practice O(K4), where K
is the number of Gaussians used to represent the basis
functions [27, 28].

3.2 Overview of the Most Popular QC Methods
Broadly speaking, QC methods fall into two categories: ab
initio, and everything else. The phrase ab initio means “from
first principles”, which in computational chemistry means
that these methods converge to the exact solution of the
Schrödinger equation as the collection of basis functions
tends towards completeness. The most popular classes of
ab initio methods are Hartree-Fock, post-Hartree-Fock, and
multireference methods. Subsection 3.2.1 covers the Hartree-
Fock method, and subsection 3.2.2 covers various post-
Hartree-Fock methods; but other sources [29, 30] better
describe the multireference methods, which are quite similar
to post-Hartree-Fock.

Another QC method that some consider ab initio is den-
sity functional theory (DFT), discussed in subsection 3.2.3.
DFT is the most widely used of the QC methods, and it
has many interesting HPC applications, a few of which we
consider below. Finally, we briefly consider semi-empirical
methods in subsection 3.2.4, and quantum Monte Carlo in
subsection 3.2.5.

3.2.1 Hartree-Fock and the Self-Consistent Field Method
The Hartree-Fock (HF) method is the most fundamental
of the QC methods, because it is the fundamental starting
point for approximately solving the Schrödinger equation.
HF attempts to determine the cij values that best mini-
mize the ground state energy, in accordance with the vari-
ational principle. The ground state is the configuration of
the molecule, along with all its electrons, that exhibits the
lowest possible energy. All other states are called excited
states. In computational chemistry, the variational principle
states that the energy of an approximate wave function is
always too high; therefore, the best wavefunction is the one

Algorithm 1 The SCF Procedure

Inputs:
1) A molecule (nuclear coordinates, atomic numbers, and N elec-
trons)
2) A set of basis functions {φµ}

Outputs:
Final energy E, Fock matrix F, density matrix D, coefficient matrix
C

1: Calculate overlap integrals Sµν , core Hamiltonian termsHcore
µν , and

the two-electron integrals (µν|λσ).
2: Diagonalize the overlap matrix S = UsU† and obtain X = Us1/2.
3: Guess the initial density matrix D.
4: while E not yet converged do
5: Calculate F from Hµν , D, and (µν|λσ).
6: Transform F via F′ = X†FX.
7: E =

∑
µ,ν Dµν(H

core
µν + Fµν)

8: Diagonalize F′ = C′εC′†.
9: C = XC′

10: Form D from C by Dµν = 2
∑N/2
i CµiC

∗
νi.

11: end while

that minimizes the ground state energy. This principle is
the foundation for all iterative QC methods: The degree
of energy minimization determines the relative quality of
different QC results.

By utilizing a numerical technique for iteratively con-
verging the energy, each subsequent iteration becomes more
and more consistent with the field that is imposed by the in-
put molecule and basis set. The method is accordingly called
the self-consistent field (SCF) method, and Algorithm 1
shows its de facto procedure in pseudocode, with the goal
of solving the generalized eigenvalue problem FC = SCε,
where F is the Fock matrix (defined below in Eqn. 2), C is
the matrix composed of expansion coefficients from Eqn. 1,
S is the matrix composed of overlap integrals taken over all
space

Sij =

∫
φ∗i (r)φj(r)dr = 〈φi|φj〉 ,

and ε is the energy eigenvalue. Many SCF iterations are
required for energy convergence, so steps 1-3 of Algorithm 1
cost much less than steps 5-10. Step 5 normally comprises
a majority of the execution time in Hartree-Fock codes,
because each element of the Fock matrix requires computing
several two-electron integrals:

Fij = Hcore
ij +

∑
λσ

(2(µν|λσ)− (µλ|νσ)) (2)

The two-electron integrals on the right-hand side are plenti-
ful and expensive to compute [31]. They take this form:

(µν|λσ) =

∫∫
φ∗µ(r1)φν(r1)r−112 φ

∗
λ(r2)φσ(r2)dr1dr2 (3)

As mentioned, there are formally O(n4) integrals to com-
pute within the basis set. However, from the definition
in 3, we see there are only ∼ n4/8 unique integrals by
permutational symmetry, and the number of non-zero in-
tegrals is asymptotically O(n2) when Schwartz screening is
employed.

While the two-electron integrals comprise the most com-
putation time in SCF, communication and synchronization
overheads can very well dominate, particularly at large
scale. Inherent communication costs arise from the parallel
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decomposition of HF codes, leading to load imbalance and
synchronization delays. Parallel HF applications also exhibit
highly diverse accesses across distributed process memory
spaces. As such, HF is well-suited for a programming model
that emphasizes lightweight and one-sided communication
within a single global address space. This is the subject of
Section 3.3.1.

Nearly all quantum chemistry codes implement HF, and
many contain parallel versions. QC codes with parallel
versions include NWChem, Q-Chem, GAMMESS, Gaus-
sian, Psi, CFOUR, GPAW, MOLPRO, ACES III, Quantum
ESPRESSO, MPQC and many more. Many consider the most
scalable code to be NWChem [3, 4], but there remain serious
scalability issues due to the inherent load imbalance and
the difficulty in exploiting data locality at scale. The load
imbalance comes from the fact that we must bundle the 2-
electron integrals into what are called shell quartets in order
to reuse a lot of the intermediate integral values. Formally,
a shell quartet is defined as:

(MN |PQ) = {(ij|kl) s.t. i ∈ shell M,

j ∈ shell N,
k ∈ shell P,
l ∈ shell Q}

where “shells” refer to the common notion of electrons that
have the same principal quantum number, as one learns in
their 1st year of general chemistry. Because this bundling is
an essential optimization, it introduces more load imbalance
to the problem, because some quartets are simply more ex-
pensive than others, particularly after screening out quartets
that are close to zero. Formally, a two-electron integral is
screened if it satisfies this condition:√

(ij|ij)(kl|kl) < τ

where τ is the desired screening threshold value.
Optimizing for locality is also very difficult, because

tiled accesses across the 4-dimensional space of two-electron
integral permutations are wide-spread, the data is sparse, re-
distribution is expensive, and the locality patterns strongly
depend on the input molecular geometry.

3.2.2 Post-Hartree-Fock Methods

Post-Hartree-Fock (PHF) methods improve on the Hartree
Fock approximation by including the electron correlation
effects that HF mostly ignores (except for parallel-spin
electrons [32], the discussion of which is beyond the scope
of this paper). In HF, electron correlation is treated in an
average way, whereas realistic models must account for
the fact that each electron feels instantaneous Coulombic
repulsions from each of the other electrons. PFH methods
still invoke the Born-Oppenheimer approximation under
non-relativistic conditions, but now include more than a
single Slater determinant.

The primary PHF methods are configuration interac-
tion (CI), coupled cluster (CC), Møller-Plesset perturbation
theory, and multi-reference methods; but there exist many
others. Here, we focus on a brief introduction and overview
of CI and CC, although it is difficult to appreciate without a
full treatment, as in [33].

PHF methods often utilize a notation for describing
excited determinants with respect to the reference HF wave-
function, |ΨHF〉. Formally, HF assumes that each electron is
described by an independent one-electron Hamiltonian:

hi = −1

2
∇2
i −

M∑
k=1

Zk
rik

such that hi |ψi〉 = εi |ψi〉. Because the total Hamiltonian
is assumed separable, the many-electron solution becomes
|ΨHF〉 = |ψ1ψ2 · · ·ψN 〉. On the other hand, PHF methods
strive to discover the exact wavefunction:

|Ψ〉 = c0 |ΨHF〉+
occ.∑
i

vir.∑
r

cri |Ψr
i 〉+

occ.∑
i<j

vir.∑
r<s

crsij
∣∣Ψrs

ij

〉
+· · · (4)

where the notation |Ψr
i 〉 refers to a determinant in which

electron i is in excited (or virtual) state r and
∣∣∣Ψst

jk

〉
refers

to a doubly-excited determinant in which electron j is in
excited state s, and electron k is in excited state t. Notice that
if we include all possible configuration states, then we have
exactly solved this form of the electronic Schrödinger equa-
tion. This accomplishment is referred to as full CI, and it is
never accomplished in practice. However, given a truncated
form of Eqn. 4 (for example, including the first two terms is
referred to as CISD), we apply the linear variational method
to form the matrix representation of the Hamiltonian, then
find the eigenvalues of the matrix. Specifically, we solve the
eigenvalue problem:

Hc = ESc

where c is now the column-vector of coefficients for our
wavefunction in the desired basis set, S is the overlap
matrix, and H is the CI Hamiltonian.

CC theory, on the other hand, assumes an exponential
ansatz operator applied to the reference wavefunction:

|ΨCC〉 = eT |ΨHF〉

where the T operator definition is:

T = T1 + T2 + T3 + ...

Tn =
1

(n!)2

∑
a1...an
i1...in

ta1...ani1...in
a†a1 ...a

†
anain ...ai1

Each ta1...ani1...in
term is a tensor with rank 2n that represents the

set of amplitudes for all possible excitations of n electrons to
excited states in virtual orbitals. The terms ai and a†a are the
creation and annihilation operators, respectively, that act on
electron states. The creation operator adds a row (electron)
and column (orbital) to the Slater determinant, whereas the
annihilation operator removes a row and column. By far, the
most computationally expensive component of CC codes is
the computation of tensor contractions to determine the Tn
terms. This is the object of much advanced research, and
we discuss specific accomplishments in Sections 3.4.3, 3.4.4,
and, 3.4.5.
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3.2.3 Density Functional Theory
Density Functional Theory (DFT) is the most widely used
QC method (based on the number of citations throughout
the history of Physical Reviews [34]). It also happens to be
the most prevalent method used for large scale simulations,
parallel performance studies, and applications in the chemi-
cal industry [35]. DFT has the distinct advantage of being
able to ignore the complicated features of the electronic
wavefunction, while still accounting for correlation effects
that Hartree-Fock ignores. It is strongly based on the notion
of the electron density, which is defined as the integral over
the spin (si) and spatial (ri) coordinates:

ρ(r) = N
∑
s1

· · ·
∑
sN

∫
dr2 · · ·

∫
drN |Ψ|2

where Ψ is actually a function of Ψ(r, s1, r2, s2, · · · , rN , sN ).
Unlike Ψ, the electron density ρ is a physical observable
that can be measured experimentally, and its integral over
all space is conveniently the total number of electrons:

N =

∫
ρ(r)dr

The goal of most DFT methods is to solve the so-
called Kohn-Sham (KS) equations (in similar form to the
Schrödinger eigenvalue equations) [30] by representing the
total energy of the system as a functional. For example,
Thomas and Fermi produced the first DFT model [36] by
writing the kinetic energy as:

TTF [ρ(r)] =
3

10
(3π2)2/3

∫
ρ5/3(r)dr (5)

This notation F [ρ(r)] implies that F is a functional, since it
takes ρ, which itself is a function of r, as its argument. In a
pivotal result, Hohenburg and Kohn famously proved [37]
that some functional of total energy, E[ρ(r)], must exist
which represents the many-body ground state both exactly
and uniquely. However, this proof specifies neither the form
of the functional, nor how to obtain it. Accordingly, KS-
DFT research often consists of exploring different forms
of these functionals, and classifying their applicability to
certain chemical systems.

Solving the orbital coefficients using KS-DFT is very sim-
ilar to HF [38], except instead of the Fij elements composing
the Fock matrix as in Eqn. 2, we have

Fij = Hcore
ij +GJij + αGKij + βGX-DFT

ij + γGC-DFT
ij

where the first 3 terms on the right hand side are the same
as in HF, but the final two more difficult terms consist
of functionals of the energy, such as in Eqn. 5. Here, the
constants α, β, and γ can enable spanning the limits of HF
and DFT and any hybrid mixture of the two. Because of
DFT’s computational similarity, it shares the same bottle-
necks: calculating all the two-electron integrals, forming the
Fock and Density matrices,

3.2.4 Semi-Empirical Methods
Semi-empirical methods differ from ab-initio by incorporat-
ing empirical observations to account for errors made by
assumptions and approximations inherent to solving the
Schrödinger equation in practice. For example, including

empirical constants in terms of the secular determinant
may better approximate resonance integrals [30]. A popu-
lar semi-empirical method is the complete neglect of dif-
ferential overlap (CNDO), which adopts a series of con-
ventions and parameterizations to drastically simplify the
application of HF theory. Specifically, CNDO only considers
valence electrons and makes the zero differential overlap
approximation, which ignores certain integrals [29], reduc-
ing the algorithmic complexity from O(n4/8) ∼ O(n4) to
O(n(n+ 1)/2) ∼ O(n2).

At this point it is important to note that methods in ma-
chine learning [9, 39] often show less error than certain semi-
empirical methods. If a semi-empirical does not offer insight
from a parameterization, then it may be a better choice to
use a machine learning method to improve accuracy.

3.2.5 Quantum Monte Carlo
Quantum Monte Carlo (QMC) is briefly considered here for
the sake of completeness, but also because of its extreme
scalability [40] and promising results on GPUs [41]. There
are many different QMC schemes, but within the limited
scope of this paper it suffices to consider those that fall un-
der the variational Monte Carlo category. In short, this QMC
method takes the variational principle (defined in 3.2.1) one
step further to evaluate the two-electron integrals numeri-
cally. Because the energy depends on a given set of varia-
tional parameters, QMC utilizes mathematical optimization
to determine the ground state energy by selecting the best
set of parameters.

3.3 Parallel Programming Models in QC
QC codes have extraordinary demands in term of memory
requirements. For instance, consider the well-known hier-
archy of CC methods that provides increasing accuracy at
increased computational cost [33]:

· · · < CCSD < CCSD(T ) < CCSDT

< CCSDT (Q) < CCSDTQ < · · · .

Here, S refers to truncation at the singles term, D to the
doubles term, T to triples, and Q to quadruples (terms with
parentheses refer to perturbation terms). The simplest CC
method that is generally useful is CCSD, has a computa-
tional cost of O(n6) and storage cost of O(n4), where n
is again the number of basis functions. CCSD(T) is a very
good approximation to the full CCSDT method, which re-
quires O(n8) computation and O(n6) storage. The addition
of quadruples provides chemical accuracy, albeit at great
computational cost. CCSDTQ requires O(n10) computation
and O(n8) storage. Needless to say, these memory require-
ments quickly become prohibitive for molecular systems of
moderate size. For even just a few water molecules with
a reasonable basis set such as cc-pvdz, the application can
easily consume dozens of GBs, necessitating some form
of distributed memory management. Typically, distributed
codes distribute the Fock matrix in some sort of block cyclic
or irregular block cyclic fashion.

Furthermore, due to the nature of the entire collection
of two-electron integrals, processes that own a particular
block of the Fock matrix require access to blocks owned
by other processes during distributed computation. Treating
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such communication algorithms with point-to-point mes-
sage passing is intractable and requires high synchroniza-
tion overhead. QM codes therefore require efficient one-sided
message passing capabilities in which a process can get
or put data into the memory of a remote process without
the explicit receiving communication call, or even participation
of the CPU on the remote process. Nowadays, many modern
network interconnects such as InfiniBand, PAMI (on Blue
Gene/Q), iWARP, Cray Gemini/Aries, support such remote
direct memory access (RDMA) capabilities. These opera-
tions are necessary, not only for tiled accesses to compute
elements of the Fock and density matrices, but also to sup-
port nxtval like dynamic load balancing, task assignment,
and work stealing [42–44].

The extraordinary demands of QC simulations require
the support and development of novel and productive
parallel programming models and paradigms. Most QC
codes run on a single compute node, but the most popular
frameworks, such as GAMESS, ACE III, NWChem, and
Gaussian have parallel implementations. Most parallel HF
codes listed in section 3.2.1 use MPI for distributed message
passing, but GAMESS, NWChem, GTFock do not (neces-
sarily). Interestingly, GAMESS uses the distributed data in-
terface (DDI) [45] for message passing, which originated as
an interface to support one-sided messaging. At the time of
DDI’s inception, the MPI-2 specification included one-sided
memory window instantiations (MPI_WIN_CREATE) and
subsequent put and get operations (MPI_PUT/MPI_GET)
but these functions were apparently not fully offered by
any vendor. The DDI programming model emphasizes three
types of memory: replicated data (one copy of small matri-
ces one each CPU), distributed data (for large matrices or
tensors spread across the cluster), and node-replicated (for
data to be stored once per compute node).

3.3.1 PGAS in Quantum Chemistry
The algorithmic characteristics and resource requirements
of HF (and post-HF) methods clearly motivate the use of
distributed computation. HF tasks are independent and free
to be computed by any available processor. Also, simulating
a molecule of moderate size has considerable memory re-
quirements that can easily exceed the memory space of a sin-
gle compute node. However, at a high level of abstraction,
indexing into distributed HF data structures need not be different
than indexing shared memory structures. This programming
abstraction is the basis of the partitioned global address
space (PGAS) model for distributing and interacting with
data. In computational chemistry, this model is advanta-
geous for interacting with arrays and tensors productively
and efficiently.

The PGAS model utilizes one-sided communication se-
mantics, allowing a process to access remote data with
a single communication routine. Remote memory access
(RMA) is particularly advantageous in HF applications for
three primary reasons. First, HF exhibits highly irregular
access patterns due to the intrinsic structure of molecules
and the necessary removal of integrals from the Fock matrix
in a procedure called “screening”. Second, there is a need
for efficient atomic accumulate operations to update tiles
of the global matrices without the explicit participation of
the target process. Finally, dynamic load balancing in HF is

usually controlled by either a single atomic counter [3], or
many counters [43, 46], both of which require a fast one-
sided fetch-and-add implementation.

The NWChem software toolkit [47] paved the way to-
wards the ubiquity of PGAS in computational chemistry
using the Global Arrays (GA) library and the underlying
ARMCI messaging infrastructure [3, 4]. GTFock followed
suit, also using GA for tiled accesses across the irregularly
distributed Fock and density matrices. The GA model is
applicable to many applications, including ghost cells and
distributed linear algebra, but GA’s primary use today is for
quantum chemistry. GA is limited to a C and Fortran API,
but does have Python and C++ wrapper interfaces. There
exist many other PGAS runtimes, including but not limited
to: UPC++, Titanium, X10, Chapel, Co-Array Fortran, and
UPC.

3.4 Key Algorithmic Improvements
This section highlights some key algorithmic improvements
made to QC codes, particularly in the area of parallel
computing and HPC. Parallel strong scaling is crucial for
QC codes, but the inherent load imbalance and communi-
cation bound nature of the calculations require innovative
optimization approaches. The following sections describe
several such optimizations.

3.4.1 Load Balancing: Static Partitioning + Work Stealing
Section 3.2.1 describes why the primary hindrance to scal-
ability in QC codes is often due to load imbalance, and
much research tackles this problem [43, 48, 49]. Although
individual two-electron integrals do not possess drastic
differences in execution time, the crucial issue is that bundles
of shell quartets can vary greatly in computational cost. It
is necessary to designate shell quartets as task units in HF
codes because it enables the reuse of intermediate quantities
shared by basis functions within a quartet [46, 50]. The goal
is to assign these task units to processors with minimal
overhead and a schedule that reduces the makespan.

NWChem balances load with a centralized dynamic
scheduler, which is controlled by a single global counter
control referred to as nxtval (for “next value”). Each task
has a unique ID, and a call to nxtval fetches the current ID
of an uncomputed task, then atomically adds 1 to the counter
so the next task gets executed. Once the counter reaches
the total number of tasks, all work is done. For this reason,
the performance of RMA fetch-and-add operations is very
important for the scalability of computational chemistry
codes like NWChem and GTFock. This has motivated the
implementation and analysis of hardware-supported fetch-
and-ops on modern interconnects, such as Cray Aries using
the GNI/DMAPP interfaces [42].

The nxtval scheme exhibits measurable performance
degradation caused by network contention, but it can be
alleviated by an informed static partitioning of tasks and
the addition of atomic counters to every process or compute
node. This strategy is called Inspector/Executor load bal-
ancing, which shows substantial speedup in NWChem [43].
The GTFock project takes this notion one step further
by following the static partitioning phase with work steal-
ing [44, 46]. During the local phase, each process only ac-
cesses the local memory counter; however, during the work
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Fig. 2: GTFock improves NWChem’s performance of
Hartree-Fock calculations. (The top plot is from [44]).

stealing phase, the process accesses other counters remotely.
As illustrated in Algorithm 2, each process in GTFock begins
an SCF iteration by prefetching the necessary tiles from
the global density matrix and storing them into a local
buffer. After all local tasks are computed, the global Fock
matrix is updated. Then, each process probes the nxtval
counters of remote processes, looking for work to steal.
This algorithm results in many more local fetch-and-adds
than remote, which has important performance implications
for how the operations take place. GTFock shows good
Xeon Phi performance using OpenMP and vectorized two-
electron integral calculation with the OptErd library [44].
Futhermore, the UPC++ PGAS extension for C++ [51] has
improved performance by up to 20% using the new DArray
library [52], as illustrated in Fig. 3.

3.4.2 Diagonalization vs. Purification
One of the computational bottlenecks of QM codes is the
diagonalization of the Fock matrix, which is approximately
O(n3). Most parallel QM implementations make use of a
parallel linear algebra library such as ScaLAPACK, which
is a reasonable choice in terms of scalability. However, an
alternative ”diagonalization-free” technique called purifica-
tion [53] claims to achieve linear scaling by exploiting the

fact that elements of the density matrix are short range in
coordinate space. This means that matrix elements, ρij → 0,
as their pairwise distances, Rij → ∞. By truncating ele-
ments beyond a certain cutoff distance, this method may
achieve linear scaling with system size.

GTFock and the UPC++ HF implementation described
in the previous subsection both make use of the purifica-
tion technique, but more needs to be done to compare its
performance relative to standard diagonalization methods.
For instance, we know that GTFock SCF iterations take
far less time than NWChem iterations, but we do not yet
know about convergence properties of the estimated ground
state energy between the two approaches. For instance, the
performance per iteration of purification may be better than
diagonalization, but the convergence may be slow enough
to deem these improvements fruitless. Future work should
consider such convergence behavior in the context of overall
application performance.

3.4.3 Coupled Cluster and Tensor Contractions
For higher level QM methods such as coupled cluster, the
tensor contraction is the most important operation related
to achieving scalable performance. The tensor contraction
itself is essentially a matrix multiplication, except between
tensors, which are multidimensional arrays. In fact, tensor
contractions can be reduced to matrix multiplication by
a series of index reordering operations. Most of the load
imbalance in NWChem arises from such a decomposition of
multidimensional tensor contractions into a large collection
of matrix multiplication operations. Interesting work by
Solomonik et al. [54] considers a cyclic distribution of tensor
data with the Cyclops Tensor Framework (CTF), which
preserves symmetry and drastically reduces inherent load
imbalance showing significant speedups over ScaLAPACK
and NWChem. Further work proves a communication op-

Fig. 3: By default, UPC++ uses a regular round-robin distri-
bution (upper left), while GA uses a regular 2D block-cyclic
distribution (upper right). After screening and repartition-
ing, HF arrays are irregularly distributed (bottom left). A
tiled access (in red) may span multiple owning processes
(bottom right), in this case ranks 5, 6, 9, 10, 13, and 14.
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timal algorithm on the 5D torus of BG/Q for dense tensor
contractions. The RRR framework (for Reduction, Recursive
broadcast, and Rotation) shows significant speedups over
CTF for certain tensor contractions, such as:

C[i, j,m, n] = A[i, j,m, k] ×B[k, n]

but not for others, such as:

C[i, j,m, n] = A[i, j, k, l] ×B[k, l,m, n]

RRR generates several algorithms based on different it-
eration space mappings and compatible input distribu-
tions [14]. The time to generate these algorithms is not
reported in this work, and it would be interesting to see
how the chosen algorithm depends on tensor size, network
topology, and amount of memory per compute node.

3.4.4 DAG Dependencies/Scheduling
Not only are tasks within a single tensor contraction of
coupled cluster calculations independent, but so too are
some tensor contractions independent of each other. Recent
work has developed directed acyclic graphs (DAGs) that
represent the dependencies between the tensor contrac-
tions in CCSD calculations [14]. Using this DAG as a task
graph, the tensor contractions are grouped into several
pools (see Fig. 4) and executed with fewer global barrier
synchronization costs compared to NWChem and coupled
cluster. Subsequent work takes this notion one step further
to construct a dataflow-based execution by breaking the CC
kernels down into a large collection of fine-grained tasks
with explicitly defined dependencies [55]. This work uses
the PaRSEC dataflow framework directly on the Tensor
Contraction Engine of NWChem.

3.4.5 Accelerator applications
Implementation and performance studies of QM methods
on accelerated architecture, such as GPUs and the Intel Xeon
Phi Many Integrated Core (MICs) have been quite prevalent
the past several years. There are too many to describe in
great detail here, so this section mentions only a few with
impactful results.

Much work has considered running two-electron inte-
grals on GPUs [57–60] with satisfactory results. Now, many
QM frameworks enable two-electrons to be run on GPUs
including ABINIT, ACES III, ADF, BigDFT, CP2K, GAMESS,
GAMESS-UK, GPAW, LATTE, LSDalton, LSMS, MOLCAS,

Algorithm 2 Load balance and work stealing

1: Determine total number of tasks (after screening).
2: Statically partition tasks across process grid.
3: Prefetch data from DAarrays.
4: while a task remains in local queue /* fetch add local integer */
5: compute task
6: end while
7: update Fock matrix DArray via accumulate
8: for Every process p
9: while a task remains in p’s queue /* fetch add remote int */

10: get remote blocks
11: compute task
12: end while
13: update Fock matrix DArray via accumulate
14: end for

Fig. 4: An example of scheduling DAG dependencies across
tensor contractions in coupled cluster doubles (CCD). This
image is from [56].

MOPAC2012, NWChem, OCTOPUS, PEtot, QUICK, Q-
Chem, QMCPack, Quantum Espresso/PWscf, QUICK, Ter-
aChem, and VASP [61]. DePrince and Hammond imple-
mented the first coupled clusters code on GPUs [62], show-
ing a 4-5 speedup relative to a multithreaded CPU in 2010.
In their implementation, the entire SCF iteration takes place
on the GPU, but only CCD was implemented. Now, there is
a CCSD(T) GPU implementation in NWChem [63].

On the Xeon Phi, Apra et al. optimize CCSD(T) code
for the MIC using offload mode [64]. OptErd (the electron
repulsion integral library used by GTFock) also makes use
of MICs in offload mode [44]. Shan et al. tune the TEXAS
integral module, used by NWChem to run more efficiently
on multiple architectures, including the Xeon Phi [31]. They
also implement MIC optimizations for CCSD(T) in native
mode [65], which may be more useful for future Knights
Landing and Knights Hill architectures.

Other recent work focuses on enhancing rapid develop-
ment of QM codes by generating code to run on several
novel architectures. For example, Titov et al. use metapro-
gramming to generate SCF code for the GPU and MIC using
either CUDA, OpenCL, or OpenMP based parallelism [66].
Also, the KPPA project by Linford et al. [67] automatically
generates C or Fortran90 code to simulate chemical kinetic
systems, and the same approach could likely be useful for
QM codes as well.

3.4.6 Scientific Workflows in QM
This section briefly highlights work in scientific work-
flows applied directly to QC. In particular, the MoSGrid
project [68–70] has established a science gateway using web-
based services for end users to design complex workflows
and meta-workflows. MosGrid has considered 3 interest-
ing general workflow use cases in QC. Fig. 5 shows the
workflow diagrams for 1) high-throughput analysis of X-
ray crystallography files, 2) transition state (TS) analysis and
3) parameter sweeps. While these use cases are extremely
interesting in terms of automation, more needs to be done to
establish how such workflows and collections of workflows
should most efficiently be scheduled, and how resources
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Fig. 5: 3 QM workflow use cases supported by MosGrid.
This diagram is from [70].

should be allocated, to accomplish such workflows. Work-
flow management is clearly becoming more important in
modern scientific endeavors, and as we will see in following
sections, this is particularly true for multiscale and multires-
olution computational chemistry.

4 HPC IN MOLECULAR MECHANICS/DYNAMICS

This section highlights the primary aspects of molecular dy-
namics simulations, and how they have evolved alongside
developments in HPC. We consider the most scalable and
extendible molecular dynamics software frameworks and
how they do and do not address the challenges of extreme
scale computing listed in Section 2.

4.1 Introduction and Basics

Molecular Dynamics (MD) simulation is a type of N-body
simulation in which the particles of interest are atoms and
molecules. MD simulations differ greatly from quantum
mechanical simulations: Instead of solving the Schrödinger
equation, they solve Newton’s equations of motion, which
model the classical physics of particle-particle interactions.
While MD mostly ignores quantum electronic properties
of atoms, it is still able to capture relevant thermodynam-
ics, dipoles, and some reaction pathways/mechanisms. The
most important component of accurate MD simulations is
the potential function (sometimes called the force field or
the interatomic potential), which describes how atoms will
interact based on their positions. Incidentally, the evaluation
of the potential function is also the most expensive compu-
tational component of MD simulations. Potentials must ac-
count for all the different forms of energy within molecular
systems, both bonded (bond stretching, valence angle bend-
ing, and dihedral torsions) and non-bonded (electrostatics
and van der Waals forces).

The potential energy function of most MD simulations
includes the following contributions:

Utotal = Ubond + Uangle + Udihedral + UVDW + UCoulomb (6)

Fig. 6: Diagram showing U components. This diagram is
from [71].

Ubond corresponds to the bond stretching (as in the top 2-
atom molecule in Fig. 6), which in the simplest non-rigid
case is modeled as a harmonic spring:

Ubond =
∑

bond i

kbond
i (ri − ri(eq))2 (7)

Similarly, Uangle is the bond angle term (as in the 3-atom
molecule in Fig. 6), which is also often modeled harmoni-
cally:

Uangle =
∑

angle i

k
angle
i (θi − θi(eq))2 (8)

Udihedral corresponds to the torsional interactions between
4 atoms (see angle φ in Fig. 6) and is usually more sinusoidal
in nature:

Udihedral =
∑

dihedral i

{
kdihedral
i [1 + cos(niφi − γi)], ni 6= 0

kdihedral
i (0i − γi)2, n = 0

UVDW is the van der Waals term, which accounts for
dipole-related forces, and is usually described by some sort
Lennard-Jones potential:

UVDW =
∑
i

∑
j>i

4εij

[(
σij
rij

)12

−
(
σij
rij

)6]
(9)

Finally, UCoulomb accounts for the more long-range electro-
static interactions, which is almost always described by the
standard potential energy between two point charges:

UCoulomb =
∑
i

∑
j>i

qiqj
4πε0rij

(10)

An important concept in MD simulation is the enforce-
ment of periodic boundary conditions (PBCs). Normally,
an MD simulation consists of a simulation cube of speci-
fied length L (but some software supports more advanced
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shapes such as parallelepipeds). What happens if a particle
leaves the simulation box? PBCs suggest that the particle
should re-enter at the opposite face of the cube. In this
way, a simulation of a unit cell with PBCs is equivalent to
simulating an infinite system with a repeating unit cell, as
illustrated in Fig. 7. The PBC technique upholds thermody-
namic consistency, and is good for spatial load balancing,
which we discuss in Section 4.3.1.

The basic MD algorithm is shown in Algorithm 3. In
summary, we first apply an integrator at each time step to
determine the movements of atoms. Then we satisfy any
necessary boundary or thermodynamic conditions, calculate
any desired quantities, and ultimately move on to the next
timestep.

In MD software implementations, the naı̈ve approach
is to calculate the particle interactions from Eqn. 6 for all
unique pairs. This approach is O(n2), which is prohibitive
for systems of moderate size. However, it is standard prac-
tice to exploit the short-ranged nature of certain components
of the total potential energy function. For instance, the first 4
terms of Eqn. 6 are for very short-ranged bonded atoms. Fur-
thermore, the Lennard-Jones potential from Eqn. 9 quickly
drops to zero as r increases. By imposing a cutoff distance
outside of which to neglect any short-range particle interac-
tions, we can drastically reduce the complexity of the simu-
lation to ∼ O(n). Unfortunately, the Coulombic component
of the potential is long-ranged by nature, because it drops
of as 1/r. However, methods using Ewald summations can
exploit the power of the fast Fourier transform (FFT) to
very quickly calculate this long-range potential, which we
consider in more detail in Section 4.3.2.

Finally, it is standard for each particle to have a neighbor
list, which is queried during each simulation timestep to
efficiently track necessary particle interactions [73] within
a given cutoff distance. This has been deemed the most
sensitive and important parameter for performance of MD
simulations [17]. It is even more important for parallel
implementations, because we must update the neighbor list
as particles move outside of the relevant cutoff region. This

Algorithm 3 The standard MD simulation algorithm [72].

involves frequent communication, particularly when the
number of processes is high, the dynamics are fast, and/or
the cutoff distance is large. We consider these issues in more
detail in Section 4.3.1.

Fig. 7: An example of periodic boundary conditions. This
graphic is from [74].

4.2 MD Force Fields
The previous section presented very simple forms for the
potential energy components in Eqns. 7, 8, 9, and 10. To-
gether, these simple functions comprise a force field for MD
simulation, which can also be thought of as a software
implementation for evaluating the potential energy function
from Eqn. 6. There are many such force field implementa-
tions, and each is relevant to specific chemical systems of
interest. Perhaps the primary challenge of MD simulation
studies is that there is currently no general purpose force
field - it is necessary to choose the best fit for a given
chemical system.

Just as DFT has a very large number of functionals
available, so too are there a large number of force fields. The
primary categories are classical force fields, polarizable force
fields, coarse-grained force fields, and water models. For
MD, the more popular options include AMBER, CHARMM,
GROMOS, and UFF (the latter being an attempt at a general
force field) [30].

The total combinatorial space of atoms, molecules,
chemical systems, simulation techniques, and force fields
is dauntingly large. Interesting work considers high-
throughput computational materials design to alleviate the
burden of exploring the entire space [5, 9, 11, 12]. These
projects combine MD and QM methods with data mining
and large-scale database management to generate and anal-
yse enormous amounts of simulation data towards the dis-
covery and development of novel materials. However, little
work considers machine learning techniques for choosing
appropriate force fields given an input chemical system to
minimize error, despite the clear similarity to other applica-
tions [75]. This may be promising future work.

4.3 High Performance MD Software Frameworks
The diversity of MD simulation software frameworks is
dauntingly diverse, however, they can generally be grouped
into two different camps. Many MD simulation frameworks
focus primarily on atomistic modeling, such as NAMD [71],
AMBER [76], DL POLY [76], CHARMM [77], and Sim-
patico [78]. Such frameworks require subtle improvements
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to force field parameters, and high-level features such as
workflow support, but in general the algorithmic develop-
ments are well-established [79]. On the other hand, meso-
scopic simulation frameworks that model soft matter are rel-
atively less established, because their parameters are more
dependent on the chemical system of interest, which may
require more complex parameter tuning, and many different
modeling methods exist, some of which are more applicable
to a particular system setup. The latter type of framework
includes LAMMPS, GROMACS, and ESPResSo++. These
simulation frameworks are the subject of the following 3
sections.

4.3.1 LAMMPS and Parallel Decomposition Schemes
LAMMPS is a classical molecular dynamics (MD) code
which emphasizes parallel performance and scalability. It
deploys distributed-memory message-passing parallelism
with MPI using a spatial decomposition of the simulation
domain. It has GPU (CUDA and OpenCL) and OpenMP
capabilities, and also runs on the Intel Xeon Phi. LAMMPS
runs from an input script, which has advantages, such
as a low barrier to entry, but also disadvantages, because
the input script language is unique and difficult to ex-
tend. LAMMPS supports modeling atoms, coarse-grained
particles, united-atom polymers or organic molecules, all-
atom polymers, organic molecules, proteins, DNA, metals,
granular materials, coarse-grained mesoscale models, point
dipole particles, and more (including hybrid combinations).

Pivotal work in comparing spatial-decomposition, force-
decomposition, and atom-decomposition performance [80].

Atom decomposition: With N total atoms and P total
processors, the atom decomposition simply assigns N/P
atoms to each processor. Throughout the simulation, each
processor calculates forces and updates the positions only
of the atoms which they are assigned. This decomposition
implies that a processor will compute all interactions
associated with a given atom. This is generally considered
the simplest decomposition scheme, but it may require
extra communication because each process requires
the coordinates of atoms from many other processors.
However, if the all-to-all operation is well-implemented
on a given network, then this operation is reasonably
efficient, particularly when accounting for Newton’s 3rd

law to reduce computation in half. Load balance in atom
decomposition is good if the row blocks in F have the
same number of zeros. This is the case if atomic density is
relatively uniform throughout the simulation box. If not,
then it helps to randomly permute the number schemes to
be less influenced by geometric arrangement.

Force decomposition: In the force matrix F , each element
Fij represents the force that atom i feels due to atom j.
F is quite sparse because of the fast 1/rd dropoff (d is a
positive integer ≥ 2) of short-range potentials combined
with the practical use of a pairwise cutoff. Also, it is
easy to see by Newton’s 3rd law that F is a symmetric
matrix. With the atom decomposition described above,
each processor is assigned N/P rows of the F matrix
(or equivalently N/P columns). On the other hand, the
force decomposition technique distributes F into smaller

blocks, each N/
√
P × N/

√
P . This has the advantage of

improving communication costs to O(N/
√
P ) compared

to O(N) in atom decomposition [80]. However, load
balance may be worse in force decomposition because the
blocks must be uniformly sparse in order for processors
to do equal amounts of work. Even if atom density is
uniform, geometrically ordered atom identifiers create
diagonal bands in F . As in atom decomposition, a random
permutation of the numbering scheme helps to reduce load
imbalance.

Spatial decomposition: Spatial decomposition involves
subdividing the simulation domain into separate 3D boxes,
and assigning atoms within a box to a particular processor.
As atoms move through the simulation domain, they
are reassigned to the appropriate processor based on the
spatial decomposition. While it may seem that spatial
decomposition may suffer from poor load balance for
simulations with spatially-varying density distributions,
there are now several options in LAMMPS to improve
the load balance. For instance, the balance command
applies a recursive multisection algorithm to adjust the
subdomain sizes in each dimension of the simulation box.
Furthermore, when using multi-threading in LAMMPS,
an atom decomposition is used for on-node parallelism,
whereas spatial decomposition is used for off-node
parallelism.

In summary, there are 3 practical ways to decompose MD
simulations, and LAMMPS developers were among the first
to study and analyze these alternatives; furthermore, their
findings influenced many other future implementations.
Figure 8 shows their results comparing the 3 decomposition
schemes using MPI on a Cray machine [80]. We see that the
best choice of decomposition scheme depends on both the
scale and the chosen cutoff. This phenomenon was relevant
on the outdated Cray T3D, and is certainly relevant today
with the diversification of on-node architectures/memory
hierarchies, network topologies, and programming models.
Many recent exploratory MD applications (some on the
latest many-core architectures [81]) deploy strict domain
decomposition [82] based on such pivotal work as this.
However, it is important to keep in mind that the other
alternatives (or hybrid schemes) may be better suited to
extreme scale systems where concepts such as minimizing
communication and exploiting vectorization are paramount
for scalable performance.

4.3.2 GROMACS and Ewald Summation Techniques
This section highlights the unique aspects of the GROMACS
MD framework that improve its performance and scalabil-
ity. In order to understand, a brief introduction to Ewald
summations and particle-mesh Ewald (PME) is necessary
(a more thorough introduction is found in [74]). The long-
range component of the potential energy function is shown
in Eqn. 10. The goal for this electrostatic interaction is to
solve Poisson’s equation given the function for UCoulomb.
Ewald summation involves adding a Gaussian function to
each point charge in the system, as shown in Fig. 9. In
short, we do this because the Gaussian representation has
an exact solution to Poisson’s equation in reciprocal space.
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Fig. 8: Comparison of the 3 MD decompositions for two
different cutoff lengths. Although these results are dated,
the concepts are important for understanding the conse-
quences of domain decomposition techniques when porting
MD codes to modern hardware systems using productive
programming models. This figure is from [80].

This means that if we transform the spatial coordinates
into frequency space using Fourier techniques, then we can
trivially solve Poisson’s equation across the entire simula-
tion domain. The FFT accomplishes this feat by imposing
a domain that is a power of 2 units long in each spatial
dimension, then enforcing the point charges to be centers
on the nearest grid point.

Unfortunately, FFT scalability does not keep up with
the scalability of the short-range component of MD simu-
lations using a given number of processes. However, GRO-
MACS 4.5 was the first framework to solve this problem,
and now NWChem utilizes the same technique [83]. This
method uses a ”pencil” decomposition of reciprocal space,
as displayed in Fig. 10. Here, a subset of the total MPI
application processes (implemented via MPI communica-
tors) participate in the FFT calculation. At the beginning
of each timestep, the direct-space nodes (top of Fig. 10)
send coordinate and charge data to the FFT nodes (bottom
of Fig. 10). Some number of direct-space nodes (usually 3-
4) map onto a single reciprocal-space node. Limiting the
computation of the FFT to a smaller number of nodes
significantly improves parallel scaling [84], likely due to the
communication boundedness of 3D FFTs.

Modern GROMACS (version 5.1) utilizes hierarchical
levels of parallelism, as shown in Fig. 11. First, many
MD simulations depend on collections of similar instances,
which together make up a statistically significant ensem-
ble. GROMACS supports tools for easily constructing such
ensembles and deploying them on a computer cluster.
Second, each simulation within an ensemble is spatially
domain decomposed and dynamically load balances over
MPI. Third, non-bonded interactions are handled on GPUs
because of the short-ranged calculations compatibility with
simultaneous multithreading (SIMT). Finally, CPU cores
apply SIMD operations to parallelize cluster interactions
kernels or bonded interactions, which now makes heavy
use of OpenMP pragmas. This grouping of different compo-

Fig. 9: Ewald summations work by adding Gaussians to
the point charges [84]. This enables an exact solution of
Poisson’s equation, and a very fast FFT evaluation of the
long range Coulombic component of the potential energy
function. This plot is from [74].

nents onto the best suited device within the heterogeneous
architecture is what makes GROMACS a front-runner in
MD simulation frameworks, especially in light of the push
towards exascale capability.

4.3.3 NAMD

Here, we briefly consider the NAnaoscale Molecular Dy-
namics (NAMD) framework, which has historically prior-
itized the strong scaling capabilities of MD simulations
more than other frameworks [71]. It’s capabilities are similar
to that of GROMACS and LAMMPS, but it runs over a
more interesting parallel runtime, Charm++. In Charm++,
C++ objects called chares represent migratable tasks that
execute asynchronously and in a one-sided manner. Users
are encouraged to ”over-decompose” their tasks into chares,
because a finer granularity leads to better load balance and
adaptability. The runtime of Charm++ manages chares with
a system of queues on each compute node with the goal of
hiding latency and promoting asynchronous execution.

NAMD deploys a spatial decomposition into so-called
”patches” that fill the simulation box. Unlike other common
approaches, the number of patches in NAMD is unrelated
to the total number of processes. Charm++ encourages
this separation of problem decomposition from hardware
resources, because it allows for adaptability in the execu-
tion. Furthermore, the assignement of patches to processors
can be changed between iterations based on measurements
made by the Charm++ runtime. The occasional redistri-
bution of tasks at runtime gives NAMD a key scalability
advantage in terms of load balance.

We finally briefly mention some of NAMD’s auxiliary
accomplishments. First, NAMD researchers explored the
implications of multi-lingual programming at scale [85],
which led to a rich and flexible software architecture, shown
pictorially in Fig. 12 (though this architecture is now out
of date). Second, FPGA researchers compiled NAMD with
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Fig. 10: GROMACS 3D spatial decomposition combined
with 2D decomposition in reciprocal space. This diagram
is from [84].

ROCCC, which resulted in an impressive speed-up of the
critical region that computes non-bonded interactions [86].
They focused on generating hardware that maximizes par-
allelism in the FPGA circuit while minimizing the number
of off-chip memory accesses.

4.3.4 ESPResSo++

ESPResSo++ is a re-write of the popular ESPResSo MD
software toolkit, which primarily supports simulation of soft
matter physics and physical chemistry. Unlike alternatives
such as LAMMPS and GROMACS, ESPResSo++ boldly pri-
oritizes software extensibility over all other concerns during
development of MD software, which often (but not always)
includes performance [79].

ESPResSo++ supports the extensibility of MD simula-
tions by enhancing readability, maintainability, expandabil-
ity, and verifiability by means of a well-defined coupling be-

Fig. 11: The hierarchical levels of parallelism in GROMACS.
This diagram is from [83].

Fig. 12: NAMD’s language architecture. This diagram is
from [85].

tween two software interfaces. First, ESPRessSo++ consists
of a high-level Python-based interface used for 1) importing
relevant modules and packages, 2) setting up the chemical
system and its interactions, 3) simulation of the system
dynamics, and 4) analysis. ESPResSo++ also consists of a
lower-level C++ interface to the simulation engines and
various computational tools. Development of new modules
must follow a specific protocol for exposing necessary C++
classes to the Python user interface using the Boost.Python
library.

This design is quite useful for writing adaptive simu-
lations with in-situ analysis capabilities. For example, to
visualize a plot of the pressure every 100 timesteps using
a Python library is trivial:
integrator = \

espresso.integrator.VelocityVerlet(system)
...
for i in range(10):

integrator.run(100)
P = espresso.analysis.Pressure(system).compute()
matplotlib.plot(P, len(P))

While this is certainly possible with LAMMPS using the
following lines in an input script:

thermo_style custom pressure
thermo 100
run 10000

it is far more difficult to do something as simple as display
a plot every 100 timesteps without resorting to custom
interprocess communication (which is not clearly possible
without changing LAMMPS source code). Not only is this
trivial for ESPResSo++, one can go a step further and
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visualize simulation progress on-the-fly by sending data
over a socket to VMD server:
# VMD initialization
sock = espresso.tools.vmd.connect(system)
...
# Send current positions to VMD
espresso.tools.vmd.imd_positions(system, sock)

While this is certainly possible with LAMMPS using the
following lines in an input script:

thermo_style custom pressure
thermo 100
run 10000

it is far more difficult to do something in LAMMPS
as simple as display a plot every 100 timesteps. This
workflow-oriented capability is inherently included in the
ESPResSo++ software design. The parallel programming
model for ESPResSo++ is unique in that all communication
is done through MPI, but user programs do not apply an
SPMD model. This unexpected architecture is shown in Fig-
ure 13, where a program using the Python scripting interface
invokes a controller that launches MPI4Py parallel pro-
grams [87]. Furthermore, processes can either communicate
through the Python layer of abstraction, or through the C++
layer, as shown in Figure 13. using the Boost.MPI library,
ESPResSo++ has been shown to be scalable up to 1024 cores,
as shown in Figure 14. While the performance is not as good
as LAMMPS at scale, its prioritization of extensibility have
allowed for more advanced features such as adaptive res-
olution, and support for various course grained potentials.
Profiles suggest that the performance differences between
ESPResSo++ and LAMMPS are due to optimizations made
within the neighbor list construction and the communica-
tion of particle data [79]. In this author’s opinion, more
needs to be done to quantify the communication overheads.
For instance, there are may be overheads associated with
using Boost.MPI to send serialized object data instead of
sending MPI derived types, as LAMMPS does.

Fig. 13: The parallel execution model of ESPResSo++. This
diagram is from [79].

One reason we emphasize ESPresSo++ in this paper
is because it does a good job addressing most of the
extreme-scale requirements listed in Section 2. It emphasizes
a modular software infrastructure (sometimes sacrificing
absolute best performance), enables scientific workflows
as an integral part of the software design, and supports

Fig. 14: ESPResSo++ strong scaling compared to LAMMPS.
These results are from [79].

multiphysics/multiscale component coupling in the form of
adaptive resolution.

4.4 Other Noteworthy MD Accomplishments in HPC
This section briefly mentions other noteworthy accom-
plishments in MD software implementations that uti-
lize HPC. First of all, most key MD frameworks are
GPU-accelerated, including ACEMD, AMBER, BAND,
CHARMM, DESMOND, ESPResso, Folding@Home, GPU-
grid.net, GROMACS, HALMD, HOOMD-Blue, LAMMPS,
Lattice Microbes, mdcore, MELD, miniMD, NAMD,
OpenMM, PolyFTS, SOP-GPU and more [61]. Other codes,
such as ESPResSo++ are currently porting and optimizing
GPU kernels.

On MICs, miniMD has implemented and published on
very effective vectorization techniques that run on the Xeon
Phi [81]. LAMMPS, GROMACS, and NAMD also have
support for MIC [83], but more optimizations need to be
made to compete with the CPU implementation and to
balance work between CPU and devices. Incorporating vec-
torization into full-fledged MD simulation frameworks on
socket-attached MIC architectures such as Knights Landing
and Knights Hill is a very promising area for future work.

Custom alternative architectures also show remarkable
potential for MD simulation. For instance, researches have
ported NAMD benchmarks to an FPGA and report 800x
improvement for single-precision performance and 150x
improvement for double precision over a conventional x86
architecture [86]. Also, Anton [1, 2], a special purpose super-
computer designed from the ground up to be optimized to
MD simulations, shows impressive performance improve-
ments over general purpose machines, with speedups of up
to 180x.

5 COARSE-GRAINED MOLECULAR SIMULATIONS

On the largest modern supercomputers, molecular dynam-
ics (MD) simulations of polymer systems contain billions
of atoms and span roughly a few nanoseconds of simula-
tion time per week of execution time. Unfortunately, most
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macromolecular processes of interest contain many orders
of magnitude more particles and often bridge microsecond
or even millisecond timescales or longer. These include
phenomena like microphase separation transition in block-
copolymers [88], phase separation in polymer blends and
composite materials [89], polymer crystallization, and glass
formation and aging [90] to mention just a few. Despite our
pervasive access to massive computing power, full united-
atom (UA) simulations do not come close to representing
real-world polymer systems (see Figure 17), because they
are too computationally expensive and slow. Simply put,
we require new approximation methods that capture the
relevant physics and chemistry while requiring fewer com-
putational resources. The most promising approach is the
coarse-graining (CG) method, in which groups of atoms are
represented as one collective unit. CG has proven to be
valuable for eliminating unnecessary degrees of freedom
and tackling the scaling complexity of larger problems [91].
The key issue is how to simultaneously maintain solution
accuracy and high performance.

The following sections describe some popular ap-
proaches for conducting accurate CG simulations. They fall
into two broad categories: numerically based and theoreti-
cally based. Section 5.1 considers a new software framework
called VOTCA that provides an interface to several numer-
ical CG approaches. Section 5.2 considers a more theoreti-
cally driven CG technique called integral equation coarse-
graining that relies on principles in statistical mechanics to
derive an analytical potential that describes CG models of
polymer melts.

5.1 VOTCA
There exist several different techniques for applying CG
models to molecular systems, such as iterative Boltzmann
inversion, force-matching, and inverse Monte Carlo. We be-
gin our discussion of CG techniques by considering the Ver-
satile Object-Oriented Toolkit for Coarse-Graining Applica-
tions (VOTCA), because it provides a unified framework
that implements many different CG methods and allows
their direct comparison [92]. The momentous publication
that describes VOTCA [92] provides a nice comparison of
these numerically-driven CG techniques, and they are the
subjects of the following 3 sections.

5.1.1 Boltzmann Inversion
Boltzmann inversion (BI) is considered to be the simplest
method for deriving a CG potential, because it simply
involves inverting the distribution functions of a coarse-
grained system. Specifically, the bond length, bond angle,
and torsion angle distributions are sampled from a simula-
tion trajectory, then inverted to derive the desired potential
functions. For example, sampled bond lengths may be fitted
to a Gaussian:

p(r) =
A

ω
√
π/2

exp

[
−2(r − req)2

ω2

]
Now, exploiting the fact that a canonical ensemble obeys
the Boltzmann distribution between independent degrees
of freedom:

p(r) = Z−1 exp[−βU(r)]

Fig. 15: An illustration of the radial distribution function,
g(r). The left image shows a liquid with “solvation shells”
surrounding a central atom. The g(r) function on the right
shows the statistical likelihood of a solvation shell at a given
distance r, which decreases to zero at large distances.

(where Z is the standard partition function), this can be
inverted to derive the desired harmonic potential:

U(r) = −kβT ln[p(r)] = Kr(r − req)2.

Here, Z becomes an irrelevant additive constant to the CG
potential [93].

This simple approach has disadvantages. First, assumes
independent degrees of freedom:

P (r, θ, φ) = exp[−βU(r, θ, φ)]

P (r, θ, φ) = Pr(r)Pθ(θ)Pφ(φ)

which may not be true for some systems; however, it is is
true, then BI is an exact CG representation of the potential.
Another problem is that we require smoothing U(q) to
provide a continuous force, which can be accomplished
with extrapolation. Finally, we require an atomistic reference
system to accomplish BI, be we would prefer a CG model
that is independent of any full atomistic simulation.

5.1.2 Iterative Boltzmann Inversion
Iterative Boltzmann Inversion (IBI) is very similar to Boltz-
mann Inversion from the previous section except that
the non-bonded CG potential is iteratively updated until
it matches the corresponding radial distribution function
(RDF) of the atomistic representation:

Ui+1(r) = Ui(r)− αkBT ln

[
gi(r)

gt(r)

]
where α is a scaling factor (to reduce large deviations
between iterations), gi(r) is the RDF of the ith iteration and
gt(r) is the target RDF. The RDF is an extremely important
quantity in MD simulation studies, because if it is known,
it can be used to derive thermodynamic quantities. Fig. 15
shows a graphical representation of an RDF for a liquid
chemical system.

5.1.3 Inverse Monte Carlo and Force Matching
Two other popular numerical methods for deriving CG
potentials are Inverse Monte Carlo (IMC) and Force Match-
ing (FM). An in depth description of these techniques is
unnecessary for this discussion, but it suffices to say that
IMC is quite similar to IBI, except that it is based on more
rigorous thermodynamic arguments. IMC has advantages
over IBI in that it shows better and faster convergence, but
also is more expensive computationally.
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The FM approach is quite different from IMC and IBI. It
is non-iterative like BI, but instead of generating distribution
functions from reference simulations, FM generates force
functions with the goal of matching CG units to atomistic
units. It is non-iterative, and therefore less computationally
expensive.

5.1.4 Iterative Workflow
VOTCA enables the direct comparison of the above CG
methods (and potentially many more) by providing a mod-
ular interface to a workflow template for generating CG
potentials. Fig. 18 shows this iterative workflow. Such ca-
pabilities are important for computational chemists because
they allow for controlled verification, validation, and testing
of new techniques across several different development
teams of MD software. Sections below will present a large
variety of multiscale and multiresolution simulation meth-
ods that would also benefit from a VOTCA-like simulation
framework for comparing workflows. One current draw-
back of VOTCA, however, is that it is currently focused
on numerically-driven techniques for deriving CG potential
and force functions, despite the fact that more consistent
techniques exist in analytically-driven techniques for deriv-
ing CG potentials. This approach is the subject of Section 5.2
below.

5.2 Integral Equation Coarse Graining Theory

The Integral Equation Coarse-Grained (IE-CG) model by
Guenza and coworkers [96–101] adopts an analytically-
derived potential and dramatically improves spatial and
temporal scaling of polymer simulations, while accurately
preserving thermodynamic quantities and bulk proper-
ties [102–104]. Several numerical techniques and force fields
exist for performing coarse-grained simulations [105–107].
However, these methods generally preserve either structure
or fully preserve thermodynamics, but not both. As a result,
only a small level of coarse-graining is typically adopted to
limit the errors in the simulated structure and thermody-
namics. In contrast, the IECG model adopts the analytical
approach offered by statistical mechanics theory, because
it recovers crucial structural and thermodynamic quantities
such as the equation of state, excess free energy, and pres-
sure, while enabling a much higher level of coarse-graining
and the corresponding gains in computational performance.

Although CG polymer physics is a mature field, little
has been done to analyze the performance benefits of CG
versus UA representations. While it is clear that CG will
exhibit computational gains, does it strong scale to as many
processors as the corresponding UA simulation? Likely not,
because CG tracks far fewer overall particles, sometimes by
orders of magnitude. Also, the scalability of CG simulations
likely depends on the granularity factor, e.g, the number of
UA coordinates a CG unit represents. Despite the purpose
of CG research to improve computational efficiency of MD
simulations, the relevant literature lacks measurements that
quantify expected computational performance of various
CG techniques, and how they scale across different super-
computer architectures. Furthermore, CG related parame-
ters may be chosen to give the absolute performance, but
do they also give the best accuracy? Two primary goals

Fig. 16: VOTCA’s iterative workflow. The diagram is
from [92].

of this paper are to quantify expected performance of IE-
CG simulations at large scale, and to evaluate the trade-off
between granularity, scalability, and accuracy.

When considering homopolymers, the IECG model rep-
resents polymer chains as collections of monomer blocks that
consist of many monomers and interact via soft long-range
potentials. If each chain has N monomers, we say that there
are nb blocks per chain with Nb monomers per block. The
most important quantity used to derive the CG potential is
the time correlation function, which is essentially a measure
of the pairwise influence between particles as a function of

Fig. 17: A representation of the average polyethylene chain
length determined by chromatography experiments [94].
Most studies are limited to very short chain lengths (≤ 1000)
due to the prohibitive cost of UA simulations, but recent
work freely explores the realistic systems with 104 to 106

monomers per chain [95].
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Fig. 18: A representation of the different block aver-
aged components of the IECG equations. The diagram is
from [97].

distance. They are related by the radial distribution function,
g(r) which is defined as:

g(r) =
1

ρ

〈
1

N

n∑
i

n∑
j 6=i

δ(~r − ~rij)
〉

the total correlation function relates to g(r) by:

h(r) = g(r)− 1.

The Polymer Reference Inter Site Model (PRISM) site-
averaged Ornstein-Zernike equation relates the relevant
time correlation functions in Fourier Space:

ĥmm(k) = ω̂mm(k)ĉmm(k)[ω̂mm(k) + ρĥmm(k)]

from which we derive the CG potential. These equations
contain a large number of terms, so they are neglected
here, but can be found in the relevant literature [96–101].
Using this solution for the potential, CG simulations in
LAMMPS have been shown to capture the relevant thermo-
dynamics while drastically reducing the number of degrees
of freedom [102–104]. Furthermore, using the analytical
approach, there are far fewer tunable parameters than the
numerical approaches such as Boltzmann inversion. Finally,
numerical approaches often require a atomistic reference
system, which to some degree defeats the purpose of gain-
ing efficiency with CG. Assuming an informed value of the
radius of gyration and the direct correlation function limit
as k → 0, called c0 [103], the IECG potential only requires
such reference systems for validation studies.

6 MULTISCALE / MULTIRESOLUTION CHEMISTRY

One of the grand challenges of modern molecular sim-
ulation is bridging length and time scales in physically
meaningful and consistent ways [108]. Consider a biomolec-
ular system such as a collection of eukaryotic cells. From
a low-level chemical point of view, each cell consists of
many different biopolymers such as DNA, proteins, sugars,
enzymes, and upwards of 90% liquid water. From a higher-
level biological point of view, intercellular communication

(between cells) plays an important role in synaptic transmis-
sion, hormone secretion, and other signaling events, even at
long distances. Currently, MD simulations are capable of
modeling a few biopolymers in a water bath, and accurate
QM simulations can reasonably simulate regions with a few
dozen atoms. CG methods are capable of simulating much
larger regions, but methods normally consist of repeating
units of the same atomic or molecular type. Continuum
mechanics goes one step further, and models materials as
a continuous mass rather than a system of discrete particles.
For example, the water within a cell can potentially be mod-
eled with methods in hydrodynamics and fluid mechanics.
Furthermore, it is known that biological processes occur
over extremely long timescales, whereas MD simulations
can reasonably only reach the order of microseconds.

In order to effectively and accurately model and simulate
such complex systems, we require tractable and robust
methods for bridging the QM, MM, CG, and continuum
scales, both spatially and temporally, while still exhibiting
the correct behavior at the edges of multiscale regions. This
research area is expansive, consists of many different facets,
and even contains cross-discipline similarities and analogies
between topics in chemistry and physics [109, 110]. How-
ever, the following sections limit the scope of mutliscale and
multiresolution methods to particle-based computational
chemistry, with a particular focus on available software
frameworks and methodologies, which are currently some-
what lacking possibly due to the difficulty of the problem.

6.1 QM/MM

QM/MM simulations consist of a relatively small region
accurately modeled by QM methods, with the remaining
regions modeled more efficiently by MM methods. Fig. 19
shows a simple example of a QM/MM hybrid simulation
region. In this example, we presume the inner region is in-
teresting because it contains some chemical reaction, which
QM models well. The outer region, on the other hand, may
contain no chemical reactions, but we still desire consistent
thermodynamics and inclusion of long-range effects on the
QM region. There are three types of interactions in this hy-
brid system: interactions between atoms in the QM region,
interactions between atoms in the MM region, and interac-
tions between QM and MM atoms. Sections 3 and 4 of this
paper described the QM and MM interactions (respectively)
in detail, and their evaluation within QM/MM simulations
is no different. However, the interactions between the QM
and MM regions are more complicated, and researchers
have proposed several approaches for handling them.

One simple approach is called subtractive QM/MM cou-
pling. The idea is fairly simple, and is represented by this
equation:

VQM/MM = VMM(MM + QM) +VQM(QM)−VMM(QM) (11)

Here, we claim that the total potential energy of the
QM/MM system, VQM/MM, involves adding two terms and
subtracting another term. Fig. 20 shows a representative
diagram of the subtractive QM/MM coupling method. The
first term on the right hand side of Eqn. 11 corresponds
to the sum of the QM and the MM regions evaluated at
the MM level, as shown in the third box from the left of
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Fig. 19: QM/MM concept. Diagram is from [114].

Fig. 20: QM/MM subtractive coupling. Diagram is
from [114].

Fig. 20. The second term on the right hand side corresponds
to the QM region evaluated at the QM level, as shown in the
second box from the left of Fig. 20. Finally, the subtracted
term corresponds to the QM region evaluated at the MM
level, as shown in the rightmost box of Fig. 20. The most
popular implementation of this approach is the ONIOM
method [111], which is available in NWChem and Gaussian.
Besides the subtractive QM/MM coupling scheme, there is
also additive QM/MM coupling:

VQM/MM = VMM(MM) + VQM(QM) + VQM−MM(QM + MM)
(12)

in which the third term on the right hand side considers
the interactions between QM and MM atoms explicitly. An-
other popular, but more sophisticated, approach is capping
bonds at the QM/MM boundary. This approach cuts bonds
crossing the QM/MM region boundary, and replaces them
with something like link atoms or localized orbitals [112].
The specifics of this approach bring about complications
that are beyond the scope of this paper, but are covered
elsewhere [109, 110, 112–114].

Simulation frameworks that support QM/MM through
various packages include NWChem, GROMACS, Quan-
Pol, GAMESS (both US and UK version), and AMBER.
The method has become so important for computational
chemists that the inventors of QM/MM, Warshel and Levitt,
won 2013 Nobel Prize in Chemistry [115]. Despite its im-
portance, there is a dearth of research that considers the
parallel performance of these workflows. This is puzzling
given the fact that it usually relies on the tight coupling of
different simulation modules, even between different frame-
works [116]. For instance, Fig. 21 shows the overall control
flow of a QM/MM simulation. At a glance, it is clear that
this directed acyclic graph (DAG) of dependencies offers
opportunity to exploit parallelism, but popular QM/MM
frameworks do not support such dynamic execution. Future
dissertation work could consider the performance of these
methods in the context of scientific workflow management
and how to efficiently share computational resources in the
face of tight application coupling.

Fig. 21: QM/MM flow scheme. Diagram is from [114].

6.2 MM/CG

The MM/CG model is analogous to the QM/MM model,
except that MM represents a smaller region more accurately,
and CG models the remaining regions more efficiently. Such
methods are particular important for multiscale simulations
in which there are large regions with well-verified CG
models, such as the solvent regions around active proteins.
Interestingly, the first CG model of a globular protein was
introduced in a 1975 paper by Warshel and Levitt [117], the
recipients of the 2013 Nobel Prize in Chemistry. Even more
impressive, this was the first multiscale MM/CG simula-
tion, because side-chains of the protein were treated with
atom-level detail. Since then, MM/CG has been explored in
much more sophisticated scenarios [16, 79, 118–129]. Most
notably, methods in Adaptive Resolution Schemes (AdResS)
consider ways to specify regions having different granulari-
ties. AdResS is the subject of the following subsection 6.2.1.

In terms of software implementations, MM/CG is less
ubiquitous than QM/MM, but is currently available in
GROMACS (however, documentation is limited and sup-
port is constrained to certain systems such as those in which
only the water solvent is coarse-grained). Other tools, such
as the ChemShell environment [116] do apparently allow for
flexible MM/CG setups [19], but again, thorough documen-
tation is currently limited to QM/MM procedures. Finally,
recent work by Ozog et al. enables switching between MM
and CG representations in an automated way [130], which
is a considerable step towards AdResS and and MM/CG in
the LAMMPS framework.

6.2.1 Adaptive Resolution (AdResS)

Many QM/MM studies do not consider dynamical systems
in which atoms freely move between the QM and MM
regions. For MM/CG simulations however, this may be
a more important requirement, because we ofter coarse
grain in order to bridge longer timescales. The adaptive
resolution, or AdResS, technique addresses the following
requirements:
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Fig. 22: A simple AdResS simulation box with the switching
function, w(x), overlaid.

1) Specification of MM and CG regions, analogous to
QM/MM from Fig. 19; however, simpler AdResS
experiments consider the scenario in Fig. 22.

2) Free exchange of atoms and molecules from the MM
region to the CG region and vice versa.

3) Dynamics should occur under thermodynamic
equilibrium, i.e., at the same temperature, density,
and pressure throughout the simulation box.

L.D. Site and others have led several explorations [16,
108, 118–120, 123, 126, 128, 129, 131] of an AdResS technique
with a hybrid region between MM and CG domains where
the derived forces couple in the following manner:

Fαβ = w(Rα)w(Rβ)Fatomαβ + [1− w(Rα)w(Rβ)]Fcmαβ (13)

This equation describes the force between two molecules
as a function of their positions (in the x dimension). Here,
α and β refer to two molecules, and the positions of their
center of mass are Xα and Xβ , respectively. Fatomαβ is the
force derived from the atomistic (MM) potential and Fcmαβ
is the force derived from the CG potential. The function
w(x) is a smooth switching function that is zero in the CG
region and 1 in the MM region. With this force description,
atoms moving in the hybrid region slowly lose (or gain)
degrees of freedom. ESPResSo++, from section 4.3.4 and

Fig. 23: The high-level progression of a UA↔CG work-
flow. The CG representation is calculated from UA coor-
dinates, and the UA representation is recovered by solving
a backmapping problem. CG spheres appear hard, but are
soft with long range effects.

GROMACS+MARTINI use this technique for doing AdResS
simulations.

The model from Eqn. 13 is quite simple, and it clearly
satisfies requirements 1 and 2 from above. However, to
satisfy requirement 3, the authors must make non-trivial
adjustments. For instance, an external source of heat must
be introduced to each degree of freedom to assure that the
temperature is constant through the hybrid region [108].
Also, an external force is added to assure thermodynamic
equilibrium [132]. Interestingly, the IECG work discussed
in Section 5.2 does not seem to require such adjustments
for different levels of granularity. While Eqn. 13 may not be
compatible with IECG in its form above, future work should
consider whether something like a gradual (or sudden)
change in granularity (for example, within a polymer melt)
can be used for AdResS. Not only might this trivially satisfy
requirement 3 without external forces/thermostats, but it is
possible computation will be more efficient when using the
analytically derived IECG potential.

6.2.2 Backmapping
Defining a new representation of the polymer as a chain
of soft colloidal particles greatly reduces the amount of
information to be collected and controlled, which speeds
up the simulation. It is well known that modeling fewer
colloidal particles with an appropriate potential decreases
the degrees of freedom and computational requirements
by an amount proportional to the granularity [91]. The
representation of a polymer as a chain of soft blobs also
allows the chains to more easily cross each other, decreasing
the required time for the simulation to find the equilibrium
structure. However, the information on the molecular local
scale needs to be restored at the end of the simulation to
account for properties on the UA scale. In a nutshell, it is im-
portant to alternate between the CG representation (which
speeds up the simulation) and the UA representation (which
conserves the local scale information). By quickly switching
back and forth from UA to CG, we open doors to new
studies of polymeric systems while maintaining simulation
accuracy and efficiency. While optimizing the computational
performance of CG codes is important, without a way to
incorporate UA-level detail, CG efficiency has relatively less
value. The goal is to develop an integrated approach for
conducting simulations that exploit both CG efficiency and
UA accuracy.

In homopolymer systems, transforming from the UA
representation to the CG representation is straightforward:
for each subchain havingNb monomers, the new soft sphere
coordinate is simply the center of mass of the subchain. On
the other hand, the reverse procedure of mapping from the
CG representation to the UA representation is not generally
well-defined. This transformation of a CG model into a
UA model is a popular research topic, commonly referred
to as the backmapping problem (See Fig. 23). For our ho-
mopolymer system, the backmapping problem is simply
stated as follows: given a collection of CG soft sphere chains
coordinates, insert monomer chains in such a way that we
would recover the original CG configuration if we were to
coarse-grain the system again.

It is easy to see that solutions to backmapping problems
are not unique, because there are many different UA config-
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urations that could map back to a given CG configuration.
Much backmapping work focuses on biomolecules [133],
but relatively little work has explored homopolymers. How-
ever, efficient backmapping procedures in polymer simu-
lations are imperative for developing a full-fledged adap-
tively resolved simulations [134]. Furthermore, backmap-
ping procedures contain clear opportunities for exploiting
parallelism, which have yet to be explored.

6.3 QM/MM/CG
The availability of QM/MM and MM/CG methods begs
the question of whether it is possible and informative to
study QM/MM/CG models. It is easy to conjure such a
triple-scale workflow that may be of interest. Consider the
chemical system shown in Fig. 24, which describes the
backmapping loop of a collection of liquid crystals con-
taining azobenzene compounds, which may have potential
applications in photo-switching [135]. Upon illumination,
the azobenzene molecule can isomerize from a trans to a cis
state:

then possibly decays back to the trans state, depending on
the immediate neighborhood of other atoms. The first step
shown in Fig. 24 involves constructing a CG simulation
that represents a collection of azobenzene molecules. Then,
similar to the fast equilibration work by Ozog et al. [130]
mentioned in Section 6.2, we simulate the CG model long
enough to reach equilibration. After equilibrating, a small
region is chosen to be modeled with QM, and the atomic
coordinates are backmapped using techniques described in
Section 6.2.2. A QM simulation determines whether the
isomerization takes place, then is equilibrated using an MM
model, then reinserted into the larger CG domain. This
entire process is then repeated if necessary.

The workflow described in the previous paragraph has
no implementation, the paper only presents the scenario
as a multiscale problem of interest [108]. However, other
recent publications suggests that an implementation of a
triple-scale model is possible and accurate [19, 20] using
the ChemShell interactive environment [116]. In fact, this
is the same work used in the visualization from Fig. 1.
The capabilities of ChemShell are quite interesting, because
they exploit the simplicity of most hybrid methods (such as
described in Section 6.1) to support a sizeable collection of
QM, MM, and CG supporting simulation tools. These cur-
rently include NWChem, GAMESS-UK, DALTON, Molpro,
Gaussian, Q-Chem, DL POLY, CHARMM, GROMOS, and
several more. Fig. 25 shows ChemShell’s software architec-
ture, which enables modularity of the components at each
scale. One disadvantage (to many) is that ChemShell relies
on a custom TCL interactive shell. While this does enable the
construction of intricate QM/MM/CG workflows, a more
modern programming language such as Python may be a

Fig. 24: An example of a triple-scale workflow. The diagram
is from [108].

better choice because of its available scientific programming
libraries, better extendibility, superior error and exception
handling, and support for HPC computing.

7 RELEVANT APPLICATIONS

This section itemizes several example applications that uti-
lize the concepts discussed in this paper. In my opinion,
the most encouraging publication comes from the BASF,
which is the largest chemical producer in the world [35].
This paper presents applications of quantum chemistry in
industry, and highlights the importance of QM/MM meth-
ods in designing new materials (CG methods are mentioned
as being imporant as well, but beyond the scope of the
paper). In addition, the following publications are relevant
to multiscale and multiresolution computational chemistry
simulations:

• HF and DFT simulations of Lithium/air batteries
using a new 3D FFT implementation [13]

• Divide-and-conquer quantum MD with DFT for hy-
drogen on-demand [34]

• Multiscale crack modeling (w/ LAMMPS and other
tools) using the PERMIX computational library [82]

• Light-induced phase transitions in liquid
crystal containing azobenzene photoswitch
(QM/MM/CG) [131]

• Cloud environment for materials simulations [136]
• Screening quantum chemistry databases for organic

photovoltaics [11]

Fig. 25: (A) Schematic of the QM/MM/CG partitioning. (B)
Example of the components of a QM/MM/CG workflow
(from the ChemShell code). The schematic is from [19].
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• Data mining to aid material design [12].

8 CONCLUSION AND FUTURE DIRECTIONS

Computational chemistry is naturally a multiscale problem:
interesting length and time scales span many orders of mag-
nitude, and bridging these scales remains to be an important
unsolved problem. Chemical models of vastly different scale
require vastly different theories, software implementations,
parallel decompositions, algorithms, and parallel program-
ming methods. This paper discussed the challenges within
the most prevalent scales of modern molecular simulations:
QM, MM, and CG. Software implementations and their
utilization of HPC differ greatly across these scale domains,
and new research is required to effectively bridge these
scales in the face of extreme challenges as the community
pursues the exascale computing objective.

In our consideration of QM codes, we learned that QM
algorithms often suffer from extremely diverse communica-
tion requirements that worsen as we add more processes to
the application. More work needs to be done to quantify the
potential benefit of optimizing for locality, and how best to
reduce communication overhead at scale. Furthermore, Rel-
atively little work has been done in QM on new computer
architectures such as Intel’s Knights Corner device. How-
ever, exploring the necessary vectorization optimizations
is remarkably important in light of the large acquisition
of copious Xeon Phi resources (Cori, Aurora, and Trinity),
which will all contain Knights Landing and Knights Hill
architectures.

In our sections highlighting the characteristics of MD
codes, we learned that many software frameworks are rela-
tively mature, but may benefit from an updated perspective
on their load balance strategies, their tuning of important
parameters such as the cutoff distance, and possibly utiliz-
ing data mining and machine learning techniques to alle-
viate the combinatorial explosion of simulation parameters
and chemical system knowledge.

In the field of CG theory, we learned that there are
several approaches to reducing the number of degrees of
freedom from MD simulations. At the highest level, there
are numerical and theoretical approaches. Broadly speaking,
future work in numerical approaches should improve the
accuracy of CG models while considering that introduc-
ing more parameters requires their tuning and sufficient
training data. For theoretical methods, work remains to
extend the models to more diverse chemical systems, such
as block copolymers, and models that incorporate adaptive
resolution.

In some sense, QM, MM, and CG codes have individ-
ually reached an appreciable state of maturity, but hybrid
codes such as QM/MM/CG are relatively less supported,
and the barrier of entry is too high for many computa-
tional chemists. Part of the reason for this is the novelty
and diversity of many different multiresolution methods in
chemistry. Much work remains to improve and eventually
verify and validate these existing models, which requires
supportive tools (such as VOTCA for CG) that allow for di-
rect comparison of hybrid methods. The community would
greatly benefit from more modular, extendible, and scalable

software interfaces that enable exploration of different mul-
tiscale methods, and offer guidance in choosing the best
fit for the chemistry problem at hand. Workflow systems
management plays a crucial role in this regard, yet there is
a general lack of support, adaptivity, performance metrics,
and modularity in this field. The hardware infrastructure
is available, we only require the committed development
of new and extendible computational chemistry tools for
multiscale simulations.
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